ON THE DETERMINATION OF NUMBERS BY THEIR
SUMS OF A FIXED ORDER

J. L. SELFRIDGE AND E. G. STRAUS

1. Introduction. We wish to treat the following problem (suggested
by a problem of L. Moser [2]):

Let {«} = {wx, ---,2,} be a set of complex numbers (if one is
interested in generality, one may consider them elements of an algebra-
ically closed field of characteristic zero) and let {¢} = {oy, «- -, 0'(?)} be

the set of sums of s distinct elements of {x}. To what extent is {x}
determined by {s} and what sets can be {o} sets?

In §2 we answer this question for s =2. In §3 we treat the
question for general s.

2. The case s = 2.

THEOREM 1. If n =+ 2% then the first n elementary symmetric func-
tions of {o} can be prescribed arbitrarily and they determine {x} uniquely.

Proof. Instead of the elementary symmetric functions we consider
the sums of powers, setting

Q) .

Zlc Z 0-? ’ Slc == Z x? .
i1 i=1
Then
@) o
(1) S = of = > (wt1+xi2)k=- Z (mt!+a’tz)k
i=1 1<4,<t,<n 2 i1
4%ty
_1

Expanding the binomials and collecting like powers we obtain
k
Zk = %(g}) (f)SlSIc—l - zk'Sla)
_ 1 " 153 oo
= ”(277' -2 )Slc + - Z (z)bz‘sm—-z
2 2 =1

Thus, since the coefficient of S, does not vanish, we can solve re-
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cursively for S, in terms of I, ---, 3. In particular 3, ---, >, deter-
mine S, --., S,—and hence x,, ---, x,—uniquely.

THEOREM 2. If n=2% then >, -+, S+ MUst satisfy a certain
algebraic equation and {o} will not always determine {x}.

Proof. Equation (1) for > yields

(2) an = 1 i <k _l*_ 1>S¢Sk,+1—-L
2 i=1
where S, ---, S, are expressed by (1) as polynomials in >, «««, .-
To prove the second part of the theorem we proceed by induction.
Assume there are two different sets {@, -, @u-i}, {1 <+ ) Y1}
which have the same {s}. Then consider the two sets

(X} = {@ + @, ooy @y + G Yy o, Yy}
Yt ={a, ---, L1y Y1+ Ay =0, yzk—l_l_a'} .

Clearly every sum of two elements of {X} is either &i or o; + 2a
or x; + ¥; + @ and the same holds for the sum of two elements of {Y}.

The sets {X}, {Y} will clearly be different for some a. To show
that they are different for any @ # 0, rearrange {«} and {y} so that
o, =¢;t1=1,2,+--,m;m >0, and x, +y, for 5,k >m. Then since
Y +a=x,+a;t1=1,2, +---,m, the sets {X} and {Y} will be different
if {x,17 > m} is different from {x, + a|j > m}. But this is clear for
any a + 0.

Since {o} clearly does not determine {x} for n =2 the proof is
complete.

In a sense we have completed the answer of the question raised in
the introduction for s =2, however there remain some unanswered
questions in case n = 2%,

1. If {o} does not determine {x} can there be more than two sets
giving rise to same {s} ?

The answer is trivially ““yes’ for k=0,1 and is ““no”’ for k = 2.
It seems probable that the answer is ‘‘no’’ for all & > 2, however we
can see no simple way of proving this.

2. For what values of n does there exist for all (real) {x} a trans-
Sormation y, = fi (@, -+, x,), different from a permutation, so that {x}
and {y} give rise to the same {s} ?

This question was suggested by T. S. Motzkin who gave the answer
for s = 2.
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LEMMA 1. If n > s and the above functions f, exist then they are
linear.

Proof. The sets {y}, {«} are connected by a system of equations
Yy + + - +yis:x11+ ces @y .

Here the indices 4, ---, 4, are themselves functions of {x}. However,
since they assume only a finite set of values, there exists a somewhere
dense set of {x} for which the indices are constant. We restrict our
attention to that set. Let 4™y, =f(x), «+-, @ + A, -+, x,) — fi(x, -+ °,
Ty, ¢+, ©,) then we obtain

(3) APy, + oo+ APy, =0 or k.

If we let u; be the difference of 4y, for two different sets of
values of {x} then, since the right-hand side of (8) is independent of
the choice of {x}, we obtain

(4) Wy eee o, =0
Summation over all sets {¢;, -+, %} {1, --+, n} yields
(5) U+ + o +u,=0.

Now let ¢ be the least positive integer so that u, + --- + u, =0 for
all {4, +-+,4,}c {1, ---,n}. Then ¢|n, for n =mét 4+ r with 0 <r < ¢
implies

uzl‘l‘"' +uiT:u1+uz+"'+u”—2(u11+"'+uh)=0

for all {4, ---,4,}C {1, ---, n}, contrary to hypothesis.
Since » > s >t we must have n>2¢t. If t > 1 then

Uy = — (g, + +++ +uy,_) for every j & {iy, -+, %} .
But there are more than ¢ such j, say j, --+,7.. Hence
Uy A ooe + Uy = _t(uil_}_ +u%—x):0

or u, + +-+ +u, =0 for every {ty, »++, 4} C{1, +++, n} contrary to
hypothesis. Thus ¢ =1 and

ulzuz_—_-.. :un:O’

In other words 4y, =a{ = const. Thus 4y, + A2y, = 41"y, so
that a{® =a,~ and

Y; = ;amxn .
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THEOREM 3. If n > s and there exists a nontrivial transformation
Y, = fi(®y, -+, x,) which preserves {c} then n = 2s and the transformation
8 linear with matrixz (up to permutations)

_s—1 1 1
S S S
1 _s-1 . 1
S S S
1 1‘ _s—1
S S S

Proof. We know by Lemma 1 that the transformation must be
linear. Let y, = 3.0, then

(6)  w e Y = DGt e G = By e T

Hence, for fixed &k, we have

[O for (n '8_ 1) sets {t,, +++, 45}

(7) O+ '°'+a’isk:
tl for (7;: i) sets {2, +++, %} .

Since n > s two elements a,;, a,, in the same column satisfy

(I/ik—}—a@lk-l- s +ajls—1k:0 or 1; a,k+aqlk+ e +a/is_1k=0 or 1

where {3}, +++, %} = {1, -+, n} — {3, j}.
"Hence

(8) a,;kZajk Ol‘aik-:a:jk:':l.

Let the two values assumed by terms in the kth column be a, and
1+ a,. From (6) we see that both values must occur. On the other
hand if both a, and 1+ @, would occur more than once then
max(a;, + <+ + alsk) — min(a,; + -+ + @) = 2 in contradiction to (7).

If 1+ a, is assumed only once, say a,, = 1 + a,, then 0 = sa, or

(9) aikz{l'i:k

According to (6) we have

(10) Z(aillc'l"""l'a’isk):s {ily""is}c{lr""n}'

k=1

We now repeat the argument that led to equation (8). Since n>s
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we can write for any pair (¢, J)

n n

S, + o afes_lk) + ’Zala’ik = >y oo @zs_lk) + Igala'jlc =38

k=1 k=1

where {3, «++, 4.} C {1, -+, n} — {3,75}. Hence 7., a; = > ay and
according to (10), s >¢., @, = s so that

(11) Sy = 1 i=1.,m.
k=1
Combining (9) and (11) we obtain
07+Fk.

In other words, every column contains 0 and therefore a, = 0 for
k=1, ..., n. Thus the transformation is a permutation.

The only nontrivial case arises therefore if the value a, occurs only
once, say a,; = @,. Then s — 1+ sa, =0 and

(13) _{— s—1)s 1=k
T s ik

Combining (11) and (13) we obtain

(14) S == s oy

k=11=1 K] S S
and hence n = 2s. It is now clear from (11) that each row and column
contains exactly one term — (s — 1)/s and that the matrix (up to per-
mutation) is the one given in the theorem.

3. General s. The procedure which led to Theorem 1 can be
generalized. First we define, for every s, a function which is a poly-
nomial in n, 2%, 3%, ..., s*, Let

(15) fon ) = L (= ) St

where the outer summation is over all permutations P on s marks, each
permutation being composed of a, i-cycles i=1,.--,7, and t=
da, + +++ + a,. Thus

(16) f(n, k) = w' — —%(s 1)@ s — 2w (s — 1)(s — 2)[%(3& 1 5-3)

s—1

Fa=BE s = (D= DYG

—(— 1)(s — 1)! s* 1.
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THEOREM 4. For every s consider the system of Diophantine equations
Jn, k)=0 k=1,2,---,n. If n satisfies none of these then the first n
elementary symmetric functions of {c} can be prescribed arbitrarily and
they determine {x} uniquely. If f(n, k) =0, then the first k elementary
symmetric functions of {c} must satisfy an algebraic equation.

Proof. In the notation of Theorem 1 we have

A7) Se=, S @@t b @) = S e ay)

1< <o o<t <n 8. D(s

where by D(t) is meant summation over all sets of subscripts ¢, at least
t of which are distinct. Hence

s13e= >, (wzl+"’+@'i)k— > >, Qo +xy, e ;)
D(s-1) 8 2 Dis=1) 1 2 s—1

= 5 @+ o) —(3) 5 @yt a, oo+,

D(s=2 D(s-2
() 5 b (0 5, b,
22 D(s=»

Continue cancelling terms until each summation is over D(1). The
coefficient of X(mw; + .-+ + mz,;)* is just (— 1)*"* times the number
of permutations on s marks which are conjugate to one having cycles
of length m,, ---,m,. This can be shown by a method quite similar to
that used by Frobenius [1]. Hence we may write

(18) s! S, = ; (— 1)y~ 1%) (m@y + -+ + ma; )

where the outer summation is over all permutations P on s marks, and
m,, +--, m, are the lengths of the cycles of P. Now from the multinomial
expansion we have

k!
N (mlxil +oeee + mzxib)k = > —'“——"mfl o mtl:‘Szl cee Sz‘
D(1) l1+"'+lb=kll 1 eee lt !
l£20

and the coefficient of S, is (m* 4+ --. + mf)S;™'. Substituting in (18)
and using (15), we obtain

(19) (s—1)! 3% =f(n, k)S, + -

where the terms indicated by dots do not involve S,. Thus, if f(n, k) 0
for k=1, .--,n, then (19) can be solved recursively for S,, ---, S, in
terms of 3, «--, .

On the other hand, if f(n, k) =0 and f(n,5) #0 for j =1, -+, k—1
then (17) expresses >, as a polynomial in S, ---, S;-; which in turn
are polynomials in >3, « <+, i



ON THE DETERMINATION OF NUMBERS 853

COROLLARY. If f(n, k) =0 then n divides (s — 1)! s*%.
Thus {«} will always be determined by {s} if s is less then the
greatest prime factor of x.

ExAMPLE 1. s =3. Here (18) becomes

6> = . iZ . (xil + @, + @y,)* — 3 . ; 1(2%1 + xzz)k +2 Z;(sz)m .
1i2t3= iy i=

Expanding and collecting the coefficient of S,, we get
fn, k) =n*— (2" 4+ 1)n + 2 - 3¢,

This has obvious zeros at n =1, k=1;n=2,k=1,2;n=38, k=2, 3.
Also, as we know from Theorem 3, there are zeros at n =6,k = 3, 5.
For all these values of n the set {s} does not, in general, determine
{«} uniquely.

In addition we observe that f(n, k) = 0 has the solutions n = 27,
k=5,9 and n = 486, £k = 9. We do not know whether for these values
of n the set {s} determines {x} uniquely or not. However we do know
that these are the only cases left in doubt.

THEOREM 5. If s =3 then f(n, k) =0 has solutions only for k =
1,2,38,5,9.

Proof. If f(n, k) =0 then
(20) n=2%-3" witha=0or 1.
Substituting (20) in f(n, k) = 0 we obtain
(21) 9. 30 4 Qlmagebml— 9k L

Let n be the smaller zero of f(n, k) for a fixed k. Then the other
zero is n' = 2931 and b <k — b — 1. Hence

(22) 28 = — 1 (mod 3%)
and since 2 is a primitive root of 3?,
(23) = 3" (mod 2 - 37").
But by (21) we have
Bk-0-1 L 28 < 3% or k< 3(b 4+ 1)
so that

31 <k <30+ 1) and hence b < 4.
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If =3 then k=9 (mod18) and k < 12 so k = 9.
If b=2 then k=3 (mod6) and £ < 9 so k= 3.

If b=1then k=1 (mod2) and k< 6 so k=1, 3, 5.
If b =0 then k£ < 3.

EXAMPLE 2. s = 4. Here (18) becomes

(24) 243 = X (xil + @, + @, + xz4)k

17273
-6 > (2‘”11 + @, + xzs)k +8 > (8w, + wzz)k
byt i,

+3 % (2, + 20, — 63 (4a.)*
1t !

Hence f(n, k) = 0 becomes
@25) #»—32 4+ + 2B +1)+3-28)p —3.2%1=0,

We first note that this has solutions n =1, k=1;n=2, k=1, 2;
n=38k=1,2,3;n=4,%k=2,3,4;n=28,k=3,5 7. For these values
of n, the set {¢} does not generally determine {x}. Whenn =12, k=6
is a solution, and this case is left in doubt.

THEOREM 6. If s =4 then f(n, k) =0 has solutions only for m =
1,2, 3,4,8, 12,

Proof. Let n=3%.2" where a =0 or 1. Now if n > 3(2**+ 1)
then 2 - 8n > 3**'. 2t > 3. 2%-1 and the left side of (25) is positive.
Hence n < 3(28' + 1) < 2¢** if £ >3 and so b < k. (For k < 3 we have
listed all solutions of (25)). If k is even then 2(3* 4+ 1) = 4 (mod 8) and
if &k > 4 then 8n divides the other terms unless b < 2. Similarly if k&
is odd then 2(8* 4+ 1)=8 (mod 16) and if #>5 then b <3. So b <3
in all cases. Now suppose a = 1. Then (25) becomes

2n — 3 - 21 = 0 (mod 9)

or
201 = 2%~ = 2 (mod 3)

and b is even. Thus » must be 1, 2,3, 4,8, or 12. It is easy to check
that none of these is a root for & > 7.

The corollary to Theorem 4 shows that exceptional pairs (s, n) are
in a certain sense quite rare. Of course it is trivial to remark that if
(s, n) is exceptional, then (rn — s, n) is exceptional. Hence the remarks
for s = 2 apply equally well to s = n — 2 and we obtain the exceptional
pairs (6, 8), (14, 16), (30, 32), ---. But there are other cases with n > 2s
which our method leaves in doubt,
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THEOREM 7. We can construct arbitrarily large values of s such that
Sf(n, k) = 0 for some n > 2s.

Proof. If n<s then 3,=0 but S, ---,S, may be prescribed
arbitrarily. Hence the coefficient of S, in the expansion of 3, must be
zeroif k <n. If n=s then >, =S¥ but S, ---, S, may be prescribed
arbitrarily. Hence n =s is a zero of f(n, k) for k=2, ---, n. Thus
Sfn, 1) = I1izt (n —9) ; f(n, 2) = [li-(n —7) and f(n, 3) = (n — 28) [1i-s (n — 7).
If we divide f(n, 4) by its known factors then we obtain for s > 2

(26) Fln, 4) = [ — (65 — D + 65°] {1 (0 — 9)

and the equation
27 n* — (6s — )n + 6s* = 0
can be rewritten

(2n —6s + 1y —32s — 1= — 2

The Pell equation u* — 3v* = — 2 has the general solution

u+vy/3 =+ 1 +1v3)2+13) r=0+1, .

Since u and v are odd, » and s are integers. It is interesting that all
positive solutions are obtained in the following simple way. When
k=4, (s,n) = (2, 8) is a solution. Hence (6, 8) is a solution and putting
s = 6 in (27) yields (6, 27). Continuing in this way, we obtain (21, 27),
(21, 98), (77, 98), (77, 363), +-- .

In a similar manner we obtain for s > 3

(28) fn, 5) = [n* — (125 — B)n + 128%(n — 2s) H (n — 1)

and all integer roots of the quadratic factor may be obtained with the
aid of the general solution of the Pell equation u* — 6v* = 75. Or we
could start with (2, 16) and obtain successively (14, 147), (133, 1444), --- .
Starting with (3, 27) yields (24, 256), (232, 2523), - -- .

4. Concluding remarks. If we let {r} = {¢;, ---, 7,5} be the set of
sums of s not necessarily distinct elements of {x}, then {z} is always
determined by {z}. A method similar to the proof of Theorem 4 applies
with the coefficient of S, always positive. Alternatively, if the x, are
real, , <@, < --+ < 2,, we may determine them successively by a simple
induction procedure.

Our method is applicable to the case of weighted sums Tiyy, =
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o a . The resulting Diophantine equations will however be of a
rather different nature. Thus, if the @, are all distinct then the ana-
logue to f(n, k) = 0 is

(29) (af +af + -+« +a¥)n1=0.

In other words the uniqueness condition is independent of » and
depends on the a; alone. For example if a, +a,+ -+ 4+ a, =0 then
{e} remains unchanged if we add the same constant to all z. It is not
as easy to see what happens if (29) holds for some £ > 1.
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