ON INTEGRATION OF 1-FORMS

Maurice Sion

1. Introduction. It has been noted by several people that in order to define the integral of some differential 1-form ω along a curve C, the latter need not be of bounded variation. For example, in the extreme (and trivial) case where ω is the differential of some function f, the integral can be defined as the difference of the values assumed by f at the end-points of C. No condition on C is necessary. H. Whithney [4], with J. H. Wolfe, by the introduction of certain norms, has found general abstract spaces of curves along which the integral of 1-forms satisfying certain conditions can be defined. In fact, H. Whitney considers integration of p-forms with $p \geq 1$. In a previous paper [2], we obtained rather awkward conditions for a decent integral to exist that depended on the number of higher derivatives of ω on C.

In this paper, we consider 1 -forms ω possessing 'higher derivatives' on C in a sense somewhat different from that due to H. Whitney [3] which we used previously. A Lipschitz type condition on the remainders of the Taylor expansion is imposed (see 4.1.). We define the α-variation of a curve as the supremum of sums of α th powers of chords (see 2.7) and show that the integral of ω along C exists if the α-variation of C is bounded, where α is related to the number of 'higher derivatives' of ω on C. Under somewhat stronger hypotheses on C, we show that this integral is an anti-derivative of ω on C.
2. Notation and basic definitions. Throughout this paper, N is a positive integer and we use the following notation.
2.1. E denotes Euclidean $(N+1)$-space.
2.2. $\|x\|=\left(\sum_{i=0}^{N} x_{i}^{2}\right)^{1 / 2}$ for $x \in E$.
2.3. $\operatorname{diam} U=\sup \{d: d=\|x-y\|$ for some $x \in U$ and $y \in U\}$
2.4. φ is a continuous function on the closed unit enterval to E and $C=$ range φ.
2.5. \mathscr{S} is the set of all subdivisions of the unit interval, i.e. functions T on $\{0,1, \cdots, k\}$ for some positive integer k such that: $T(0)=0, \quad T(k)=1, \quad T(i-1)<T(i)$ for $i=1, \cdots, k$
2.6. $[T / a, b]=\{i: a \leq T(i-1)<T(i) \leq b\}$
2.7. $\quad V_{a}(a, b)=\sup _{T \in \mathscr{S}^{1} \in[T / a, b]} \| \varphi\left(T(i-1)-\varphi(T(i)) \|^{\alpha}\right.$

[^0]
3. Properties of V_{α}.

3.1. Lemma. If $0 \leq a \leq b \leq c \leq 1$, then

$$
V_{\alpha}(a, b)+V_{\alpha}(b, c) \leq \alpha(a, c) \leq V_{\alpha}(a, b)+V_{\alpha}(b, c)+(\operatorname{diam} C)^{x}
$$

3.2. Lemma. If $\alpha<\beta$ and $V_{\alpha}(a, b)<\infty$, then $V_{\beta}(a, b)>\infty$.

Proof. Since $V_{a}(a, b)<\infty$, there is an integer n such that there are at most n elements $i \in[T / a, b]$ with $\|\varphi(T(i-1))-\varphi(T(i))\| \geq 1$ for any $T \in \mathscr{S}$. For any other $i \in[T / a, b]$ we have

$$
\|\varphi(T(i-1))-\varphi(T(i))\|^{\beta}<\|\varphi(T(i-1))-\varphi(T(i))\|^{\alpha}
$$

Hence,

$$
V_{\beta}(a, b)<V_{a}(a, b)+n(\operatorname{diam} C)^{\beta}<\infty .
$$

4. Integration of 1 -forms. In this section, we first define the kind of differential form we shall be dealing with. Our definition is a variant of Whitney's definition of a function m times differentiable on a closed set [3]. Next, we choose a special sequence of subdivisions and proceed to define the integral of the form over the curve C by taking sums of polynomials of degree m and then passing to the limit. Under conditions involving the generalized variation V_{α}, we show that the integral exists and possesses, in particular, the properties of linearity and 'antiderivative'.

Throughout this section, m is a positive integer, $\eta \geq 0, K>0$.

4.1. The Differential Form. Let

$$
\sigma k=\sum_{i=1}^{N} k_{i} \text { for any }(N+1) \text {-tuple } k
$$

A differential 1-form ω on C is a function on the set of all $(N+1)$ tuples k, for which k_{i} is a non-negative integer for $i=0, \cdots, N$ and $1 \leq \sigma k \leq m$, to the set of real-valued functions on C such that

$$
\omega_{k}(y)=\sum_{\sigma j=0}^{m-\sigma k} \omega_{k+j}(x) \frac{\left(y_{0}-x_{0}\right)^{j_{0}} \cdots\left(y_{N}-x_{N}\right)^{\jmath_{N}}}{j_{0}!\cdots j_{N}!}+R_{k}(x, y)
$$

where

$$
\left|R_{k}(x, y)\right|<K\|x-y\|^{m+\eta-\sigma k} \text { for } x \in C \text { and } y \in C .
$$

It is important to note that, in case $m=1$ and $\eta>0, \omega$ is a differential form on C satisfying a Hölder condition. If however $m>1$, then ω is also a closed differential form on C, that is, $d \omega=0$ on C.

By taking $m=1$ and $\eta=1$, we get the sharp forms considered by Whitney. The conditions we impose on C, however, are quite different and, we feel, in practice easier to check than those obtained in [4].
4.2. The sequence of subdivisions. We define first, for each $(n+1)$ tuple of non-negative integers $\left(s_{0}, \cdots, s_{n}\right)$, a point $t\left(s_{0}, \cdots, s_{n}\right)$ by recursion on n and on s_{n}. These will be the end-points of the nth subdivision of the unit interval.
4.2.1. Definition. $\quad t(0)=0, \quad t(1)=1$,

$$
\begin{gathered}
t\left(s_{0}, \cdots, s_{n}, 0\right)=t\left(s_{0}, \cdots, s_{n}\right), \\
t\left(s_{0}, \cdots, s_{n}, j+1\right)=\sup \left\{u: t\left(s_{0}, \cdots, s_{n}, j\right) \leq u \leq t\left(s_{0}, \cdots, s_{n}+1\right)\right.
\end{gathered}
$$

and $\| \varphi\left(u^{\prime}\right)-\varphi\left(t\left(s_{0}, \cdots, s_{n}, j\right) \| \leq \frac{1}{2^{n+1}}\right.$ for $\left.t\left(s_{0}, \cdots, s_{n}, j\right) \leq u^{\prime} \leq u\right\}$
for any non-negative integers n and j.
We shall denote by T the sequence of subdivisions of the unit interval such that:
range $T_{n}=\left\{u: u=t\left(s_{0}, \cdots, s_{n}\right)\right.$ for some n-tuple $\left.\left(s_{0}, \cdots, s_{n}\right)\right\}$.
4.2.2. Lemma. For any non-negative integers in and j, we have

$$
t\left(s_{0}, \cdots, s_{n}\right) \leq t\left(s_{0}, \cdots, s_{n}, j\right) \leq t\left(s_{0}, \cdots, s_{n}+1\right)
$$

4.2.3. Lemma. For any positive integer $n, i \in\left[T_{n} / 0,1\right], j \in\left[T_{n-1} / 0,1\right]$ we have: T_{n+1} is a refinement of T_{n}, i.e. range $T_{n} \subset$ range T_{n+1};

$$
T_{n}(i-1) \leq u \leq T_{n}(i)
$$

then

$$
\left\|\varphi\left(T_{n}(i-1)\right)-\varphi(u)\right\| \leq \frac{1}{2^{n}}
$$

if

$$
T_{n-1}(j-1) \leq T_{n}(i-1)<T_{n}(i)<T_{n-1}(j),
$$

then

$$
\left\|\varphi\left(T_{n}(i-1)\right)-\varphi\left(T_{n}(i)\right)\right\|=\frac{1}{2^{n}}
$$

4.2.4 Lemma. If $F(x, y)$ is a real number whenever $0 \leq x \leq y \leq 1$, $a \in$ range $T_{n}, b \in \operatorname{range} T_{n}$, and $a \leq b$, then $\sum_{i \in\left[T_{n+1} / a, b\right]} F\left(T_{n+1}(i-1), T_{n+1}(i)\right)=\sum_{j \in\left[T_{n}^{\prime a, b]}\right.} \sum_{i \in\left[T_{n+1} / T_{n}^{\left.(j-1), T_{n}(j)\right]}\right.} F\left(T_{n+1}(i-1), T_{n+1}(i)\right)$.
4.3. The integral of ω. First, we define $\int_{0}^{a} \omega d \varphi$ as the limit of certain sums of polynomials.

4.3.1. Definitions.

$$
\begin{aligned}
& P^{\prime}(x, y)=\sum_{\sigma=1}^{m} \omega_{k}(x) \frac{\left(y_{0}-x_{0}\right)^{k} \cdots\left(y_{N}-x_{N}\right)^{k_{N}}}{k_{0}!\cdots k_{N}!}, \\
& P(a, b)=P^{\prime}(\varphi(a), \varphi(b)), \\
& S_{n}(a, b)=\sum_{i \in\left[T_{n} / a, b\right]} P\left(T_{n}(i-1), T_{n}(i)\right), \\
& \int_{a}^{b} \omega d \varphi=\lim _{n \rightarrow \infty} S_{n}(a, b) .
\end{aligned}
$$

Next, in order to prove the existence of $\int_{a}^{b} \omega d \varphi$ and some of its properties under conditions involving $V_{\alpha}(a, b)$ for some $\alpha<m+\eta$, we introduce the following.

4.3.2. Definitions.

$$
\begin{gathered}
R(x, y, z)=P^{\prime}(x, y)+P^{\prime}(y, z)-P^{\prime}(x, z) . \\
M=K \sum_{\sigma k=1}^{m} \frac{1}{k_{0}!\cdots k_{N}!} . \\
\beta=m+\eta .
\end{gathered}
$$

4.3.3. Lemma. If $x, y, z \in C,\|x-y\| \leq \delta$ and $\|y-z\| \leq \delta$, then $|R(x, y, z)|<M \delta^{3}$.

Proof. Let $h(v)=P^{\prime}(x, v)$ for $v \in E$. Then, h is a polynomial of degree m. Let $\boldsymbol{O}_{r}=\{k: k$ is an $(N+1)$-tuple of non-negative integers and $1 \leq \sigma k \leq r\}$.
For $k \in \boldsymbol{O}_{r}$ and $p \in \boldsymbol{O}_{r}$, let $p \geq k$ iff $p_{i} \geq k_{i}$ for $i=0, \cdots, N$, and let

$$
D_{k} h(v)=\frac{\partial^{\sigma k} h(v)}{\partial^{k} v_{0} \cdots \partial^{k_{N}} v_{N}}
$$

then

$$
D_{k} h(v)=\sum_{\substack{p \in \boldsymbol{O}_{m} \\ p \geq k}} \omega_{p}(x) \frac{\left(v_{0}-x_{0}\right)^{p_{0}}-k_{0} \cdots\left(v_{N}-x_{N}\right)^{p_{N} k_{N}}}{\left(p_{0}-k_{0}\right)!\cdots\left(p_{N}-k_{N}\right)!} .
$$

Hence, by Taylor's formula

$$
h(z)=h(y)+\sum_{k \in 0_{m}} D_{k} h(y) \frac{\left(z_{0}-y_{0}\right)^{k_{0}} \cdots\left(z_{N}-y_{N}\right)^{k_{N}}}{k_{0}!\cdots k_{N}!}=h(y)+
$$

$$
\begin{aligned}
&+\sum_{k \in \boldsymbol{O}_{m}}\left\{\left[\sum_{\substack{p \in \boldsymbol{O}_{m} \\
p \geq k}} \omega_{p}(x) \frac{\left(y_{0}-x_{0}\right)^{p_{0}-k_{0}} \cdots\left(y_{N}-x_{N}\right)^{p_{N}-k_{N}}}{\left(p_{0}-k_{0}\right)!\cdots\left(p_{N}-k_{N}\right)!}\right]\right. \\
&\left.\cdot \frac{\left(z_{0}-y_{0}\right)^{k_{0}} \cdots\left(z_{N}-y_{N}\right)^{k_{N}}}{k_{0}!\cdots k_{N}!}\right\}
\end{aligned}
$$

On the other hand from 4.3 .1 and 4.1 we have

$$
\begin{gathered}
P^{\prime}(y, z)=\sum_{k \in \boldsymbol{O}_{m}}\left\{\left[\omega_{k}(x)+\sum_{j \in \boldsymbol{O}_{m-\sigma k}} \omega_{k+j}(x) \frac{\left(y_{0}-x_{0}\right)^{j_{0}} \cdots\left(y_{N}-x_{N}\right)^{j_{N}}}{j_{0}!\cdots j_{N}!}+R_{k}(x, y)\right]\right. \\
\left.\quad \cdot \frac{\left(z_{0}-y_{0}\right)^{k_{0}} \cdots\left(z_{N}-y_{N}\right)^{k_{N}}}{k_{0}!\cdots k_{N}!}\right\} \\
=\sum_{k \in \boldsymbol{O}_{m}}\left\{\left[\sum_{\substack{k \in \boldsymbol{O}_{n} \\
p \geq k}} \omega_{p}(x) \frac{\left(y_{0}-x_{0}\right)^{p_{0}}-k_{0} \cdots\left(y_{N}-x_{N}\right)^{p_{N}-k_{N}}}{\left(p_{0}-k_{0}\right)!\cdots\left(p_{N}-k_{N}\right)!}+R_{k}(x, y)\right]\right. \\
\left.\left.\quad \cdot \frac{\left(z_{0}-x_{0}\right)^{\left.k_{0} \cdots\left(z_{N}-y_{N}\right)^{k_{N}}\right]}}{k_{0}!\cdots k_{N}!}\right]\right\} \\
=h(z)-h(y)+\sum_{k \in \boldsymbol{O}_{m}} R_{k}(x, y) \frac{\left(z_{0}-y_{0}\right)^{k_{0}} \cdots\left(z_{N}-y_{N}\right)^{k_{N}}}{k_{0}!\cdots k_{N}!}
\end{gathered}
$$

Making use of the condition on $R_{k}(x, y)$ stated in 4.1, we get $\left|P^{\prime}(x, y)+P^{\prime}(y, z)-P^{\prime}(x, z)\right|<\sum_{k \in \sigma_{m}} \frac{K\|y-x\|^{\beta-\sigma k}\|z-y\|^{\sigma k}}{k_{0}!\cdots k_{N}!} \leq M \delta^{\beta}$.
4.3.4 Lemma. Suppose $\|x(0)-x(i)\| \leq A$ and $\|x(i-1)-x(i)\| \leq$ A for $i=1, \cdots, p$, whereas $\|x(i-1)-x(i)\|=A / r$ for $i=1, \cdots, p-1$, where all $x(i) \in C$. Then

$$
\left|\sum_{i=1}^{p} P^{\prime}(x(i-1), x(i))-P^{\prime}(x(0), x(p))\right|<M r^{x} A^{\beta-\alpha} \sum_{i=1}^{p}\|x(i-1)-x(i)\|^{\alpha} .
$$

Proof. $\left|\sum_{i=1}^{p} P^{\prime}(x(i-1), x(i))-P^{\prime}(x(0), x(p))\right|$

$$
\begin{aligned}
& \leq \sum_{i=2}^{p}\left|P^{\prime}(x(0), x(i-1))+P^{\prime}(x(i-1), x(i))-P^{\prime}(x(0), x(i))\right| \\
& =\sum_{i=2}^{p-1}|R(x(0), x(i-1), x(i))|<(p-1) M A^{\beta}=(p-1) M r^{x} A^{\beta-\alpha}\left(\frac{A}{r}\right)^{\alpha} \\
& =M r^{\alpha} A^{\beta-\alpha} \sum_{i=1}^{p-1}\|x(i-1)-x(i)\|^{\alpha} \leq M r^{\alpha} A^{\beta-\alpha} \sum_{i=1}^{p}\|x(i-1)-x(i)\|^{\alpha} .
\end{aligned}
$$

4.3.5 Lemma. Let $n>1, a \in \operatorname{range} T_{n}, b \in \operatorname{range} T_{n}, a \leq b$,

$$
\left[T_{n-1} / a, b\right]=0 . \quad \text { Then }
$$

$$
\left|S_{n}(a, b)-P(a, b)\right|<M 5^{\beta} V_{\beta}(a, b) .
$$

Proof. Let

$$
\begin{aligned}
& a^{\prime}=\sup \left\{u: u \in \text { range } T_{n-1} \text { and } u \leq a\right\} \\
& b^{\prime}=\sup \left\{u: u \in \text { range } T_{n-1} \text { and } u \leq b\right\}
\end{aligned}
$$

First, suppose $a \leq b^{\prime} \leq b$. Then $a^{\prime}<a$ and, by 4.2.3

$$
\begin{aligned}
& \left\|\varphi(u)-\varphi\left(a^{\prime}\right)\right\| \leq \frac{1}{2^{n-1}} \quad \text { for } a^{\prime} \leq u \leq b^{\prime} \\
& \left\|\varphi(u)-\varphi\left(b^{\prime}\right)\right\| \leq \frac{1}{2^{n-1}} \quad \text { for } b^{\prime} \leq u \leq b
\end{aligned}
$$

Hence

$$
\begin{gathered}
\left\|\varphi\left(T_{n}(i)\right)-\varphi(a)\right\| \leq \frac{2}{2^{n-1}} \quad \text { for } i \in\left[T_{n} / a, b\right] \\
\left\|\varphi\left(T_{n}(i)\right)-\varphi\left(b^{\prime}\right)\right\| \leq \frac{1}{2^{n-1}} \quad \text { for } i \in\left[T_{n} / b^{\prime}, b\right] \\
\left\|\varphi\left(T_{n}(i-1)\right)-\varphi\left(T_{n}(i)\right)\right\|=\frac{1}{2^{n}} \quad \text { for } i \in\left[T_{n} / a, b\right], T_{n}(i) \neq b^{\prime}, T_{n}(i) \neq b .
\end{gathered}
$$

Replacing α by β in 4.3.4 and using 4.3.3 and 3.1, we see that

$$
\begin{aligned}
& \left|S_{n}(a, b)-P(a, b)\right|=\left|S_{n}\left(a, b^{\prime}\right)+S_{n}\left(b^{\prime}, b\right)-P(a, b)\right| \\
\leq & \left|S_{n}\left(a, b^{\prime}\right)-P\left(a, b^{\prime}\right)\right|+\left|S_{n}\left(b^{\prime}, b\right)-P\left(b^{\prime}, b\right)\right|+\left|P\left(a, b^{\prime}\right)+P\left(b^{\prime}, b\right)-P(a, b)\right| \\
< & M 4^{\beta} V_{\beta}\left(a, b^{\prime}\right)+M 2^{\beta} V_{\beta}\left(b^{\prime}, b\right)+M V_{\beta}(a, b) \leq M 5^{\beta} V_{\beta}(a, b) .
\end{aligned}
$$

Next suppose $b^{\prime}<a$. Then, for $i \in\left[T_{n} / a, b\right]$,

$$
\begin{gathered}
\left\|\varphi\left(T_{n}(i)\right)-\varphi(a)\right\| \leq \frac{2}{2^{n-1}} \\
\left\|\varphi\left(T_{n}(i-1)\right)-\varphi\left(T_{n}(i)\right)\right\|=\frac{1}{2^{n}}
\end{gathered}
$$

Hence, by 4.3.4,

$$
\left|S_{n}(a, b)-P(a, b)\right|<M 4^{\beta} V_{\beta}(a, b)
$$

4.3.6 Lemma. Let $a \in$ range $T_{n}, b \in$ range $T_{n}, a<b$. Then,

$$
\left|S_{n+1}(a, b)-S_{n}(a, b)\right|<M 2^{\alpha} V_{\alpha}(a, b)\left(\frac{1}{2^{\beta-\alpha}}\right)^{n}
$$

Proof. Using 4.2.4, 4.2.3 and 4.3.4, we see that
$\left|S_{n+1}(a, b)-S_{n}(a, b)\right|$
$=\left|\sum_{j \in\left[T_{n}^{l a, b]}\right.}\left[\sum_{i \in\left[r_{n+1} 1^{\prime} T_{n}^{\left.(j-1), T_{n}(j)\right]}\right.} P\left(T_{n+1}(i-1), T_{n+1}(i)\right)-P\left(T_{n}(j-1), T_{n}(j)\right)\right]\right|$
$<\sum_{j \in\left[T_{n} / a, b\right]}\left[M 2^{x}\left(\frac{1}{2^{n}}\right)^{\beta-\alpha} \sum_{t \in\left[T_{n+1} / T_{n}^{\left.(j-1), T_{n}(j)\right]}\right.}\left\|\varphi\left(T_{n+1}(i-)\right)-\varphi\left(T_{n+1}(i)\right)\right\|^{\alpha}\right]$
$=M 2^{\alpha}\left(\frac{1}{2^{n}}\right)^{\beta-\alpha} \sum_{i \in\left[T_{n+1} / a, b\right]}\left\|\varphi\left(T_{n+1}(i-1)\right)-\varphi\left(T_{n+1}(i)\right)\right\|^{\alpha} \leq M 2^{\alpha} V_{\alpha}(a, b)\left(\frac{1}{2^{\beta-\alpha}}\right)^{n}$.
4.3.7. Theorem. If $0 \leq a \leq b \leq 1, \alpha<\beta, V_{a}(a, b)<\infty$, then

$$
\left|\int_{n}^{b} \omega d \varphi\right|<\infty
$$

Proof. Let

$$
\begin{aligned}
& a_{n}^{\prime}=\inf \left\{u: u \in \operatorname{range} T_{n} \text { and } a \leq u\right\}, \\
& b_{n}^{\prime}=\sup \left\{u: u \in \operatorname{range} T_{n} \text { and } u \leq b\right\}
\end{aligned}
$$

If $a=b$, the theorem is trivial. If $a<b$, for n sufficiently large, we have

$$
\begin{gathered}
a \leq a_{n+1}^{\prime} \leq a_{n}^{\prime} \leq b_{n}^{\prime} \leq b_{n+1}^{\prime} \leq b, \\
{\left[T_{n} / a, a_{n}^{\prime}\right]=0 \quad \text { and }\left[T_{n} / b_{n}^{\prime}, b\right]=0,} \\
\left\|\varphi\left(a_{n+1}^{\prime}\right) \varphi-\left(a_{n}^{\prime}\right)\right\| \leq \frac{2}{2^{n}} \quad \text { and }\left\|\varphi\left(b_{n}^{\prime}\right)-\varphi\left(b_{n+1}^{\prime}\right)\right\| \leq \frac{1}{2^{n}}
\end{gathered}
$$

Hence

$$
\begin{gathered}
\left|S_{n+1}(a, b)-S_{n}(a, b)\right|=\left|S_{n+1}\left(a_{n+1}^{\prime}, b_{n+1}^{\prime}\right)-S_{n}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right| \\
=\left|S_{n+1}\left(a_{n+1}^{\prime}, a_{n}^{\prime}\right)+S_{n+1}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)+S_{n+1}\left(b_{n}^{\prime}, b_{n+1}^{\prime}\right)-S_{n}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right| \\
\leq\left|S_{n+1}\left(a_{n+1}^{\prime}, a_{n}^{\prime}\right)-P\left(a_{n+1}^{\prime}, a_{n}^{\prime}\right)\right|+\left|S_{n+1}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)-S_{n}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right| \\
+\left|S_{n+1}\left(b_{n}^{\prime}, b_{n+1}^{\prime}\right)\right|-P\left(b_{n}^{\prime}, b_{n+1}^{\prime}\right)\left|+\left|P\left(a_{n+1}^{\prime}, a_{n}^{\prime}\right)\right|+1 P\left(b_{n}^{\prime}, b_{n+1}^{\prime} \mid<(\text { by 4.3.5, 4.3.6) }\right.\right. \\
<M 5^{\beta} V_{\beta}\left(a_{n+1}^{\prime}, a_{n}^{\prime}\right)+M 2^{x} V_{\alpha}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\left(\frac{1}{2^{\beta-\alpha}}\right)^{n}+M 5^{\beta} V_{\beta}\left(b_{n}^{\prime}, b_{n+1}^{\prime}\right)+M^{\prime} \frac{2}{2^{n}}+M^{\prime} \frac{1}{2^{n}},
\end{gathered}
$$

where

$$
M^{\prime}=\sup _{\substack{x \in O \\ 1 \leq \sigma \sigma<m}}\left|\omega_{k}(x)\right| \sum_{\sigma k=1}^{m} \frac{1}{k_{0}!\cdots k_{N}!}
$$

Therefore, for any positive integer p we have

$$
\begin{gathered}
\left|S_{n+p}(a, b)-S_{n}(a, b)\right| \leq \sum_{q=0}^{p-1}\left|S_{n+q+1}(a, b)-S_{n+q}(a, b)\right| \\
<M 5^{\beta} \sum_{q=0}^{\infty}\left[V_{\beta}\left(\alpha_{n+q+1}^{\prime}, a_{n+q}^{\prime}\right)+V_{\beta}\left(b_{n+q}^{\prime}, b_{n+n+q+1}^{\prime}\right)\right]+M 2^{x} V_{\alpha}(a, b) \sum_{q=0}^{\infty}\left(\frac{1}{2^{\beta-\alpha}}\right)^{n+q} \\
+3 M^{\prime} \sum_{q=0}^{\infty} \frac{1}{2^{n+q}}<M 5^{\beta}\left(V_{\beta}\left(a, a_{n}^{\prime}\right)+V_{\beta}\left(b_{n}^{\prime}, b\right)\right)+M \frac{2^{3}}{2^{3-\alpha}{ }_{-1}} V_{\alpha}(a, b)\left(\frac{1}{2^{3-\alpha}}\right)^{n}+\frac{6 M^{\prime}}{2^{n}} .
\end{gathered}
$$

Since, by $3.2, V_{\beta}(a, b)<\infty$, with the help of 3.1 we see that $V_{\beta}\left(a, a_{n}^{\prime}\right) \rightarrow 0$ and $V_{\beta}\left(b_{n}^{\prime}, b\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus, the $S_{n}(a, b)$ form a Cauchy sequence and $\left|\int_{a}^{b} \omega d \varphi\right|<\infty$.
4.3.8. Theorem. Suppose $\delta>0, \alpha<\beta, L<\infty,\|\varphi(a)-\varphi(b)\|<1$, and

$$
V_{\alpha}(a, b)<L\|\varphi(a)-\varphi(b)\|^{\alpha}
$$

whenever $0 \leq a \leq b \leq 1$ and $b-a<\delta$. Then, for some $M^{\prime}<\infty$,

$$
\left|\int_{a}^{b} \omega d \varphi-P(a, b)\right|<M^{\prime}\|\varphi(a)-\varphi(b)\|^{\alpha}
$$

whenever $0 \leq a \leq b \leq 1$ and $b-a<\delta$.
Proof. Given $0 \leq a \leq b \leq 1$ and $b-a<\delta$, let

$$
\begin{aligned}
& a_{q}^{\prime}=\inf \left\{u: u \in \operatorname{range} T_{q} \text { and } a \leq u\right\}, \\
& b_{q}^{\prime}=\sup \left\{u: u \in \text { range } T_{q} \text { and } u \leq b\right\} ;
\end{aligned}
$$

and let n be the integer such that $\left[T_{n-1} / a, b\right]=0,\left[T_{n} / a, b\right] \neq 0$.
Given $\varepsilon>0$, we can choose p so that

$$
\left|\int_{a}^{b} \omega d \varphi-S_{n+p}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\right|<\varepsilon
$$

and

$$
\left|P(a, b)-P\left({ }_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\right|<\varepsilon
$$

and

$$
\left|\|\varphi(a)-\varphi(b)\|-\left\|\varphi\left(a_{n+p}^{\prime}\right)-\varphi\left(b_{n+p}^{\prime}\right)\right\|\right|<\varepsilon .
$$

Hence we need only to show that

$$
\left|S_{n+p}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)-P\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\right|<M^{\prime}\left\|\varphi\left(a_{n+p}^{\prime}\right)-\varphi\left(b_{n+p}^{\prime}\right)\right\|^{\alpha}
$$

for some $M^{\prime}<\infty$ and all positive integers p.
We can check that

$$
\begin{aligned}
& \left|S_{n+p}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)-P\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\right| \\
\leq & \left|S_{n}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)-P\left(a_{n}^{\prime}, b_{n}^{\prime}\right)\right|+\left|P\left(a_{n+p}^{\prime}, a_{n}^{\prime}\right)+P\left(a_{n}^{\prime}, b_{n}^{\prime}\right)-P\left(a_{n+p}^{\prime}, b_{n}^{\prime}\right)\right| \\
+ & \left|P\left(a_{n+p}^{\prime}, b_{n}^{\prime}\right)+P\left(b_{n}^{\prime}, b_{n+p}^{\prime}\right)-P\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\right| \\
+ & \sum_{k=0}^{p-1}\left\{\mid P\left(a_{n+p}^{\prime}, a_{n+k+1}^{\prime}\right)+P\left(\left(a_{n+k+1}^{\prime}, a_{n+k}^{\prime}\right)-P\left(a_{n+p}^{\prime}, a_{n+k}^{\prime}\right) \mid\right.\right. \\
+ & \left|P\left(b_{n+k}^{\prime}, b_{n+k+1}^{\prime}\right)+P\left(b_{n+k+1}^{\prime}, b_{n+p}^{\prime}\right)-P\left(b_{n+k}^{\prime}, b_{n+p}^{\prime}\right)\right| \\
+ & \left|S_{n+k+1}^{\prime}\left(a_{n+k+1}^{\prime}, a_{n+k}^{\prime}\right)-P\left(a_{n+k+1}^{\prime}, a_{n+k}^{\prime}\right)\right| \\
+ & \left|S_{n+k+1}^{\prime}\left(b_{n+k}^{\prime}, b_{n+k+1}^{\prime}\right)-P\left(b_{n+k+1}^{\prime}, b_{n+k}^{\prime}\right)\right| \\
+ & \left.\left|S_{n+k+1}^{\prime}\left(a_{n+k}^{\prime}, b_{n+k}^{\prime}\right)-S_{n+k}\left(a_{n+k}^{\prime}, b_{n+k}^{\prime}\right)\right|\right\} .
\end{aligned}
$$

Now, we observe that

$$
\begin{gathered}
\|\varphi(u)-\varphi(v)\| \leq \frac{2}{2^{n+k}} \quad \text { for } a_{n+p}^{\prime} \leq u \leq v \leq a_{n+k}^{\prime} \\
\|\varphi(u)-\varphi(v)\| \leq \frac{1}{2^{n+k}} \quad \text { for } b_{n+k}^{\prime} \leq u \leq v \leq b_{n+p}^{\prime} \\
{\left[T_{n+k} / a_{n+k+1}^{\prime}, a_{n+k}^{\prime}\right]=0} \\
{\left[T_{n+k} / b_{n+k}^{\prime}, b_{n+k+1}^{\prime}\right]=0}
\end{gathered}
$$

Hence by 4.3.5, 4.3.3, 4.3.6 we have

$$
\begin{aligned}
& \left|S_{n+p}^{\prime}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)-P\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\right| \\
< & M 5^{\beta} V_{\beta}\left(a_{n}^{\prime}, b_{n}^{\prime}\right)+M V_{\beta}\left(a_{n+p}^{\prime}, b_{n}^{\prime}\right)+M V_{\beta}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right) \\
+ & M \sum_{k=0}^{p-1}\left\{V_{\alpha}\left(a_{n+p}^{\prime}, a_{n+k}^{\prime}\right)\left(\frac{2}{2^{n+k}}\right)^{\beta-\alpha}+V_{a}\left(b_{n+k}^{\prime}, b_{n+p}^{\prime}\right)\left(\frac{1}{2^{n+k}}\right)^{\beta-\alpha}\right. \\
+ & \left.5^{\beta} V_{\beta}\left(a_{n+k+1}^{\prime}, a_{n+k}^{\prime}\right)+5^{\beta} V_{\beta}\left(b_{n+k}^{\prime}, b_{n+k+1}^{\prime}\right)+2^{\alpha} V_{\alpha}\left(a_{n+k}^{\prime}, b_{n+k}^{\prime}\right)\left(\frac{1}{2^{\beta-\alpha}}\right)^{n+k}\right\} \\
< & M 5^{\beta} V_{\beta}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)+2 M V_{\beta}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right) \\
+ & M V_{\alpha}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\left(2^{\beta-\alpha}+1+2^{\alpha}\right) \sum_{k=0}^{\infty}\left(\frac{1}{2^{\beta-\alpha}}\right)^{n+k} \\
< & M V_{\alpha}\left(a_{n+p}^{\prime}, b_{n+p}^{\prime}\right)\left[5^{\beta}+2+\left(2^{\beta-\alpha}+1+2^{\alpha}\right) \sum_{k=0}^{\infty}\left(\frac{1}{2^{\beta-\alpha}}\right)^{n+k}\right] \\
< & M^{\prime}\left\|\varphi\left(a_{n+p}^{\prime}\right)-\varphi\left(b_{n+p}^{\prime}\right)\right\|^{\alpha}
\end{aligned}
$$

where

$$
M^{\prime}=M L\left[5^{\beta}+2+\left(2^{3-\alpha}+1+2^{x}\right) \sum_{k=0}^{\infty}\left(\frac{1}{2^{\beta-\alpha}}\right)^{n+k}\right]<\infty .
$$

4.3.9. Theorem. If $0 \leq a \leq b \leq c \leq 1,\left|\int_{a}^{b} \omega d \varphi+\int_{b}^{c} \omega d \varphi\right|<\infty$, then

$$
\int_{a}^{c} \omega d \varphi=\int_{a}^{b} \omega d \varphi+\int_{b}^{c} \omega d \varphi .
$$

Proof. Let

$$
\begin{aligned}
& a_{n}^{\prime}=\sup \left\{u: u \in \operatorname{range} T_{n} \text { and } u \leq b\right\} \\
& b_{n}^{\prime}=\inf \left\{u: u \in \operatorname{range} T_{n} \text { and } b \leq u\right\}
\end{aligned}
$$

We have $\lim _{n \rightarrow \infty} P\left(a_{n}^{\prime}, b_{n}^{\prime}\right)=0$ and for sufficiently large n

$$
S_{n}(a, c)=S_{n}(\mathrm{a}, b)+P\left(a_{n}^{\prime}, b_{n}^{\prime}\right)+S_{n}(b, c)
$$

Taking the limit on both sides we get the desired result.
4.3.10. Remark. If ω and ω^{\prime} are both 1 -forms in the sense of 4.1, then so is $\left(\omega+\omega^{\prime}\right)$ and

$$
\int_{a}^{b}\left(\omega+\omega^{\prime}\right) d \varphi=\int_{a}^{b} \omega d \varphi+\int_{a}^{b} \omega^{\prime} d \varphi
$$

provided the right hand side is bounded. This is an immediate consequence of the definitions.

References

1. G. Glaeser, Etudes de quelques algèbres tayloriennes, J. d'Analyse Math., Jerusalem, 6, (1958), 1-124.
2. M. Sion, On the existence of functions having given partial derivatives on a curve, Trans. Am. Math. Soc. 77 (1954), 179-201.
3. H. Whitney, Analytic extensions of differentiable functions defined on closed sets, Trans. Am. Math. Soc. 36 (1934), 63-89.
4. -, Geometric integration theory, Princeton Univ. Press, 1957.

University of California

[^0]: Received August 25, 1958.

