CONJUGATE SERIES AND A THEOREM OF PALEY

HENRY HELSON

1. Introduction. It is known that a trigonometric series

(1) i 0,6

—o0

does not have to satisfy condition on the size of its coefficients stronger
than the trivial one

2l <o

in order to be the Fourier series of a continuous function. One theorem
which gives precise content to this general statement is the following :
If {w,)}=. is a sequence of non-negative numbers such that

oo

Z‘an‘flvn< S

— oo

whenever (1) is the Fourier series of a continuous function, then
Slwy < oo,

The fact that (1) is the Fourier series of a continuous funection does
not by any means imply the same for

( 2 ) i aneinx
0

Therefore the following rather neglected theorem of Paley [5] lies deeper
than the result just stated.

THEOREM 1 (Paley). If {w,}& is a sequence of non-negative numbers
such that

whenever (2) is the Fourier series of a continuous function, then
(4) Sk < oo
0

In the next section we offer a new and simple proof of this theorem.
The proof depends on the fact that the conjugate series of a Fourier-
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Stieltjes series is summable (by Abel or Cesaro means) almost every-
where.

In several or infinitely many variables the analogue of the first result
mentioned is true. The main purpose of this note is to investigate a few
of the possible generalizations of Paley’s theorem to functions of several
variables.

In §3 we develop the notion of conjugate function in several
variables from a point of view somewhat different from that of other
writers. We cannot answer the natural questions about the summability
of conjugate series, but our result makes it possible (in §4) to apply
a theorem of Zygmund on the summability of multiple power series in
order to generalize Paley’s Theorem.

Finally, in the last section, we show by a simple example that Paley’s
theorem cannot be extended to power series in infinitely many variables.
We do not know, however, whether power series in fwo variables have
Paley’s property or not.

2. Proof of Paley’s theorem. For each continuous function ¢ with
Fourier series (2) define

(5) F[go]=2:anwn.

The series converges on account of the hypothesis (3), and evidently F'
is a continuous linear functional defined on a closed subspace of the space
C of continuous periodic functions. Extend F' to a linear functional on
all of C. By a well-known theorem of F. Riesz, there is a complex
bounded measure g defined on Borel subsets of the circle such that

(6) FI91 = | p(—a)dute) all geC).

In particular, for the functions ¢(z) = ¢ (n =10,1,2, --+) we have two
representations for F[¢] given by (5) and (6):

(7) w, = Fl¢] = SO e~ " du(x) .
If we define w, by (7) for n < 0, the Fourier-Stieltjes series of dp is

5‘-“ wneimv .
Now every Fourier-Stieltjes series is summable almost everywhere by
Abel (or by Cesaro) means [7, p. 59]. The same is true, although more
difficult to prove, for the conjugate series of a Fourier-Stieltjes series
[7, p. 146]. It follows from these facts together that
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Z wneinz

is summable almost everywhere.
Instead of (5) we could have defined F' as

Fle] = X aw,en,
0
where t,, t,, --- are any real numbers. The same argument shows that
i w eitnein:c
n
0

is summable for almost all x, no matter what values the ¢, have. But
this implies (4) [7, p. 125], as was to be proved.

3. Conjugate series. Denote by T, the torus group in k& dimensions,
and by T the compact infinite-dimensional torus. The dual of T, is the
lattice group &7 in k dimensions. The dual .&” of T is the group whose
elements are sequences of integers (n,, m, --+) which are all zero but
a finite number. A summable function f on T, has Fourier series

( 8 ) f($19 cee, xk) ~ Z a(,nl, cee, ,nk)ei(nlxl+...+nk:ck) .

(The formal summation is extended over all integral values of n,, ---, n,.)
Similarly we write for a summable f on T

(9) f(xl, -..)/\,Za,(nl, ...)et(nlx“....) ,

where the sum in the exponent is actually finite at each lattice point

(nlv i ')'
Let N and X denote generic points of < (or of %) and of T,
(or of T') respectively. In place of (8) and (9) we shall write

S(X) ~ 3 a(N)e'™ ™

In the same way we write the Fourier-Stieltjes series of a bounded
complex measure # on 7, or on T

(10) dp(X) ~ 3 a(N)e*

Let S be a subset of &7 or of .&; we are interested in the opera-
tor 7' which carries every series (10) into

(11) S (N

If T carries the Fourier series of one function space into those of an-
other, we shall consider T's at the same time as an operation on funections.
Our aim is to prove, by specializing S, that T's is continuous in certain
topologies.
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DEFINITION. A subset S of & or of &~ is a half-space if
1° The origin is not in S
2° NeS ifand only if —N¢ S (N not the origin)
3° M + N belongs to S with M and N.

Fourier series with coefficients lying in a half-space have many of the
properties of analytic Fourier series of one variable [4]. The following
theorem of Bochner [1] generalizes a well-known theorem of M. Riesz.

BOCHNER’S THEOREM. If S ds a half-space, then T is a bounded
operator mapping LP wnto itself for each p > 1.

The main result of this section is of the same character.

THEOREM 2. If S is a half-space and f is a trigonometric polynomial
then

(12) TP, = K, [1f s (all p<1),

where K, is a constant depending only on p.

The proof is like that of the corresponding theorem in one variable
[7, p. 150], applied not to analytic functions but to elements in an ap-
propriate Banach algebra. The observations which follow are not new.

Denote by Cg the class of continuous function ¢ on the torus having
Fourier series of the form

(13) o(X) ~ b+ SHN)E

C; is the closure, in the topology of uniform convergence, of the set of
trigonometric polynomials having the form (13). Therefore Cs is an al-
gebra, and in fact is a Banach algebra in the uniform topology. To each
maximal ideal M in Cy is associated a multiplicative linear functional of
norm one on Cgs. The value of this functional on ¢ is denoted by @(M).
The spectrum of ¢ is the closed set of complex numbers @(M), where
M ranges over the space of maximal ideals. If F' is an analytic funec-
tion defined on a region of the plane containing the spectrum of ¢ then
there is an element ¢ in Cy such that

WM = FI(M)] (all M);

we may write simply ¢ = F(¢).

Suppose ¢ is in Cy and R ¢(X) = e >0 for all X. We assert that
RG(M) = ¢ for all M. (The second statement contains the first, because
to each point X there is a maximal ideal My with ¢(M;) = ¢(X) for all ¢.)
Indeed, the linear functional associated with any M can be extended to
the space of all continuous functions without increasing its bound, and
so has a representation
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(14) o(M) = Sga(X)d/JM(X) @l geCy)
with
(15) flamr=1.

The function ¢, constantly equal to one is in Cg and its value in every
maximal ideal is one. From (14) we obtain

(16) 1= (M) = Sm(X) :

It follows from (15) and (16) together that 4, is a non-negative measure.
Therefore in (14) we can separate real and imaginary parts to obtain

Ro(M) = |Re(D)dea(X) = ¢

as was to be proved.

Let p be an arbitrary fixed positive number. Suppose ¢ is in Cs and
Re(X) = ¢ > 0. By what has just been proved, the function 2? is analytic
on the spectrum of ¢, so we can form ¢? in C; satisfying

(17 (M) = (M) (all M) .

Two cases of (17) are important. First, if M, is the maximal ideal de-
termined by a point X of the torus then (17) becomes

(18) e X) = ¢(X)? (all X).
Second, there is a distinguished maximal ideal M, such that!
o) = |(X)do(X) .

We conclude from (17) that

(19) [ 0ds(x) = (o)

The second property of half-spaces has not been used up to this
point. We appeal to it now in order to observe that every real trigono-
metric polynomial is the real part of a trigonometric polynomial in Cj.

We are ready to give the proof of Theorem 2. Suppose first that
f i8 a positive trigonometric polynomial :

fX) = Xb(N)e™* ze>0

1 do(X) denotes the element of Haar measure on the torus normalized to have unit
total mass.
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and set
o(X) = b(0) + 2 ZS b(N)e ¥,

Then ¢ belongs to Cy, and we can write ¢ = f + ig where ¢ is a real
trigonometric polynomial having mean value zero. The expression for
¢ in polar form is

¢ = w(cosa + it sina) ,

where w(z) = | @(X) | and —n/2 < a(X) < /2.
Making use of (18) and (19) and the notation just introduced we
have

(Sfdzr)p - (Sgodcr)p — Sgo"dzr - Sw"(cos pet + 4 sin pa)de

= Sw” cos pads > cos 1)255(]”2 + ¢))?Pds = cos 7’2"- SI g |7do .

That is, with 4 = (COS pzﬂ_ )—1/1; ,

([roras)r < afsas .

From this inequality it is simple to prove (12) with a certain constant B
in place of K,. By continuity the result holds for trigonometric poly-
nomials which are non-negative but not necessarily bounded from zero.

The passage to trigonometric polynomials of arbitrary sign is not quite
trivial. If f is real and has the form

f=9—nh

where g and & are non-negative trigonometric polynomials, then by what
we have proved

(20) HTsf I = Tsglls + Tk Iy < Bl g It + (| 21117 .
Decompose f into its positive and negative parts:
f=f+ _f—;f+' —go’f+ 'f—EO.

If f. and f_ were trigonometric polynomials we could choose them for
g and % and obtain from (20)

(1) W Tsrlly < B2 111 .

Of course they are never trigonometric polynomials unless one of them
vanishes, but they are non-negative continuous functions, and so can be
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approximated uniformly by non-negative trigonometric polynomials, say
by ¢. and A, respectively. Set f, = g, — h,. Writing (20) with f,, ¢n,
and %, and passing to the limit we obtain

lim (| Tsfu |5 = 2B7 [ f1IF .

But the sequence Tf, obviously tends to T's f in the norm of I? and so
in L? for each p < 2, so we obtain (21) after all.

There is no difficulty in extending the result to arbitrary complex
trigonometric polynomials, with a new constant which we call K,, and
s0 the theorem is proved.

COROLLARY. If S s a half-space in &, or in < the operation T's
transforms L into L? for each p < 1 in the following semse : every Fourier
series 1s carried by Ts into a series summable in the metric of L? to
a limit function. The summation is effected by every approximate iden-
tity consisting of trigonometric polynomials. The transformation corrying
[ into T satisfies (12).

Let f be an arbitrary summable function on the torus, and let
{e}, e,, --+} be an approximate identity consisting of trigonometric poly-
nomials. (That is, each ¢, is a non-negative trigonometric polynomial
with mean value one and e, *f tends to f in the norm of L for each f.)
Then {e, = f} is a Cauchy sequence in L consisting of trigonometric poly-
nomials. By Theorem 2, {T'i(e, = f} is a Cauchy sequence in L” for p < 1.
Consequently 7's(e, = f) converges in the metric of L? to a limit function
T.f, and (12) clearly holds. This is just the statement of the Corollary.

We do not know whether any method of summation effects point-
wise convergence almost everywhere of the series for T;f. However
the Corollary shows that Tf always exists as a limit in mean. If f is
a real summable function, its conjugate can be defined as the real func-
tion g such that £ + ¢g = Tsf. Then g exists as a limit in mean, and has
many of the properties one expects of a conjugate function in one variable.
Our proofs have made strong use of the fact that S is a half-space ; we
do not know whether Tf exists in any sense whatever if S is, for ex-
ample, the first quadrant of &,

The device used to prove Theorem 2 can be used to extend other
clagsical theorems about Fourier series in one variable.

It is possible to assert the conclusion of Theorem 2 for certain sets
S which are not quite half-spaces. For simplicity consider a half-space
in .%. It consists exactly of those lattice-points (m, n) satisfying

(22) ma + nf >0

for some irrationally related numbers « and §; or else S consists of the
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lattice points satisfying (22) for some rationally related « and B, to-
gether with non-zero points on one ray from the origin of the line

ma + nf =0

We shall consider a half-space S of the second type. Denote the other
ray (including the origin), which is not contained in S, by R. With the
use of the theorem on conjugate functions of one variable it is easy to
prove that Theorem 2 holds for the set R in place of S. It follows
that the augmented half-space H consisting of all (m, n) with ma + nf = 0
has the same property.

In the same way we can add to a half-space of dimension £ in &
disjoint half-spaces of lower dimension, obtaining new sets for which
Theorem 2 and its corollary hold.

Let R and S be two half-spaces, or more generally, any sets having
the property of Theorem 2. Then T, — T is an operator carrying L into
L* for each p < 1. For example, let R and S be the modified half-spaces
in %7 defined respectively by m = 0 and » < 0. T, — T operates on tri-
gonometric series in two variables by multiplying each term by a factor
€mn; this factor is 1 in the first quadrant (including the boundary) and
—1 in the third quadrant (excluding the boundary), and vanishes in the
second and fourth quadrants.

By Bochner’s theorem the operator T, — Ts carries L? into itself for
p > 1. It is interesting to compare these results with theorems of simi-
lar nature but different proof by Caldéron and Zygmund [3].

4. A generalization of Paley’s theorem.

THEOREM 8. Let S be o half-space in . Suppose {w(N)} s a set
of non-negative numbers defined for N in S, and having the property that

(23) 1]+ 2 10(N) [w(N) < e

whenever (13) is the Fourier series of a function in Cs. Then

(24) ; w(N) < oo .

Proof. As for one variable, the hypothesis implies that
(25) S w(N)eto gt X
N

is the image under T5 of some Fourier-Stieltjes series, no matter how
the real numbers ¢(N) are chosen. This assertion remains true if any

of the w(NN) are replaced by zero, because (23) continues to hold. Sup-
pose now (24) is false. Then at least one of the 2* congruent cones

:H%ZO, :‘:'nq_Z_O,“‘, inkzo
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obtained by choosing the k& signs in these inequalities contains points over
which the sum (24) diverges. Denote such a cone by C. Replace w(N)
by zero for all N in S-C. Finally, by a linear change of variables bring
C into coincidence with the preferred cone

77'120,%220,"'»7%20-

(The transformation carries S onto a new half-space.) Now we have
a counter-example to the theorem (which is assumed to be false) in which
w(N) vanishes for all N not in C.

Extend w to the complement of S so that

Z w(N)eitp(N)eiN-X

is the Fourier-Stieltjes series of a measure p#. For 0 < » <1 define a
function f, on the torus by the absolutely convergent series

Z w(N)'rl”'ll“"‘+I"k|ei</’(N)etN-X ‘
For each  we have || £, ||, < Sld/l |, and so by the corollary to Theorem 2

(26) “Tsf'erngHfr“léK (O<’)"<1)

Moreover the corollary implies that

Tsf(X) = S w(N)rimls+Inglgle(givx
N

Since w(N) vanishes on S-C this can be written
Tsf(X)= SW(IN )Pt gt (N ghtv X
)

On account of (26) this series belongs to the space H" (p < 1), whose
elements are analytic functions of % variables. A theorem of Zygmund
[6, p. 208] asserts that

lim T, f,(X)
r1

exists almost everywhere on the torus. But the numbers ¢(N) are ar-
bitrary, and so we conclude as in the case of one variable that

STw(N)* < oo .
This contradiction shows that the theorem is true.

5. A counter-example. Let S be the subset of .27 consisting of all
lattice points N = (n,, ---) with each n; = 0. (S is not a half-space, but
rather the infinite-dimensional analogue of the quadrant in .%7.) Denote
by 4 the subset of S on which >\ n, = 1.
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THEOREM (Bohr [2, p. 468]). For each ¢ in Cys with Fourier series
(11) we have

Sla = llg .

This result states exactly that the sequence {w(N)} equal to 1 on
4 and 0 on S-4 has the property of Paley’s theorem ; but w(N) does
not even tend to zero, and certainly is not square-summable. So Paley’s
theorem fails decisively in this setting.

For this sequence the series (25) is

(27) get”je“j ,

and this is the image under T of a Fourier-Stieltjes series no matter
how the real numbers ¢, are chosen. For appropriate values of ¢, ¢,
+++ (27) is non-summable for almost every point (a, @,, --+), and this is
true for each Toeplitz method of summation. Hence the theorem on the
summability of conjugate series in one variable cannot be extended to
this extreme situation. The analogous problem in two variables is open,
so far as we know, both for half-spaces and for quadrants.
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