TWO NON-SEPARABLE COMPLETE METRIC SPACES DEFINED ON [0, 1]

BURNETT MEYER AND H D SPRINKLE

Let \mathfrak{M} be the set of all Lebesgue measurable subsets of the closed interval [0, 1], and let $A, B \in \mathfrak{M}$. It is well-known that \mathfrak{M} becomes a pseudo-metric space if distance is defined by

$$d(A, B) = m(A - B) + m(B - A) = m[(A - B) \cup (B - A)],$$

m denoting the Lebesgue measure. See [1, pp. 31-32]. It is the purpose of this paper to extend \mathfrak{M} to include the non-measurable sets and to examine some of the properties of the resulting space.

If we remove the restriction that A and B be measurable, and let them be any subsets of [0, 1], then if

$$\rho(A, B) = m^*(A - B) + m^*(B - A)$$
, and $\delta(A, B) = m^*[A - B) \cup (B - A)]$

(where m^* denotes the exterior Lebesgue measure), it is easily seen that pseudo-metric spaces \mathfrak{S} and \mathfrak{T} are obtained, corresponding to ρ and δ respectively. The properties which we discuss of \mathfrak{S} and \mathfrak{T} are the same and are proved analogously, so we shall state and prove our results for the space \mathfrak{S} only, it being understood that similar theorems and proofs hold for \mathfrak{T} .

LEMMA 1. A necessary and sufficient condition that $\rho(A, B) = 0$ is the existence of sets Z_1 and Z_2 , both of Lebesgue measure zero, such that $A \cup Z_1 = B \cup Z_2$.

Necessity. If $\rho(A, B) = 0$, then m(A - B) = m(B - A) = 0. Since $A \cup (B - A) = A \cup B = B \cup A = B \cup (A - B)$, Z_1 and Z_2 may be taken as B - A and A - B, respectively.

Sufficiency. If $A \cup Z_1 = B \cup Z_2$, then

$$\rho(A, B) \leq \rho(A, A \cup Z_1) + \rho(A \cup Z_1, B \cup Z_2) + \rho(B \cup Z_2, B) = 0$$

The relation $\rho(A, B) = 0$ is seen to be an equivalence relation defined on the elements of \mathfrak{S} ; hence, those elements are partitioned into equivalence classes. Let [A] denote the equivalence class which contains A. It is clear that if $C \in [A]$ and $D \in [B]$, then $\rho(A, B) = \rho(C, D)$. If \mathfrak{S}^* is the set of all equivalence classes defined above, and if $\rho([A], [B]) = \rho(A, B)$, then \mathfrak{S}^* becomes a metric space with the metric $\rho([A], [B])$.

Received June 11, 1958.

LEMMA 2. If $B_n \in [A_n]$ for $n = 1, 2, \dots$, then $[\bigcup_{n=1}^{\infty} A_n] = [\bigcup_{n=1}^{\infty} B_n]$ and $[\bigcap_{n=1}^{\infty} A_n] = \bigcap_{n=1}^{\infty} B_n]$.

LEMMA 3. If A is measurable and $B \in [A]$, then B is measurable.

There exist Z_1 and Z_2 such that $A \cup Z_1 = B \cup Z_2$ with $m(Z_1) = m(Z_2) = 0$. Let \tilde{B} denote [0, 1] - B. Then $B \cup Z_2$ is measurable and since $B = (B \cup Z_2) - (\tilde{B} \cap Z_2)$, B is measurable.

It follows from Lemma 3 that the sets in each equivalence class are either all measurable or all non-measurable. Thus the space $\mathfrak{S}^* = \mathfrak{M}^* \cup \mathfrak{N}^*$, where \mathfrak{M}^* is the space of all equivalence classes of measurable sets, and \mathfrak{N}^* is the space of all equivalence classes of non-measurable sets. It should be noted that \mathfrak{M}^* is the metric space corresponding to the wellknown pseudo-metric space \mathfrak{M} defined at the beginning of the paper.

In the following we will omit the asterisks and square brackets, and will write \mathfrak{S} for \mathfrak{S}^* , etc., and $\rho(A, B)$ for $\rho([A], [B])$. When we write $A \in \mathfrak{S}$, A may be considered either as an equivalence class or as a representative element of that class.

THEOREM 1. The space \mathfrak{S} is complete. The proof is similar to that given in [1, p. 32].

THEOREM 2. For every $A \in \mathfrak{S}$ and every positive number $\varepsilon < 1$, there exists $B \in \mathfrak{S}$ such that $0 < \rho(A, B) < \varepsilon$.

Proof Case I. m(A) = 0.

If m(A) = 0, then $A \in [\phi]$, ϕ denoting the empty set. Let $B \in \mathfrak{S}$ be an interval of length $\langle \varepsilon$. Then $\rho(A, B) = \rho(\phi, B) = m(B) \langle \varepsilon$. Case II. $m^*(A) > 0$.

Let $I \in \mathfrak{S}$ be an interval of length $< \varepsilon$, such that $m^*(I \cap A) > 0$. If B = A - I, then

 $\rho(A, B) = \rho(A, A - I) = m^*[A - (A - I)] = m^*(I \cap A) \leq m^*(I) < \varepsilon$

COROLLARY 1. If in Theorem 2, $A \in \mathfrak{M}$, then B (as constructed) $\in \mathfrak{M}$.

THEOREM 3. If $A \in \mathfrak{M}$ and $\varepsilon > 0$, then there exists $C \in \mathfrak{N}$ such that $0 < \rho(A, C) < \varepsilon$.

Proof Case I. m(A) = 0.

Let M be a set of real numbers such that for every measurable set $E, m^*(M \cap E) = m(E)$ and $m_*(M \cap E) = 0, m_*$ denoting the interior Lebesgue measure. (See [2], Theorem E, p. 70.) In Case I of Theorem 2, let $C = B \cap M$. Then

$$\rho(A, C) = \rho(\phi, C) = m^*(C) = m(B) < \varepsilon \text{ and } m_*(C) = 0.$$

Case II. m(A) > 0.

In Case II of Theorem 2, let $C = A - (I \cap M)$, M described above. Then $\rho(A, C) = m^*(A - C) = m^*(A \cap I \cap M) \le m(I) < \varepsilon$, and $m^*(A \cap I \cap M) = m(A \cap I) > 0$, $m_*(A \cap I \cap M) = 0$. Since $(A \cap I \cap M) \in \mathfrak{N}$, $C \in \mathfrak{N}$.

THEOREM 4. \Re is open in \mathfrak{S} .

Proof. Assume Theorem 4 is false. Then there exists $N \in \mathfrak{N}$ and sets $M_m \in \mathfrak{M}$, $m = 1, 2, \cdots$, such that $\lim_{m \to \infty} \rho(N, M_m) = 0$. The sequence $M_m, m = 1, 2, \cdots$, is, therefore, a Cauchy sequence in \mathfrak{S} and so by Theorem 1 has a subsequence $M_{m_n}, n = 1, 2, \cdots$, such that $\lim_{m \to \infty} \rho(\lim \sup_n M_{m_n}, M_m) = 0$. Since $\limsup_n M_{m_n}$ is measurable, this means that N is measurable by Lemma 3, a contradiction.

The last few results can be summarized as follows.

THEOREM 5. \mathfrak{M} is perfect and nowhere dense in \mathfrak{S} ; \mathfrak{N} is open and dense in \mathfrak{S} .

The remainder of the work is valid for both spaces, as only the equivalence classes are dealt with (these being the same for \mathfrak{S} and \mathfrak{T}).

After having proven completeness for \mathfrak{S} in Theorem 1, a natural question to ask is "Is the space separable?". The theorem proved here which demonstrates the existence of $2^{\mathsf{c}}(=\mathfrak{f})$, where $2^{\#_0} = \mathfrak{c}$, equivalence classes in \mathfrak{S} answers this question (and a similar one about a countable basis) in the negative. It is also interesting to note that the space \mathfrak{M} has exactly \mathfrak{c} equivalence classes. (In the following work Ω is the first ordinal belonging to c.)

THEOREM 6. There exist f equivalence classes in the space \mathfrak{S} .

Proof. It will be sufficient to construct a well-ordered family $\{A_{\alpha} \mid 0 \leq \alpha < \Omega\}$ of mutually disjoint subsets of [0, 1], each of which has $m^*(A_{\alpha}) = 1$.

Consider $\{B_{\beta} \mid 0 \leq \beta < \Omega\}$ as a well-ordering of all closed subsets B_{β} of [0, 1] which have a positive Lebesgue measure. For each $\beta, 0 \leq \beta < \Omega$, let $\{x_{\alpha}^{\beta} \mid 0 \leq \alpha \leq \beta\}$ be a well-ordered subset of B_{β} such that $x_{\alpha}^{\beta} \neq x_{\alpha'}^{\beta'}$, if $\beta \neq \beta'$ or $\alpha \neq \alpha'$. This selection is possible since, for each β , the set of all $x_{\alpha'}^{\beta'}$ with $0 \leq \alpha' \leq \beta' < \beta$ has a cardinal number < c. Set $A_{\alpha} = \{x_{\alpha}^{\beta} \mid \alpha \leq \beta < \Omega\}$, for each $\alpha, 0 \leq \alpha < \Omega$. By a simple argument $A_{\alpha} \cap A_{\alpha'} = \phi$, for $\alpha \neq \alpha'$. Now consider any A_{α} ; if $m^*(A_{\alpha}) \neq 1$, then A_{α} is contained in some open set Y such that m(Y) < 1. The complement of Y is closed and has m([0, 1] - Y) > 0. But $m\{[0, x] \cap ([0, 1] - Y)\}$ is a continuous function of x for $0 \le x \le 1$; therefore, this function takes on all values between 0 and m([0, 1] - Y), inclusive. This means that there are non-denumerably many closed sets whose measures are greater than 0 and which do not intersect A_{α} . This is, of course, impossible by the construction of A_{α} . Therefore, $m^*(A_{\alpha}) = 1$.

Form the set of all subsets of the set of A_x 's, and take the sum of each element of this power set. Any two such sums belong to two different equivalence classes since they disagree in a set of exterior measure 1. This set of sums has cardinal f. There are, therefore, at least f equivalence classes, at most f such classes; hence, exactly f.

References

H. Hahn and A. Rosenthal, Set functions, University of New Mexico Press, 1948.
 P. R. Halmos, Measure theory, van Nostrand, 1950.

UNIVERSITY OF COLORADO UNIVERSITY OF ARIZONA