
IDEMPOTENT MEASURES ON ABELIAN GROUPS

WALTER RUDIN

1 • Introduction.

1.1. All groups mentioned in this paper will be abelian, even when
this is not explicitly stated, and will be written additively. For any
locally compact abelian group G, ^ (G) will denote the set of all com-
plex-valued Borel measures (sometimes called Radon measures) an G.
The convolution of two such measures μ and λ is the measure μ * λ defined
by

(1.1.1) (μ*λ){E) =[ μ(E- x)dλ{x)
3G

for every Borel set E c G, where E — x is the set of all y — x with
ye E.

With addition and scalar multiplication defined in the obvious way,
and with convolution as multiplication, ^//(G) is a commutative algebra.
A measure μ e ^/f(G) is said to be idempotent if

(1.1.2) μ*μ = μ .

The set of all idempotent elements of ^£{G) will be denoted by ̂ ( G ) .
It would be interesting to have an explicit description of the idem-

potent measures on any locally compact group. For the circle group,
this was obtained by Helson [1], and was of considerable help in the
determination of the endomorphisms of the group algebra of that group
[6]. In the present paper, the problem is completely solved for the finite-
dimensional torus groups (Section IV) and for the discrete groups (Theorem
2.2). In Section II it is proved that every idempotent measure is con-
centrated on a compact subgroup (Theorem 2.1). In Section III the
general problem is reduced to the study of the so-called irreducible
idempotent measures on compact groups.

1.2. Apart from its intrinsic interest, this problem has another
aspect: If JS^(G) is the Banach space of all complex Haar-integrable
functions on G, and if A is a bounded linear mapping of J*f{G) into J5f{G)
which commutes with all translations of G, then it is known that there
is a unique μ e ^/f(G) such that

(1.2.1) (Af)(x) = ( f(x - y)dμ(y)
JG

Furthermore, A2 — A if and only if μ*μ = μ.
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Thus the determination of all idempotents in ^€(G) is equivalent
to the determination of all projections in £?(G) which commute with
the translations of G.

1.3. Let Γ be the dual group of G, that is, the group of all con-
tinuous characters of G. With every μ e ^/t{G) there is associated its
Fourier-Stieltjes transform μ, defined by

(1.3.1) Kr)=\ i-χ,r)dμ{χ) (reΓ),

where (x, γ) denotes the value of the character γ at the point x.
The correspondence μ —• μ is one-to-one, and the transform of a con-

volution is the pointwise product of the transforms of the factors. It
follows that μ 6 ^~(G) if and only if μ has 1 and 0 as its only values.

We associate with each μ e ^ ( G ) the set

(1.3.2) S(μ)= {reΓ\Kr) = l} .

The problem of finding all μ e ̂ (G) is then equivalent to the problem of
finding all subsets of Γ whose characteristic function is a Fourier-
Stieltjes transform.

1.4. In order to lead up to our conjecture concerning the struc-
ture of the measure in ̂ ( G ) , we present some relevant facts concerning
subgroups, quotient groups, and measures.

(y) If H is a closed subgroup of G, let N(H) be the annihilator of
H, that is, the set of all γeΓ such that (x, γ) = 1 for all x e H. Then
N(H) is a closed subgroup of Γ and is the dual group of G/H. Also
r/N(H) is the dual group of H.

(b) For any μ e ^€(G), let \μ\ be the measure defined by

(1.4.1) M(£)-supΣI/Wl,
the sup being taken over all finite collections {Et} of pairwise disjoint
Borel sets whose union is E; detailed proofs of the properties of the
\μ\ so defined can be found in [4]. The norm of μ is defined as \\μ\\ =
\μ\(G); with this norm, ^£(G) is a Banach algebra, and

(1.4.2) \\μ\\ > sup I Mr) I (reΓ,μe ^t(G)) .

We say that μ is concentrated on E if \μ\{E) = \\μ\\. The restric-
tion of μ to a set A is the measure λ defined by λ(B) = μ(A Π B). The
support of μ is the smallest closed set F on which μ is concentrated.
If μ is concentrated on a countable set, then μ is discrete if μ(E) — 0
for every countable set E, μ is continuous if μ(E) = 0 whenever ra(i?) = 0,
where m is the Haar measure of G, μ is absolutely continuous; finally,
if μ is concentrated on a set E with m ^ ) = 0, then μ is singular.
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(c) If a closed subgroup H contains the support of some μ e
then μ may also be regarded as an element of ^(H). Conversely, any
λ e ^//(ΈL) may be regarded as an element of ^ZZ(G), such that λ(E) = 0,
whenever E (Ί H is empty.

It is important to note that if a group H contains the support of
two measures μ, λ e ^/f(G), then the same is true of μ*λ. This follows
immediately from (1.1.1): Since λ is concentrated on H, the integration
extends over H only, and if E Π H is empty, so is (E — x) ΓΊ H for every
xe H; hence (μ*λ)(E) = 0.

(d) If H is a closed subgroup of G, if μe ^ίf{G)> and if μ is constant
on each coset of N(H), then μ is concentrated on H.

We sketch the proof. The assumption on μ implies that

{-x, γ'){- xf r)dμ(x) = f {~x, γ')dμ{x) (f eΓ,γe N{H) ,
G JO

and the uniqueness theorem for Fourier-Stielt jes transforms shows that
(— x, τ)dμ{x) = dμ(x) for all γe N(H). Hence (— x, γ) — 1 almost every-
where on the support of μ, which means that this support lies in H.

(e) Suppose now that G is compact (so that Γ is discrete) and that
mH is the Haar measure of a compact subgroup H of G. Then mπe ^ZZ(G)
(see (c)), and it is easy to see that mHe^fr(G) and that S{mH) = N(H)
(see (1.3.2)).

If, for some γ e Γ, dμ(x) = (x, γ)dms(x), then μ is again idempotent,
and S(μ) = N(H) + γ.

It follows that every coset of every subgroup is S(μ)for some μe ^(G).
(f) Consider the family W of all sets S(μ), for μ e ^~(G). If μ and

λ are idempotent, so are the measures μ*λ, μ + λ — μ*λ, and u — μ,
where u is the unit element of ^(G) (i.e., u is the point measure which
assigns mass 1 to the identity elements of G; ύ(γ) = 1 for all γeΓ). Since

S(μ) U S(λ) = S(μ + λ - μ * λ ) ,

and the complement of S(μ) is S(u — μ), we see that W is closed under
finite intersections, finite unions, and complementation. That is to say,
W is a ring of sets.

1.5. Suppose again that G is compact. Define the coset-ring of Γ
to be the smallest ring of sets which contains all cosets of all subgroups
of Γ. We conclude from 1.4 (e), (f), that every member of the coset-ring
of Γ is S(μ) for some μ e ^{G).

The structure of such a μ can be described as follows: Every sub-
group of Γ is N(H) for some compact subgroup H of G, and any finite
union of cosets of N(H) is S(μ) for a measure μ defined by
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N

(1.5.1) dμ(x) = Σ(x, ri)dmH(x) ,

where ft, , γN are distinct characters of H. Roughly speaking, μ is
a trigonometric polynomial on H. If £(Λ) belongs to the coset ring of
Γ, λ can accordingly be obtained from measures of the form (1.5.1) by
a finite sequence of the operations described in 1.4 (f).

It seems quite likely that there are no other idempotent measures:

CONJECTURE. If G is a compact abelian group and μ e J^{G), then
S(μ) belongs to the coset ring of Γ.

The main result of this paper is the proof of this conjecture for the
finite-dimensional torus groups.

2* Reduction to Compact Groups and Some Consequences1 •

Our first theorem shows that we may restrict our attention to measures
defined on compact groups:

2.1. THEOREM. Suppose G is a locally compact abelian group and
μ 6 .J^(G). Then μ is concentrated on a compact subgroup K of G {and
hence μ e

Proof. Let GQ be the smallest closed subgroup of G which contains
the support of μ; we wish to show that Go is compact. By 1.4(c) we
may assume, without loss of generality, that Go — G, and 1.4(d) implies
then that μ is not constant on the cosets of any non-trivial closed sub-
group of Γ. In other words, if we define μΊ by

(2.1.1) dμy(x) = (x, γ)dμ{x) (γ e Γ) ,

then μΊ Φ μ if γ Φ 0. Since μy — 0 or 1, (1.4.2) implies

(2.1.2) \\μy-μ\\>i (rΦO).

There exists a compact set C c G such that \μ\{C) < 1/4, where C
denotes the complement of C. If V is the set of all γ e Γ such that

(2.1.3) | l - ( α ? , r ) | <

for every x e C, then V is open (this is precisely the way in which the
topology of Γ is defined), and for every γ e V we have

(2.1.4) \\μ - μy\\ <\ I 1 - (x, T)\d\μ\(x) = f + f < J + -ί < 1 .
)G Jc Jc 3 2

1 The proofs in this section are simpler than they were in the original version of this
paper, due to welcome suggestions by the referee and by P. J. Cohen.
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By (2.1.2), the open set V thus consists of the identity element
alone. Consequently, Γ is discrete, and G is compact.

2.2. THEOREM. Suppose G is discrete (so that Γ is compact).
(a) If μ e ^(G), then μ is concentrated on a finite subgroup H of

G, the annihilator N(H) is an open-closed subgroup of Γ, and S(μ) is
a finite union of cosets of N(H).

(b) Conversely, every open-closed subset E of Γ is S(μ) for some
μ e Jfiβr).

Proof. The first part of (a) follows from Theorem 2.1; for the rest,
we observe that ΓjN(H) is a finite group and that μ is constant on the
cosets of N(H).

Next, if E is an open-closed subset of Γ, there is a neighborhood
V of 0 in Γ such that E + V = E. If / and g are the characteristic
functions of V and E, respectively, then

(2.2.1) ( f(r')g(r - r')dm(r') = m(V)g(γ) ,

where m is the Haar measure of Γ. Since / and g are in L2(Γ), the
Plancherel theorem implies that g is a Fourier transform, and the result
follows from the remark at the end of 1.3.

2.3. For technical reasons, which will become apparent in the next
section, it is convenient to enlarge the class ^ (G) somewhat. We let
/s~(G) be the class of all μ e ^(G) such that μ is an integer-valued
function, and we can immediately prove the following proposition:

If μ e Js~(G), then μ = axμγ + + Ojnμnf where aτ, , an are in-
tegers and μlf , μn e ^ (G).

Indeed, let al9 * ,α w be those integers which are different from 0
and which lie in the range of μ (since μ is bounded, this is a finite set).
Let Pi be a polynomial such that

P,(0) - 0, Pfaj) = 0 if j Φ i, P4(α,) = 1 ,

and put μi — Pι{μ).

(We define μn = μ*μn-\ and P(μ) = Σ c / if P{x) = Σcnx
n.) Then

1

hir) = Pmr) = \l *Kr) Γ α"
0̂ otherwise

so that μt e ^{G) and μ = a,μγ + + anμn.

2.4. THEOREM. Suppose G is a compact abelian group, μ e ^{
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and His a closed subgroup of G. Let {ίfj be the (evidently at most counta-
ble) collection of those cosets of H for which

(2.4.1)

Let H be the smallest subgroup of G which contains all these Hiy and let

σ be the restriction of μ to H. Then
(i) σ.

(ii) H\H is a finite group.
Assertion (ii) implies, in particular, that {H^ is a finite collection,

and that μ vanishes on every coset of H which has infinite order in
GIH.

Proof. We first claim that the following two statements are true

for every Borel set 4 c G :

(a) If A Π H is empty, then σn(A) = 0 for n = 1, 2, 3, .

(b) If A c H, then σn(A) = μn{A) for n = 1, 2, 3, . . .

Note that H is an at most countable union of cosets of H, hence in
particular is a Borel set.

It is clear that (a) holds if n = 1, and we proceed by induction:

— x)dσ(x) = \ σn~\A — x)dσ(x) .

If A Π H = 0 and α? e ^ , then (A - a?) Π Jϊ = 0. Thus if (a) holds for
n — 1, it also holds for n.

To prove (b), put τ~ μ — σy and expand μn = (σ + r)w by the binomial
theorem. We have to show that

(2.4.2) (τk * σn-k)(A) = 0 (k = 1, 2, . . . , n)

if AczH.

Since r vanishes on every coset of Jϊ and since H is an at most
countable union of such cosets, we have τ(A — x) = 0 for every x e G.
Thus, for any λ e .^f (G),

;») = o,

and (2.4.2) follows.
From (a) and (b) we conclude that

(2.4.3) σ\E) = μ\E f]H) (n = 1, 2, 3, . . . )

for every Borel set E c G.
Let αi, ,αn befthe non-zero values of £, and let P be the polynomial
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P{t) = ί Π (< - α.)

Then P(μ) = 0, and (2.4.3) implies that P(σ) = 0. From this it follows
that every value of σ is a root of P, so that the range of σ lies in the
set {0, Oi, •••,«„}. This proves the first part of the theorem.

We now put a new topology on H: the neighborhoods of 0 are to

be the sets H Π V, for any neighborhood V of 0 in G. Then H is a

locally compact abelian group, and σ e ^(H). By Theorem 2.1 (extended
from L/(G) to ^~(G), via Proposition 2.3), we see that σ is concentrated

on a compact subgroup K of iϊ. The minimality which was one of the

defining properties of H shows that K — H. Thus H is compact, and

since H is an open subgroup of H, we conclude that H/H is finite.

3. Decomposition into Irreducible Measures.

3.1. If G is compact, μ e ^(G), and H is a compact subgroup of
G, the second part of Theorem 2.4 shows that H has finite index in

a compact subgroup H such that /* vanishes on every translate of H

which is different from H. The existence of such H suggests the fol-
lowing definitions.

(a) Suppose G is compact, μ e ^/Z(G), and K is a compact subgroup
of G. We say that K is associated with μ if
(i) \μ\{K+ x) = 0 for every x $ K;
(ii) I μ I (iϊ) < I μ I (J5Γ) for every compact subgroup H oΐ K which is dif-
ferent from K.

Note that (ii) implies \μ\(K) > 0. Thus the null-measure has no
group associated with it. If μφO, the smallest compact group on which
μ is concentrated is clearly associated with μ.

(β) If μ = 0, or if there is precisely one compact subgroup associated
with μ, we say that μ is irreducible.

It should be pointed out that μ need not be concentrated on a sub-
group which is associated with μ. For example, let G be the circle
group Tι (the one-dimensional torus), and set μ = m + λ, where m is the
Haar measure of Tι, and λ is a positive measure concentrated at the
point eix. If xjπ is rational, then the finite cyclic group generated by
eix is associated with μ, and so is T\ If x\π is irrational, then T1 is the
only group associated with μ, and μ is irreducible.

3.2. The following two propositions may elucidate these concepts
(we use the notations of 3.1):

(a) If K and H are associated with μ and if H is a proper subgroup
of K, then KjH is infinite.
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Indeed, suppose K/H is finite, so that a finite number of translates
of H covers K. Since \μ\(H + x) = 0 whenever x $ H, it follows that
\μ\(K) = \μ\(H), a contradiction'

(b) Suppose μ 6 J?~(G) and K is the smallest compact subgroup of
G such that \μ\{K) — \\μ\\. Then μ is irreducible if and only if \μ\ (H) = 0
for every compact subgroup H of K such that m(H) = 0, where m is the
Haar measure of K. If μ is irreducible, we also have \μ\(H+ x) = 0
for every such H and all x e G.

Note that m(H) = 0 if and only if K/H is infinite. Thus if | μ \ (H) = 0

whenever m{H) = 0, proposition (a) implies that μ is irreducible. On the

other hand, if \μ\{H)>0 for some H with m(H) = 0, the Hof Theorem

2.4 (with K in place of G) is associated with μ and m(H) — 0 hence μ

is not irreducible. The last assertion of (b) also follows from Theorem

2.4.

3.3 THEOREM. Suppose G is a compact abelian group and μ e ^{G).
Then there exist irreducible measures ^ e / ( G ) and integers α4 such that

μ = aιμx + a2μ2 + + anμn .

Proof. It is convenient to weaken the hypothesis somewhat and to
assume merely that μ e ^(G); assume also μφO.

We first show that there is a compact subgroup Hx of G which is as-
sociated with μ, such that the restriction λλof μ to Hλ is irreducible, and
such that λλ e J7~(G).

If μ is irreducible, let Hx be the smallest compact group on which μ
is concentrated. If μ is not irreducible, there is a compact group Kλ which
is associated with μ, such that \μ\(K1) < \\μ\\; let στ be the restriction
of μ to Kι. By Theorem 2.4, σ1 e J^iG), and the same is thus true of
μ — σx. Since μ — σλ Φ 0, (1.4.2) shows that

(3.3.1) \\μ - σΎ\\ > 1 .

On the other hand, σx and μ — στ are concentrated on disjoint sets, so
that

(3.3.2)

It follows that

(3.3.3)

If σx is not irreducible, we repeat this process, with σλ in place of
μ: there is a compact K2 c Kλ which is associated with σλ (hence with
μ), such that the restriction σ2 of σx to Kλ belongs to ^~(G) and satisfies
the inequality
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(3.3.4) lk,||<IK||-l<||H|-2.

Since the norms decrease by at least 1 each time, we evidently
obtain an irreducible measure (Φ 0) after repeating this process a finite
number of times. Call this measure λτ.

Since λL is the restriction of μ to a group Hl9 we see that λτ and
μ — λλ are concentrated on disjoint sets, so that \\μ\\ — \\λλ\\ + \\μ — λx\\.
We conclude, as above, that

(3.3.5) I I ^ - ^ I I ^ I I ^ I I - I .

If μ — λx is irreducible, put λ2 = μ ~ λτ. If not, repeat the preceding
construction, finding an irreducible λ2 e J^{G) such that

(3.3.6) i ^ - ^ - ^ i i ^ I I ^ I I _ 2 .
Again, this must stop after a finite number of steps, and we obtain
a representation

(3.3.7) μ = λx + λ2 + + λp ,

where each λt is irreducible and belongs to
In 2.3, we saw that every λ e ^"{G) is a finite linear combination,

with integer coefficients, of idempotent measures μ5. The theorem thus
follows from (3.3.7) if we can show that the μό are irreducible if λ is
irreducible; by 2.3, we therefore have to show that P{λ) is irreducible
if P is a polynomial without constant term.

Suppose then that K is associated with λ and that λ is irreducible.
Let m denote the Haar measure of K. If H is a compact subgroup of
K with m{H) = 0, then \λ\(H) = 0 by 3.2 (b), and it easily follows that
\λn\(H) = 0 for w = 1, 2, 3, •-., and hence that |P(/l)|(#) = 0. Thus if
p(Λ) =£ 0, P(/l) is concentrated on a subgroup Kr of i£ which has finite
index in K, and K is associated with P(Λ). Applying 3.2 (b) again, we
conclude that P(λ) is irreducible.

This completes the proof.

3.4 Let R denote the coset ring of Γ, and call a function / defined
on Γ an ^-function if

where each g% is the characteristic function of some member of R, and
each Ci is a complex number.

Suppose we know, for some compact group G, that S(μ) e R for
every irreducible μ e ^{G). Then μ is an R-function, and since a finite
sum of R-ίunctions is again an iϋ-function, Theorem 3.3 shows that σ
is an R-ί unction for every σ e <J^(G) (irreducible or not) this means
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that S(σ) 6 R.
Thus the conjecture made in 1.5 will be proved for a given compact

G if it is proved for every irreducible μ e ^(G).
According to the remarks made in 1.5, we therefore have to prove

the following: if K is the subgroup associated with the irreducible
μ e ^(G), then μ is a trigonometric polynomial on K. This is equivalent
to the assertion that μ is absolutely continuous with respect to the Haar
measure of K; for if μ is not a trigonometric polynomial, then μ(φ) = 1
for infinitely many ψ in the dual group of K, so that μ(Φ) does not
vanish at infinity.

4 The Idempotent Measure of the Torus Groups*

4.1. Let Tr denote the r-dimensional torus group the points of Tr

are of the form

(4.1.1) x = (e» •••,«,

the ξi being real numbers mod 2π. The dual group of Tr is AΊ\ the group
of all lattice points in r-dimensional euclidean space R, i.e., the set of
all

(4.1.2) rc = K . . . ,* r )

where the vι are integers. If we put

(4.1.3) n-x = Σ ^ ,

then {xy n) — ein'x, and the transform of any μ e ^?(Tr) is

(4.1.4) fι(n) = [ e-ίn'xdμ(x) (n e Ar) .

We shall prove that every μ e j^{Tr) has the structure described
in 1.5:

4.2. THEOREM. If μ e ^(Tr)9 then S(μ) belongs to the coset ring
of A\

The discussion in 3.4 shows that Theorem 4.2 is a consequence of
the following:

4.3 THEOREM. Suppose G is a compact subgroup of Tr, and suppose
G is associated with an irreducible measure μ e ^(Tr). Then μ is ab-
solutely continuous with respect to the Haar measure of G.

Proof. We shall use induction on r.
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For r = 1, the theorem is due to Helson [1] (our terminology differs
from his, being adapted to a more general situation), but we include
the proof for the sake of completeness.

If G is a finite group, there is nothing to prove. If G = Tι, we
have to prove that S(μ) is finite. Since μ is continuous, a well-known
theorem of Wiener implies that

(4.3.1) lim } ΣIM^)12 = O.
ΛΓ-~ 2N + 1 -iv

If £?(/-*) were infinite, it would therefore contain an infinite set {nk} such
that none of the integers nk + 1, , nk + k belong to S(μ), and a sub-
sequence of the measures μk defined by

(4.3.2) dμk(x) = e'ιVdμ(x)

would converge weakly (as functional on the space of all continuous
functions on T1) to a measure σ e ^(T1). The choice of {%} shows
that σ (O) = 1 and σ(n) = 0 for all n > 0. This latter fact implies, by
a well-known theorem of F. and M. Riesz, that σ is absolutely continuous.
But every weak limit of the sequence (4.3.2) must be singular [2; p. 236].
Since σ Φ 0, this is a contradiction, and we conclude that S(μ) is finite.

We now assume that the theorem has been proved for r < p — 1
(p ~ 2, 3, 4, •). To prove it for r = p, we consider two possibilities:

Case 1. G is the direct sum of Tq (for some q <p) and a finite group
F.

Case 2. G = Tp.

Case 1. Let/j, •••,/, be the elements of F, so that each element
of G can be written uniquely in the form x+f with x e Tq and f e F.
Let φl9 , φs be the characters of F.

Let μlf , μs be measures on Tq defined by

(4.3.3) μk(E) - Σ(-Λ, ΦMEj) (Λ = 1, - , β) ,

where E1 is a Borel set in Tq and E5 — Έ +fj9 Then, for w e J 9, we
have

= t = 0 or
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SO that μk 6
Since μ is irreducible and G is associated with μ, (4.3.3) shows that

\μk\(H) = 0 for every proper compact subgroup of Tq; hence μk is irre-
ducible and Tq is associated with μk9 or μk = 0. Our induction hypothesis
now implies that μfc is absolutely continuous (1 < k < s).

If we multiply the equations (4.3.3) by (fi9φk), add over k, and
observe the orthogonality relations satisfied by the characters φk, we
obtain

(4.3.4) Σ (/4, φk)μk(E) = 8 μ(Ed (i = 1, . . . , s) ,

and thus the absolute continuity of the measures μk implies that μ is
absolutely continuous with respect to the Harr measure of G. This
settles Case 1.

Case 2. We now assume that μ e ^(Tp) and that \μ\(H) = 0 on
every proper compact subgroup of Tp (compare 3.2 (b)), and we wish to
prove that S(μ) is finite. Our proof will be similar to that of the case
r = 1, but we have to replace our reference to the theorem of F. and
M. Riesz by a result recently proved by Helson and Lowdenslager1 [3;
Section 4, Lemma 3]:

Let Q be a subset of Ap such that (a) nx + nt e Q if nγ e Q and n.zeQ,
(b) 0 0 Q, (c) if n φ 0, then n e Q if and only if — n 0 Q. Suppose σ
is a singular measure on Tp such that σ(n) — 0 for all n e Q. Then
σ(0) = 0.

We think of Ap as a subset of euclidean space Rp (see 4.1). The
theorem of Wiener (namely, (4.3.1)) extends without difficulty to Fourier-
Stieltjes series in several variables and shows that S(μ) has density 0
in Ap, since μ is continuous. More precisely, the number of points of
S(μ) in the p-dimensional cube with center at the origin and vertices
(± N, ± N, ••• ±N) is o(Np).

If S(μ) is infinite, it follows that there exist spheres Vk in Rp with
the following properties:
(i) The radius of Vk is greater than k.
(ii) Vk contains no point of S(μ) in its interior.
(iii) The boundary of Vk contains a point nk e S(μ), and nk-> oo as k-+ oo.
(iv) If ck is the center of Vk9 the unit vectors

ck — nk

\ck - nk I

converge to some b e Rp. (The absolute value sign denotes the length
of the vector.)

1 I wish to thank these two authors for letting me read their paper prior to its publication.
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(v) The measures μk e ^(Tp) defined by

(4.3.5) dμk(x) = e-in* *dμ(x)

converge weakly to a measure σ e
It is evident that {Vk} can be chosen so as to statisfy (i), (ii), (iii),

and a suitable subsequence will satisfy (iv) and (v) as well.
The passage from μ to σ, via (4.3.5), is such that \<r\(E) < \μ\(E)

for every Borel set E c Tp also, σ is not changed if we replace μ by
its singular component, since the Fourier transform of the absolutely
continuous component tends to 0 (this is the argument used by Helson
in [2; p. 236]).

Hence σ is singular, σ e ^(Tp), and since \σ\(H) < \μ\(H) = 0 for
every proper compact subgroup H of Tp, σ is irreducible our choice of
{Vk} shows that σ(0) = 1 and that σ(n) = 0 for every n in the open
half-space determined by n b > 0.

This last property is a consequence of the relation

(4.3.6) S(μk) = S(μ) - nk

and the fact that S(μk) therefore has no point in the interior of the
sphere through 0 whose center is at ck — nk.

Let Aq be the subgroup of Λp which lies in the hyperplane n b = 0.
Then 0 < q < p. If q = 0, the theorem of Helson and Lowdenslager
gives an immediate contradiction: take for Q the set of all n such that
n b > 0; then σ(n) — 0 in Q, σ is singular, but σ(0) = 1.

If 0 < q < p, then Tp is a direct sum Tq + Tp'\ where Λq is the
dual group of Tq and the annihilator of Tp~q. Let h be the natural
homomorphism of Tp onto Tq, and define a measure λ e ^£{Tq) by

(4.3.7) λ(E) = σίA

for all Borel sets E a Tq. Any x e Tp has a unique representation
α = xλ + x>z with a?! e Tq, x2 e Tp~q. If n e Aq, then ein'x* = 1, so that

(4.3.8) λ{n) = ( β - ^ ' M ^ ) = ( 0-in'xdσ(^) = σ(w) = 0 or 1 .

Thus ^ e ^ ( ϊ 7 3 ) and the irreducibility of σ shows that λ vanishes on
every proper compact subgroup of Tq. Our induction hypothesis now
implies that S(λ) is a finite subset of Aq.

Since S(λ) = S(σ) Π Aq, we see that S(σ) has only a finite number
of points in the hyperplane n b = 0, and a suitable translation of S(σ )
by a vector in this hyperplane results in a singular measure σΎ e ^ ( T * )
which has σ^n) — 0 in a set Q which satisfies the hypotheses of the
Helson-Lowdenslager theorem, but which has <χi(0) = 1.

This contradiction shows that S(μ) is finite, and the proof is complete.
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5. Remarks.

5.1 In the preceding section we have determined all idempotent
measures on Tr, and incidentally also on all groups of the form Tr + F9

where F is any finite abelian group. We note that these groups are the
only compact abelian groups which have no infinite totally disconnected
subgroups.

Indeed, if G is not Tr + F, then its dual group Γ is not finitely
generated (since every finitely generated abelian group is a direct sum
of cyclic groups), and the well-known fact that a compact group is totally
disconnected if and only if its dual group is a torsion group shows that
the above-mentioned proposition is equivalent to the following purely
algebraic theorem (compare 1.4 (a)).

5.2 THEOREM. If G is an abelian group which is not finitely generat-
ed, then G can be mapped homomorphically onto an infinite torsion group.

Proof. If G has finite rank p, let {xl9 , xp} be an independent
set in G. Factoring out the group generated by xl9 9xp gives a torsion
quotient group, and the latter is infinite, since G would otherwise be
finitely generated.

If G has infinite rank, let {xlfx2fxdf •••} be an independent set in
G, and let H be the group generated by {xn}. Every x e H has a unique
representation

(5.2.1) x = Σ an(x)xn ,
1

where the coefficients an(x) are integers for each x9 only finitely many
an(x) are different from 0.

Let {tn} be a sequence of distinct rational numbers, 0 < tn < 1, and
define

(5.2.2) h{x) = Σ aΛ(x)tn (mod 1) .
1

It is clear that h is a homomorphism of H into the group Y of the
rationale modulo the integers, and since h{xn) = tn, h(H) is infinite. Since
Y is divisible, h can be extended to a homomorphism of G into Y
[5; p. 11]. Since Y is a torsion group, the homomorphism h has the
desired properties.

We conclude with a result which gives further support to the con-
jecture stated in 1.5.

5.3 THEOREM. Suppose G is compact and connected, and G is as-
sociated with an irreducible μ e ^(G). Then S(μ) is a finite set.
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We shall omit the details of the proof, and merely give an outline:
If S(μ) is infinite, then S(μ) Π Γo is infinite, for some countable subgroup
Γo of Γ. Since G is connected, Γ has no element of finite order, and
Γo is isomorphic to a subgroup of the real line. If A is any finitely
generated subgroup of Γo, then S(μ) (Ί A is finite, by the results of Sec-
tion IV, and 1\ is the union of a countable increasing sequence of such
J's. A translation argument, combined with a generalized version of
the Helson-Lowdeixslager Theorem (Section 6 of [3]) now leads to a con-
tradiction, as in Section IV.

POSTSCRIPT (added in proof). About six months after the completion
of this paper, P. J. Cohen has succeeded in proving the conjecture
made in paragraph 1.5 in its full generality.
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