ON A COMMUTATIVE EXTENSION OF A COMMUTATIVE BANACH ALGEBRA

Ciprian Foias

Let A be a commutative Banach algebra without identity such that (1.a) there exists an approximate identity (i.e. there exists a net $\left\{u_{\alpha}\right\} \subset A$, so that $\left\|u_{\alpha}\right\|=1$ and $u_{\alpha} x \rightarrow x$ for all $x \in A$);
(1.b) if \hat{A} designates Gelfand's representation of A [3], and M the space of regular maximal ideals of A, then the boundary of M with respect to \hat{A}, is equal to M^{1}.

Let $\mathscr{L}(A)$ be the algebra of all bounded linear operators on A; the mapping $x \rightarrow T_{x}$ of A into $\mathscr{L}(A)$, where $T_{x} y=x y, y \in A$, is isomorphic and isometric (by (1.a)) onto a subalgebra \tilde{A} of $\mathscr{L}(A)$,

Let \mathscr{A} be the set of those operators $T \in \mathscr{L}(A)$ which commute with all $T_{x} \in \tilde{A}$, that is such that

$$
\begin{equation*}
T(x y)=(T x) y=x(T y), \quad x, y \in A \tag{1}
\end{equation*}
$$

Lemma (i). For all $T \in \mathscr{A}$, we have $T=\lim T_{T u_{a}}$, the limit being considered in the strong operator topology.
(ii) \mathscr{A} is the closure of \tilde{A} in the strong operator topology.
(iii) \mathscr{A} is the largest commutative subalgebra of $\mathscr{L}(A)$ which contains \tilde{A}.
(iv) \tilde{A} is an ideal in \mathscr{A}.

Proof. From (1) and (1.a), it follows that

$$
T_{T u_{\alpha}} y=T u_{\alpha} \cdot y=T\left(u_{a} y\right) \rightarrow T y
$$

for all $T \in \mathscr{A}$ and $y \in A$, hence (i) is proved. (ii) results from (i). Concerning (iii), it is enough to prove that \mathscr{A} is commutative ; or, by (i) and (1)

$$
\begin{aligned}
T_{1} T_{2} x=\lim T_{T_{1} u_{\alpha}} T_{2} x=T_{2} \lim T_{T_{1} u_{\alpha}} x= & T_{2} T_{1} x, \\
& T_{1}, T_{2} \in \mathscr{A}, x \in A
\end{aligned}
$$

If $T \in \mathscr{A}$ and $x, y \in A$, then

$$
T T_{x} y=T(x y)=(T x) y=T_{T x} y
$$

hence
${ }^{1}$ For example this condition is satisfied if \mathscr{A} is regular or selfadjoint, see [3, p. 81].

$$
\begin{equation*}
T T_{x}=T_{x} T=T_{T x} \tag{2}
\end{equation*}
$$

whence (iv) follows.
Now, let \mathscr{l} be the space of the maximal ideals of \mathscr{A}. We can pass to the main result of our note.

THEOREM 1. There is a homeomorphism $m \rightarrow \tilde{m}$ of M, on an open subset \tilde{M} of \mathscr{M}, such that for all $m \in M$, and $x \in A$,

$$
\hat{T}_{x}(\tilde{m})=\hat{x}(m) ;
$$

if $\tilde{m}_{0} \notin \tilde{M}$ then $\hat{T}_{x}\left(\tilde{m}_{0}\right)=0$.
Proof. Observe that by (1.b) and by a theorem of Neumark [4] ${ }^{2}$ to every $m \in M$ there corresponds an $\tilde{m} \in \mathscr{M}$ such that $\hat{x}(m)=\hat{T}_{x}(\tilde{m})$ for all $x \in A$. We shall show that \tilde{m} is uniquely determined. If $\hat{T}_{x}\left(\tilde{m}_{1}\right)=\hat{x}(m)=\hat{T}_{x}\left(\tilde{m}_{2}\right)$ for all $x \in A$, then by (2)

$$
\begin{aligned}
\hat{T}\left(\tilde{m}_{1}\right) \hat{x}(m) & =\hat{T}\left(\tilde{m}_{1}\right) \hat{T}_{x}\left(\tilde{m}_{1}\right)=\widehat{T T_{x}}\left(\tilde{m}_{1}\right)=\hat{T}_{T x}\left(\tilde{m}_{1}\right)=\hat{T} x(m) \\
& =\hat{T}_{T x}\left(\tilde{m}_{2}\right)=\widehat{T T}_{x}\left(\tilde{m}_{2}\right)=\hat{T}\left(\tilde{m}_{2}\right) \hat{x}(m)
\end{aligned}
$$

where $x \in A$ and $T \in \mathscr{A}$ are arbitrary. Choose $x \in \mathscr{A}$ such that $\hat{x}(m) \neq 0$; then $\hat{T}\left(\tilde{m}_{1}\right)=\hat{T}\left(\tilde{m}_{2}\right)$ for all $T \in \mathscr{A}$; hence $\tilde{m}_{1}=\tilde{m}_{2}$.

Let $\hat{T}_{x}\left(\tilde{m}_{0}\right) \not \equiv 0$; then the homomorphism $x \rightarrow \hat{T}_{x}\left(\tilde{m}_{0}\right)$ has as kernel a regular maximal ideal m_{0} of A, and from $\hat{x}\left(m_{0}\right)=\hat{T}_{x}\left(\tilde{m}_{0}\right)$ it follows that $\tilde{m}_{0} \in \tilde{M}$. Thus, if $\tilde{m}_{0} \notin \tilde{M}_{0}$, then necessarily $\hat{T}_{x}\left(\tilde{m}_{0}\right) \equiv 0$. This result shows also that \tilde{M} is open in \mathscr{M}. In fact, if $\tilde{m}_{0} \in \tilde{M}$, there exists an $x \in A$ such that $\hat{T}_{x}\left(\tilde{m}_{0}\right) \neq 0$; but then $\hat{T}_{x}(\tilde{m}) \neq 0$ in a neighborhood V of \tilde{m}_{0}; hence $V \subset \tilde{M}$.

The mapping $\tilde{m} \rightarrow m$ being evidently continuous, it remains to prove the continuity of the direct mapping $m \rightarrow \tilde{m}$. It is enough to show that the topology of $\tilde{M} \subset \mathscr{M}$ is the weak topology generated on \tilde{M} by the functions $\hat{T}_{x}(\tilde{m}), x \in A$; this results from Theorem $5 G$ of [3], because that the functions $\hat{T}_{x}(\tilde{m})$ are continuous on \tilde{M}, vanish at infinity (with respect to \tilde{M}), separate the points of \tilde{M} and do not all vanish at any point of \tilde{M}. (These facts are direct consequences of the preceding results).

In this manner, M can be considered identical with \tilde{M}; in what follows we consider $M \subset \mathscr{M}$ and $\hat{T}_{x}(m)=\hat{x}(m)$.

From now on, we suppose that A is semi-simple. Then we have the following

[^0]Corollary. (i) If $\hat{T}_{1}(m)=\hat{T}_{2}(m)$ for $m \in M$ then $T_{1}=T_{2}$ (ii) \mathscr{A} is semi-simple.

Proof. (ii) results from (i), and (i) results from the relation

$$
\widehat{T_{1} x}(m)=\widehat{T_{1} T_{x}}(m)=\hat{T}_{1}(m) \hat{T}_{x}(m)=\hat{T}_{2}(m) \hat{T}_{x}(m)=\widehat{T_{2} T_{x}}(m)=\widehat{T x}(m)
$$

A being semi-simple, we conclude that $T_{1} x=T_{2} x$ for all $x \in A$, that is $T_{1}=T_{2}$.

Theorem 2. A function f defined on M is a factor function of \hat{A} (that is $f \hat{x}=\hat{y} \in \hat{A}$ for all $\hat{x} \in \hat{A}$) if and only if there is a $T \in \mathscr{A}$, such that $f(m)=\hat{T}(m), m \in M$.

Proof. If $f(m)=\hat{T}(m)$ then by (2)

$$
f(m) \hat{x}(m)=\hat{T}(m) \hat{x}(m)=\widehat{T T_{x}}(m)=\hat{T}_{T x}(m)=\widehat{T x}(m) \in \hat{A}
$$

Conversely, if f is a factor function of \hat{A}, then the operator T_{f} defined by $T_{f} x=y$ where $\hat{y}=f \hat{x}$ is a linear closed operator defined on A, since A is semi-simple. Hence T_{f} is bounded. But $f \hat{x} \hat{y}=\hat{x} f \hat{y}$, so that $T_{f} \in \mathscr{A}$. Thus for all $m \in M$ we have

$$
\hat{T}_{f}(m) \hat{x}(m)=\hat{T}_{f}(m) \hat{T}_{x}(m)=\widehat{T_{f} x}(m)=\hat{y}(m)=f(m) \hat{x}(m),
$$

for arbitrary $x \in A$. It follows that $\hat{T}_{f}(m)=f(m)$.
To understand the sense of these results, let us consider the case $A=L^{1}(\mathrm{G})$ where G is a locally compact abelian group which is not discrete. Let $M^{\prime}(G)$ be the algebra of all bounded complex measures on G. Then, if $T_{\mu} x=\mu * x, x \in L^{1}(G)$ then T_{μ} is a linear bounded operator on A, and the mapping $\mu \rightarrow T_{\mu}$ is isomorphic and isometric on $M^{1}(G)$ into \mathscr{A} [1]. Observing that $M=\hat{G}$ one may see easily that

$$
\begin{equation*}
\hat{T}_{\mu}(m)=\int_{G}(\overline{m, s}) d \mu(s) \tag{3}
\end{equation*}
$$

Theorem 3. \mathscr{A} is isomorphic and isometric with $M^{\prime}(G)$.
Proof. It remains to show that for every $T \in \mathscr{A}$, there is a $\mu \in M^{1}(G)$ such that $T=T_{\mu}$. For the measures $\left\{\mu_{\alpha}\right\}$, where $d \mu_{\alpha}(s)=$ $T u_{\alpha}(\gamma) d s$, we have $\left\|\mu_{a}\right\| \leqq\|T\|$. But the sphere of radius $\|T\|$ of $M^{\prime}(G)$ (considered as the conjugate space of $K(G)$ or $C(G \cup\{\infty\})$) is weakly compact. Hence there is a $\mu \in M^{1}(G)$, which is a weak cluster point of $\left\{\mu_{a}\right\}$. Consequently, by Lemma (i),

$$
\left.\left.\hat{T}(m)=\lim \hat{T} u_{a}(m)=\lim \int_{G} \overline{(m, s}\right) T u_{a}(s) d s=\int_{G} \overline{(m, s}\right) d \mu(s)=\hat{T}_{\mu}(m)
$$

By Corollary (i) we conclude that $T=T_{\mu}$.
Let us give some known corollaries of these results. From Theorems 1 and 3 , we may obtain directly that every maximal ideal of $M^{1}(G)$ which does not contain $L^{1}(G)$ corresponds to a character of the group G, a fact established by H. Cartan and R. Godement [1]. In the same manner, Theorems 2,3 and (3) show that every factor function for the Fourier transform is the Fourier transform of a bounded measure (both the definition of a factor function and this result in the special case of the additive group of the real numbers are due to E. Hille [2]; the extension to the general case of a locally compact abelian group was done by R.S. Edwards, Pacific J. Math. 1953 and independently by I. Cuculescu).

References

1. J. Dieudonné, Análize Harmônica, Rio de Janeiro, 1952.
2. E. Hille, Functional analysis and semigroups, New-York, 1948, Theorem 18.2.2, p. 362.
3. L. H. Loomis, An introduction to abstract harmonic analysis, New York, 1953.
4. M. A. Neumark, Normed rings, Moskwa, 1956 (in Russian).

University of Bucharest
Rumania

[^0]: ${ }^{2}$ In fact we use a slight extension of the Theorem 3, p. 195.

