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l Introduction* In this paper we discover the space of maximal
ideals for each Banach algebra of the following concrete type. Select
an open subset G of S, the compactified complex plane, and let H(G) be
the class of complex functions continuous on S and moreover holomor-
phic on G. This is a Banach algebra, and its space of maximal ideals
is shown below to be precisely S, except in that case in which G is so
large as to force H(G) to consist only of constant functions.

Algebras of this type were introduced and studied by J. Wermer
[4] and W. Rudin [3]. Wermer pointed out that H(G) need not reduce
to the constants even if S — G is required to be (merely) an arc. He
also showed distinct points of S determined distinct maximal ideals.
Rudin raised the question as to the space of maximal ideals.

K. M. Hoffman, reporting (April 18, 1958, Symposium on Banach
algebras and Harmonic analysis) on work by I. M. Singer and himself
jointly, showed that the space of maximal ideals of H(G) is S when
S — G has positive upper density at each of its points. On the follow-
ing day, H. L. Royden's proof was presented in which the same desired
conclusion was obtained if S — G has dimension zero. Our technique
may be regarded as a refinement of Hoffman and Singer's.

Our methods apply equally easily to more general, although perhaps
less interesting, algebras. Let Z be a compact subset of S9 and let G
be an open subset of Z. Let H(GjZ) be the functions continuous on Z
and holomorphic on G. Then Z is the space of maximal ideals, unless
the algebra reduces to the constants.

For some algebras in this larger class, the problem can also be
solved by an appeal to Mergelyan's theorem [5], namely for those H(G/Z)
where Z Φ S and G is the interior of Z.

2 An approximation theorem. Let Z be a Borel set in the ex-
tended complex plane. Let G be an open set included in Z. We denote
by H(GjZ) the class of complex-valued functions which are defined, con-
tinuous, and bounded on Z, and are holomorphic on G. H(G/Z) is
evidently a Banach algebra with unit, providing that for each / e H(GjZ)
the norm is defined by

11/11 = sup |/(C)[.
_ _ ζez
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In our study of the maximal ideals of such an algebra, we have
been led to an approximation Theorem 2.7 involving functions defined
as follows

( 2 " •• - C - ,
where

(2.1.1) μ is plane Lebesgue measure restricted to a disc, and then normalized
to make the measure of that disc equal to 1.

However, it happens that functions defined as in 2.1 are useful in
studying H{G\Z) in still another way. They can sometimes be used to
show that there are non-constant elements in H(G/Z). We consider this
matter again briefly in § 4. The properties of h needed for this purpose
naturally suggest a condition on μ, namely that given by 2.2.3 (which
involves 2.2, 2.1.2). Now it turns out that with no added effort, and
very little loss of clarity, a generalization 2.6 of our real objective, 2.7,
can be proved which involves only the quantity I(μ) of 2.2.3, and hence
is not confined to the case 2.1.1. It is hoped that some use for the
approximation Theorem 2.6 may emerge.

Let μ be a regular Borel measure in the plane, finite on bounded
sets. For r ^ 0 define

(2.1.2) m(r) = s u p μ{\z - ζ \ < r} .
ζ

Let \\μ\\ = supr m(r) and let

(2.2) J(μ)

be the least upper bound, for 0 < tL < tL < < tn of the sums

(2.2.1)

This is nothing but the Stieltjes integral

(2.2.2)
Jo

The class B of measures with which we shall deal are those for
which

(2.2.3) I(μ) < co .

There are measures in B with O-dimensional support (see § 4). For
our immediate purpose, those given by 2.1.1 are the most important.
(Their support is, of course, 2-dimensional). We note the relation of I(μ)
and \\μ\\ in this case.

2.3 LEMMA. Let D be a disc of positive radius δ in the plane. For
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each Borel set E let μ(E) be the plane measure of E[\D. Then δ I(μ) =
2 II μ ||, and \\μ\\ = πδ\

Some properties of 2.1 will now be described.

2.4 LEMMA. Let μ e B, and let f be a bounded Borel-measurable
function defined on the plane. Then

h(z) = \ f{0 μ(dζ)
J c — zC

defines a continuous function on the plane. It is holomorphic on each
open set of μ-measure 0. If μ has bounded support, h is holomorphic,
and 0, at oo and h is bounded.

Proof. We treat first the case / = 1. We will show now that the
set functions defined by

FZ{E) = [ AdO (E a Borel set)
JE ζ — Z

are uniformly absolutely continuous (see [2, p. 170]). Suppose ε is a
positive number. Find a number t such that, in the notation of 2.2,

(2.4.1)

Let δ = et/2. Suppose μ(E) < δ.
Then

We break E into two parts : Es, the part on which \ζ — z\ < t and
Et, the part on which | ζ — z | Ξ> t. It is obvious that

< i = A
k l c I ί 2 "

By breaking Ex into concentric annuli, and approximating the integral

(2.4.2) f - ^ \ = h
h1 |C - z\

by finite sums, it can be shown that

(2.4.2.1) Ix S Jo r

This shows that | FZ(E) | < ε for μ(E) < δ, independently of z, as was to
be shown. We may thus apply Proposition 29.6s of [2, p. 171] to con-
clude that if zn -> z, then

1 1
(2.4.3) μ(dζ) ~> 0 .
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Returning to h(z) as defined by 2.3, we observe that

\h(zn)-h(z)\tί\\f\\\ μ(dζ).

In view of 2.4.3, the continuity of h is apparent. The holomorphicity
at points bounded away from the support of μ is a similar, actually
simpler, proposition. Thus 2.4 is substantially proved.

We now wish to show that with a modified formula we can arrive
at a function which is holomorphic wherever / is, even at paints of the
support of μ.

2.5 LEMMA. Let μ be a measure in B with bounded support. Let

f e H(G/Z). Select any complex number λ, \λ\ g [ [ / | | , and define f(z) = λ

for zφ Z. Define

(2.5.1) h{z) = \ ^ ^ ^
J ζ — z

Then h e H(G/Z), and \\h\\^ 2I(μ)\\f\\. Moreover, h is independent of λ.

Proof. We write

(2.5.2) h£z) = ( -£Q-Kdζ), fφ) = M \ ^ d ζ ) .
J ζ - z J ζ — z

By 2.4, these are continuous on Z. If / is holomorphic at oo, then
hu h2 are holomorphic there. Now let z0 be a finite point of G. Indeed,
assume z0 = 0. Then / is holomorphic at 0. If f(0) = 0 then hly h2 are
both differentiate there. Indeed

and
hjz) - fφ) =

z z J C — z

Each of these has a limit as z ~> 0 because f(t)/t is bounded for all t,
and continuously definable near 0. If /(0) =£ 0, we replace / by / —/(0).
This does not change h. Thus Λ is differentiate at each z0 e G.

The main result of this section is as follows :

2.6 THEOREM. Let z0 be a point of Z, z0 Φ oo, and let μu μ.z, be
a sequence of measures in B such that

(2.6.1) the support of μn lies in the δ^-neighborhood of z0 where

(2.6.2) δn-+0

and such that for some M < oo,
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(2.6.3) dJ{μn)<M\\μn\\.

Let f e H(G/Z), and define1

(2.6.4) hn(z) = -~1 --- J / ( C> ~ fΦμn(dζ) .

2%βw K e H(G/Z), \\hn|| rg 2M3;1 (|/||

(2.6.5) | | / - f(zQ) - ( z - zQ)hn || - » 0 .

Proof. It will suffice to treat the case | |μw | | = 1, and zQ — 0. At
first we shall deal with just one μn, and therefore omit the suffix. We
may also confine attention to the case f(z0) = 0.

We commence our calculations by observing that

zh(z)-f(z) =

Let

δ(r) = sup{|/(z)|: |«| ^ r} .

Now suppose μ is supported by the ^-neighborhood of za = 0. Then we
may make an estimate

(2.6.6) I zh(z) - f(z)\ ^ (Iz \ b(d) + δ \f(z) |) ( μ ( ^ .
J |C — z\

For the integral in 2.6.6 there are two possible estimates:

!

1

S - - --- when \z\ > o

\z\ — d
Ύ/ λ in general.

The latter of these results from 2.4.2.1 for t-> oo.
Now let ε be any positive number. Select a real number & > 1

such that

(2.6.8) 2 | | / | | < ( & - l ) ε .

Let μ in the preceding discussion be one of the μn. Then 2.6.6, 2.6.7
hold with δ = δn. Consider first a point z e Z such that \z\^kδn. We
then obtain from 2.6.6, 2.6.7, 2.6.8, that

1 We extend the definition of / to the whole plane, if necessary, by making it have
the value f[zo) everywhere outside of Z.
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Il/H

(2.6.9) <£ - .-V^ ) + r-
& — 1 A; —

< I + «„.
Next consider the case \z\ < kdn. Using 2.6.6, 2.6.7 we obtain

< M(kb(dn) + b(kdn)) .

The numbers b(Sn) and b(kdn) tend to 0 since / is continuous at z0 = 0.
Therefore there is an N such that \\zhn-f\\<e for n > N.

This concludes our proof of 2.6.

2.7 THEOREM. Let z0 be a point of Z(z0Φ oo), and let fe Έί(G\Z).
Then there exist functions hu h2, . . . in H(G/Z) such that

\\f-f(zQ)-(z-z0)hn\\-+0.

This emerges from the combination of 2.6 and 2.3.

3 Application to maximal ideals«.

3.1 THEOREM. Let Z be a compact set in the extended complex plane.
Let G be an open subset of Z. Then the space of maximal ideals of the
Banach algebra H(G/Z) is naturally homeomorphic to Z, provided H(G/Z)
does not reduce to the constant functions.

Proof. If the set G if void, then the proposition reduces to a case
of [1, p. 54]. If G is not void, but Z is a proper subset of the ex-
tended plane, it is natural to change coordinates so that Z lies in the
finite plane. However, the most interesting case, Z = the extended
plane, is best treated by having G be a neighborhood of oo. For
economy, if not clarity, we perform a conformal transformation, if
necessary, to make G (whenever it is not empty) a neighborhood of oo.

Let F be a multiplicative linear functional of H(G/Z). If G{f) —
/(oo) for all / in H(G\Z), then F (or its kernel) corresponds to oo.
Having disposed of that unique multiplicative functional, let F be some
other one. Then F{fλ) = 1 for some fτ e H(G/Z) such that Λ(oo) = 0.
Then z/L e H{GjZ). Let zΛ = F{zfλ). Then F((z - zQ)h) = 0 for each
h 6 H(G\Z), such that (z - zQ)h e H(G\Z). Because

F((z - zύ)h) = F((z - zQ)h)F(A) - F(h)F((z - zQ)A) = 0.
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Now suppose / e H(G/Z). By 2.7, there exist hn, rn in H(G\Z) such
that

(3.2) / _ / ( s o ) _ ( z _ Λ = , r w

where | | r j | ~» 0. Hence F(rn) ~> 0. Also, F((z — zQ)hn) = 0. Hence
F(f~f(zQ)) = 0, F{f) =f(zύ). Then we say that F corresponds to z0.

We have thus shown that to every maximal ideal, or multiplicative
linear functional F, there corresponds a point zQ. There might be several
such points corresponding to a given F. The situation is completely
illuminated by a device of Wermer's [4, p. 269] which shows that either
H(G/Z) consists only of the constant functions, or some triad of functions
separate all pairs of points on Z. This completes the proof of 3.1.

We can now acknowledge the relation of our argument to that of
Hoffman and Singer. They construct an hn, define rn as in 3.2, and
show ( | rJ |-»0; and so forth. Their choice of hn(z)9

(3.3) j\z)-± - α ς α ? /ζ = ς + iη)m j 7,7 y f
n " n " S

where En is the intersection of a <?w-disc about zQ, with S ~ G, and mn

is the measure of raw, is effective only when mw > 0 as δn -> 0. Hence
they assume that S — G has positive upper density at zQ.

4 Remarks on the dimension of H(G/Z). We return to the ques-
tion, when does H(G/Z) contain non-constant functions ? A sufficient
condition is that S — G carry a measure of type By for then 2.4 provides
such functions. The formula 2.4.3 is used in [3, 4] for this very
purpose, but the measures there employed are absolutely continuous.
For this reason it is desirable to point out that there are measures in
B that have zero-dimensional support of plane measure zero. An example
can be obtained from a well-known function, which increases only at
points of the Cantor set. Calling this function /, as in [2, p. 49], we
form the measure on the line and then we form the product measure
μ of this measure with itself. It is not hard to see that I(μ) ^
16-i/2Γ(l - λ)-1 where <?= Iog4/log3.

Questions analogous to the above are discussed in [6, 7].
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