
LINEAR INEQUALITIES AND QUADRATIC FORMS

JERRY W. GADDUM

1. Introduction* There are known criteria for a quadratic form to
be positive definite, and criteria for a system of linear inequalities to
have a solution. In this paper the two problems are shown to be related.
The principal theorem is Theorem 5.1.

2, Definitions and Notation* We will consider a quadratic form
n

Z(x) = Σjaij%i%j, with aυ = an ,
1

and ask whether it is positive in the first orthant, i.e., whether it is
positive for non-negative values of the xt.

If Z(x) > 0 for x ^ 0, we call it conditionally definite and if Z(x)>:

for x ^ 0, we call it conditionally semi-definite. (Since we will only be
concerned with positive definiteness, we will omit the word " positive "
throughout the paper.) Finally, if Z(x) ^ 0 when x ^ 0 and Z(x) > 0
when x > 0, we call Z(x) conditionally almost-definite.

As a matter of notation, we recall that Ax > 0 or x > 0 means that
at least one component of the vector in question is positive.

In discussing Z{x) we shall have occasion to refer to the form obtained
by setting xkl, xki, , xk equal to zero, that is, the form

We shall call this a principal minor of Z(x) and denote it Zkϊ...k (x).

In referring to the corresponding matrix, A10*"'-** we will assume x has
the appropriate number of components when we write A*i—*«#.

3* Quadratic forms in the first orthant. We first prove a theorem
which is not strictly necessary but may be some intrinsic interest. It
concerns the game whose matrix is A = (atj) and whose value is v. (For
completeness we remind the reader of the following definition of the
value v of a game with matrix B = (bυ), i = 1, , m j = 1, , n.
Let X be the set of vectors x = (xl9 , xm) with xx Ξ> 0 and ^Txi = 1
Y the set of y — (yLf •••,!/,») with y3 ^ 0 and ΣΓ2/j — l Then it can
be shown that

max min Σ h^x.^^ = min max
a e i 2/6F ϊ/6F rc€X

and this quantity is called the value of the game with matrix B).
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THEOREM 3.1. Suppose each principal minor of Z(x) is conditionally
definite. Then in order that Z(x) be conditionally definite, it is necessary
and sufficient that v > 0.

Proof. Suppose v ^ 0. Then there is a y ^ 0 with Ay <; 0. But

This shows the necessity.
Suppose, now, that v > 0. Then there is a vector x with x ^ 0 and

Ax > 0. Every vector x ^ 0 can be written as a convex combination of
kx, k > 0, and some vector #', with xf ^ 0 and #' in one of the coordinate
planes. That is, for any x ^ 0, x — λkx + (1 — λ)x\ k > 0 and 0 <; Λ <̂  1.

We note the fact that, for any u, v,

Z[λu + (1 - λ)υ] = Σ atj[λut + (1 - λ)Vί] [λUj + (1 - ;)vj

= P Σ o , ^ + 2/1(1 - Λ) Σ α<^^j + ί1 ~ Ό 2 Σ ^v(05 .

Thus,

(1) Z\λu + (1 - Λ)i;] = ^2^(w) + (1 - / l) 2 ^) + 2^(1 - λ) ΣUijUίVj .

Applying:

(1) to x = λkx + (1 - λ)x\ Z(x)

= λ^Z{x) + (1 -λfZ{xf) + 2^(1 - X)k%a>ifitXj -

Since every principal minor of Z(x) is conditionally difinite, Z(^r) > 0.
Since Σfl>t& > 0, ̂  = 1, , w, ̂ (») > 0 and Σ cbi&x'j > 0. Therefore,
^(α;) > 0 for x > 0 and the sufficiency is proved.

We can state the following theorem, the proof of which is almost

identical with the proof of Theorem 3.1.

THEOREM 3.2. // each principal minor of Z(x) is conditionally semi-
definite, then Z(x) is conditionally semi-definite if and only if v ^ 0.

For symmetry we state the foregoing as theorems on systems of
linear inequalities.

THEOREM 3.3. Suppose each principal minor of Z(x) is conditionally
definite. Then the system Ax > 0, x ^ 0 has solutions if and only if Z(x)
is conditionally definite.

THEOREM 3.4. Suppose each principal minor of Z(x) is conditionally
semi-definite. Then the system Ax ^ 0, x ^ 0 has solutions if and only
if Z(x) is conditionally semi-definite.

These theorems raise the question of the relation between the form
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Z(x) and the system Ax > 0, x > 0. The following theorem answers it.

THEOREM 3.5. Suppose every principal minor of Z(x) is conditionally
semi-definite. Then the system Ax > 0, x > 0 has solutions if and only
if Z(x) is conditionally almost-definite.

Proof. Suppose Ax > 0, x > 0 is consistent and let x be a solution.
As in the proof of Theorem 3.1, represent any x > 0 by x — λkx + (1
— λ)x'', where λ, k, and x' have the same significance as before. Then

Z(x) = λWZ(x) + (1 - λ)*Z(x')

Now if x > 0, Z(δ) > 0, and Z(x) will be if /I > 0, that is, if x > 0. On
the other hand, if for every i for which Σaijx3 > 0 it happens that
x. = 0, Z(#) = 0. However, if x > 0 then α?ί > 0 if a?< = 0, and thus

> 0.

Thus in any case Z{x) > 0 if x > 0.
Now suppose Z(#) conditionally almost-definite. Consider the convex

hull, A*, of the row vectors of A. If this contains a vector in the
first orthant, then the system Ax > 0, x > 0 has solutions.

If A* does not intersect the first orthant in any non-zero vector,
then A* and the first orthant can be strictly separated by a hyperplane
through the origin. One normal to this hyperplane, y, will lie interior
to the first orthant.

Thus Ay ^ 0 and since y > 0, Z(y) ^ 0, contrary to the hypothesis
that Z(x) is conditionary almost-definite. Thus the theorem is proved.

4, Further development of Section 3. In the five theorems of § 3,
it is natural to try to replace the hypotheses concerning the principal
minors of Z(x) by some condition relating more directly to linear in-
equalities.

It is not difficult to verify that a quadratic form in two variables,
ax2 + 2bxy + cy2, is conditionally definite if and only if a > 0, c > 0 and
either b2 < ac or b > 0. This is equivalent to the statement that

(1) ax > 0
(2) cy>ϋ
(3) ax + by>0,bx+cy>0

all have non-negative solutions. Proceeding by induction, we can state
the following theorem.

THEOREM 4.1. A necessary and sufficient condition that Z(x) —

iXj be conditionally definite is that for each principal minor A \
fcr of Af the system A*1, *rx > 0 x >̂ 0 be consistent.
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Clearly, Theorems 3.4 and 3.5 can be restated in this way but we
forbear doing so here.

5» Positive Definite Forms. It is clear that to see whether a form
^Σfltflc&s is positive in the orthant where xiχ, xh, , xt are negative or
zero, and the other unknowns positive or zero, we have only to multiply
the ijth, ijth, •• ,i rth rows and columns of A = (atJ)by — 1 and inquire
whether the resulting form is conditionally definite. We may call the
form 'ΣubijXiXj obtained in this way a symmetric transform of Σ^s^A
Thus a quadratic form is positive definite if and only if every symmetric
transform is conditionally definite.

THEOREM 5.1. A quadratic form ^aijxtxj ^s positive definite if and
only if every system Bx > 0, x ^ 0 is consistent where B is a symmetric
transform of a principal minor of A.

6 Linear Inequalities* Let B be any m x n matrix and C = BBT.
In [1] it was shown that Bx > 0 has solutions if and only if Cy > 0,
y ^ 0 does. It can be shown that Bx > 0 has solutions if and only if
Cy > 0, y ^ 0 does.

Using these results, plus the foregoing discussion, we can summarize
as follows :

THEOREM 6.1. The system Bx > 0 is consistent if and only if the
form ^CijUiVj is conditionally definite.

THEOREM 6.2. The system Bx > 0 is consistent if and only it
is conditionally almost-definite.

T. S. Motzkin in [2] has given a condition for a quadratic form to
be conditionally semi-definite, the condition involving the signs of various
determinants. No other discussion of this question is known to the
writer.

REFERENCES

1. J. W. Gaddum, A theorem on convex cones with applications to linear inequalities,
Proc. Amer. Math. Soc. Vol. 3, No. 6, pp. 957-960.
2. National Bureau of Standards Report 1818 (1952), 11-12.

UNIVERSITY OF FLORIDA, MICHIGAN STATE UNIVERSITY AND

OAK RIDGE NATIONAL LABORATORY




