
ON A COMMUTATIVE EXTENSION OF A

COMMUTATIVE BANACH ALGEBRA

ClPRIAN FOIAS

Let A be a commutative Banach algebra without identity such that
(l.a) there exists an approximate identity (i.e. there exists a net

{uΛ} c Ay so t h a t \\uΛ\\ = 1 and uΛx-> x for all x e A)

(l.b) if A designates Gelfand's representation of A [3], and M the
space of regular maximal ideals of A, then the boundary of M with

respect to A, is equal to M1.

Let J*f(A) be the algebra of all bounded linear operators on A the

mapping x -> Tx of A into Jδf(A), where Txy = xy, y e A, is isomorphic

and isometric (by (l.a)) onto a subalgebra A of j£f(A),

Let s/ be the set of those operators T e ^f(A) which commute

with all Tx e A, that is such that

(1) T{xy) - (Tx)y = αίZty), a?, 2/ e A

LEMMA ( i ) . ί V all T e J ^ , we &cwe Γ = lim ΓΓWα,, the limit be-
ing considered in the strong operator topology,

(ii) J^f is the closure of A in the strong operator topology.

(iii) j%f is the largest commutative subalgebra of Sf(A) which con-

tains A.

(iv) A is an ideal in

Proof. From (1) and (l.a), it follows that

TmΛy = TuΛ y = T(uΛy) -> Ty

for all T e s>/ and y e A, hence ( i ) is proved, (ii) results from ( i ) .
Concerning (iii), it is enough to prove that s^f is commutative or, by
( i ) and (1)

T,T2 x = lim TTlUΛ T2x = T2 lim TrLuΛ % = T2Tt x,

TltT% 6 sf, x e A

If T e Ssf and x,yeA, then

TTxy = T(xy) = (Tx)y = TTxy ,

hence

Received March 21, 1958.
1 For example this condition is satisfied if J& is regular or self ad joint, see [3, p. 81].

407



408 CIPRIAN FOIAS

( 2 )

whence (iv) follows.
Now, let ^/έ be the space of the maximal ideals of s/. We can

pass to the main result of our note.

THEOREM 1. There is a homeomorphism ra -» m of M, on an open subset

M of ^ % such that for all m e M, and x e A,

Tx(m) = x(m)

if ίho 0 M then Tx(m0) — 0.

Proof. Observe that by (l.b) and by a theorem of Neumark [4]2

to every m e M there corresponds an m e ^f such that x(m) = Tx(m)
for all x e A. We shall show that m is uniquely determined. If

Tx{fih) = »(m) = Tx(m2) for all x e A, then by (2)

f T^) = fx{m)

= TTx{m2) = TTx(m2) = T{m,)x{m) ,

where x e A and T e sf are arbitrary. Choose x e Ssf such that

x(m) Φ 0 then t{mλ) = f(m2) for all Γ e S/ hence mx = m2.

Let Tx(m0) ^ 0 then the homomorphism x -> Tx(m0) has as kernel a

regular maximal ideal m0 of A, and from x(m0) — Tx(m0) it follows that

m0 6 M. Thus, if m0 0 Mo> then necessarily Tx(m0) = 0. This result shows

also that M is open in ^ . In fact, if m0 e M, there exists an x e A

such that Tx(mQ) Φ 0 but then Tx(m) Φ 0 in a neighborhood V of mo;

hence F c l ,

The mapping m ->m being evidently continuous, it remains to prove

the continuity of the direct mapping m->m. It is enough to show that

the topology of M c ^f is the weak topology generated on M by the

functions Tx(m), xe A; this results from Theorem 5 G of [3], because that

the functions Tx(m) are continuous on M, vanish at infinity (with respect

to M), separate the points of M and do not all vanish at any point of

M. (These facts are direct consequences of the preceding results).

In this manner, M can be considered identical with M in what

follows we consider M c ^// and Tx(m) — x{m).
From now on, we suppose that A is semi-simple. Then we have the

following

2 In fact we use a slight extension of the Theorem 3, p. 195.
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COROLLARY. ( i ) // fΎ{m) = T2(m)for m e M then ϊ\ = T2 (ii) j y
is semi-simple.

Proof (ii) results from (i), and ( i ) results from the relation

TM) = Ί\Tx(m) - T^mtfjin) = T2(m)fx(m) - TJΓJim) = Tφi)

A being semi-simple, we conclude that Tλx = T2x for all x e A, that is
2\ = Γa.

THEOREM 2. A function f defined on M is a factor function of A

(that is fx — y e A for all x e A) if and only if there is a T e S/, such

that f(m) = T(m), m e M.

Proof. If f(m) = f(m) then by (2)

f(m)x(m) = f(m)x(m) = TΓx(m) = fΓx(m) = ϊ^(m) 6 A .

Conversely, if / is a factor function of A, then the operator ϊ7/ defined
by Tfx = ?/ where y ~ fx is a linear closed operator defined on A, since
A is semi-simple. Hence Γ r is bounded. But fxy = xfy, so that
Tf e JZ/ . Thus for all m e M we have

Tf(m)x(m) = Tf(m)Tx(m) = 2>(m) = £(m) = f(m)x(m) ,

for arbitrary a e i It follows that Γ/(m) = /(m).
To understand the sense of these results, let us consider the case

A = L\G) where G is a locally compact abelian group which is not dis-
crete. Let M\G) be the algebra of all bounded complex measures on G.
Then, if Tμx — μ * x, x e U{G) then Γμ is a linear bounded operator on A,
and the mapping μ -» Γμ is isomorphic and isometric on M\G) into

[1]. Observing that M — G one may see easily that

THEOREM 3. s>f is isomorphic and isometric with M'{G).

Proof. It remains to show that for every T e j y , there is a
μ e M\G) such that T = Tμ. For the measures {/**}, where dμa(s) =
TuΛ(r)ds, we have || μΛ \\ ^ || T ||. But the sphere of radius | | Γ | | of
M^G) (considered as the conjugate space of K(G) or C(G U {°°})) is
weakly compact. Hence there is a /* e Λί^G), which is a weak cluster
point of {μΛ}. Consequently, by Lemma (i),

f(m) = lim Γ^(m) = lim [ (mΓs)Tua{s)ds = [ (m7s)dμ{s) =
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By Corollary ( i) we conclude that T = Tμ.
Let us give some known corollaries of these results. From Theorems

1 and 3, we may obtain directly that every maximal ideal of M\G) which
does not contain L!(G) corresponds to a character of the group G, a fact
established by H. Cartan and R. Godement [1]. In the same manner,
Theorems 2,3 and (3) show that every factor function for the Fourier
transform is the Fourier transform of a bounded measure (both the de-
finition of a factor function and this result in the special case of the
additive group of the real numbers are due to E. Hille [2] the extension
to the general case of a locally compact abelian group was done by
R.S. Edwards, Pacific J. Math. 1953 and independently by I. Cuculescu).
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