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1. Introduction. In studying the formal structure of sentences
whose validity is preserved under passage from an algebraic system to
a homomorphic image of the system, we have had occasion to use a
lemma from formal logic. A proof of this lemma, our Interpolation Theo-
rem, can be given within the theory of deductive inference, as formalized
by Gentzen. Gentzen's theory is rather complicated and perhaps not
generally well known. Moreover, the use of any formalized system of
deductive logic seems to an extent alien to the primarily algebraic nature
of our intended application. Therefore we give here a proof of the Inter-
polation Theorem that lies entirely within the theory of models : our
arguments are as far as possible in the spirit of abstract algebra, and,
in particular, borrow nothing from formal logic beyond an understanding
of the intended meaning, herein precisely defined, of the conventional
symbolism.

The Interpolation Theorem deals with sentences of the Predicate
Calculus. Roughly, these are sentences that can be build up using the
usual logical connectives, symbols denoting operations (or functions),
symbols denoting relations (or predicates), and variables whose range is
individual elements of the systems under consideration, but no variables
ranging over operations, relations, or sets. The theorem takes the same
form whether or not we admit a predicate denoting identity, with suita-
ble axioms, to the predicate calculus. For technical reasons we admit
as sentential connectives only the signs for negation, conjunction and
disjunction (regarding " if then " asa defined concept), together with
signs 0 and 1 for truth and falsehood. For each occurrence of a relation
symbol in a sentence S, there is a unique maximal chain of well formed
formulas, all containing the given occurrence and each occurring as a
proper part of the next. The given occurrence of the relation symbol
will be called positive if the number of formulas in this chain that begin
with the negation sign is even, and negative if this number is odd. If
S is in prenex disjunctive form, this criterion takes the simpler form
that an occurrence is negative if and only if it is preceded by the nega-
tion sign.

INTERPOLATION THEOREM, Let S and T be sentences such that S im-
plies T. Then there exists a sentence M such that S implies M and M
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implies T, and that a relation symbol has positive occurrences in M only if
it has positive occurrences in both S and T, and has negative occurrences
in M only if it has negative occurrences in both S and T.

This theorem is a generalization of a result of W. Craig [3, 4]
Craig's lemma is obtained from it by suppressing the distinction between
positive and negative sentences. As indicated, our first proof of the
Interpolation Theorem used the Gentzen calculus it did not differ es-
sentially from Craig's proof, at that time unpublished, of his lemma.

The leading idea of the present proof is to interpret £ implies T to
mean that T holds in every model for which S holds we express this
relation by writing S=$T. By Godel's Completeness Theorem [6], this
semantic interpretation is equivalent to the interpretation S \-T, that T
is a formal consequence of S in a deductive axiomatization of the pre-
dicate calculus. The crucial point in our argument is the Main Theorem,
which serves as a substitute, under this interpretation, for results in
the theory of proof due to Her brand [8] and to Gentzen [5].

A theorem of the theory of proof may be taken, in general, as
saying that if there exists any derivation of one set Δ of formulas from
a set Γ, then there exists a derivation with certain special-properties.
A semantic counterpart of such a theorem will take the form of an
'interpolation theorem': if Γ' =>Δ, then there exists a chain Γ = Γ\
Γ2, , Γn = Δ of sets of formulas, with certain special properties, such
that Γ1 =Φ Γ2, , Γ91'1 =φ Γ\ Theorems of this sort will ordinarily require
the occurrence in the Γk of additional symbols (for the ' Skolem func-
tions') that do not appear in Γ or Δ, although this is not true of the
Interpolation Theorem. Our arguments abjure any formal use of the
concept of deductive derivablilty, hence of the Completeness Theorem.
In various special cases, where Γ\-Δ would be immediate, that Γ^Δ
follows directly from our definitions. The more difficult half of the Com-
pleteness Theorem, that if Γ =φ Δ then Γ h- Δ, is implicit in the Main
Theorem, which guarantees the existence of a chain Γ = Γ1, , Γn — Δ
such that at each step the relation Γ% \- Γfc+1 is immediately evident.

I have profited much from discussions related to the present topic
with A. Tar ski and L. Henkin2 in particular, Tar ski has emphasized the
desirability of establishing the Interpolation Theorem by methods in-
dependent of the theory of proof. The idea of providing semantic proofs
of results from the theory of proof is not new : a proof by E. Beth [l,
2], in a quite different formalism, of Craig's Lemma would certainly
serve as well to prove the Interpolation Theorem and A. Robinson has
likewise provided semantic proofs of closely related results [10]. Un-
published results similar to those presented here have recently been

2 In particular, while the author was visiting at the University of California, Berkeley.
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obtained by A. Grzegorczyk, A. Mostowski and C. Ryll-Nardzewski, and
by R. Vaught.

2. Basic concepts.3 A language L is determined by an ordered
quadruple, V, W,R,p, where F, W, R are disjoint sets, V infinite, and
p is a function from W U R to the natural numbers. The elements of
V will be called variables, those of W operation symbols, and those of R
relation symbols for w in W, r in R, ρ(w) is the rank of w and p(r) the
rank of r. The logical symbols are 0,1, ~ , Λ V, V, 3. The expressions
of L will be made up of these symbols together with parentheses and
commas. A term is, recursively, any variable, and any expression
w(tι, * * , ̂ p(w)) where w is an operation symbol and tlf , tp (» are terms.
An atomic formula is any expression r(tlf • β,£P(r)) where r is a relation
symbol and tl9 , ίp(r) are terms. A formula is, recursively, any atomic
formula, and any expression 0, 1, **-> F, (F Λ G), (F V G), yxF, jxF where
F and G are formulas and x is a variable. Formally, we define L to
be the set of its symbols, terms and formulas.

We introduce the abbreviations F Z) G for ( ^ F v G ) , ΛΓ^ f° r

ί Ί Λ Λfn with the convention A ^ = 1, and V ΓΉ f or Fx V V Fn

with V K — 0, and write y# t xn for y/xx γa;w. A matrix is a for-
mula that does not contain y or 3. A normal matrix is a matrix of the
form Vΐ-i A *ΐ -̂ u where each FtJ is either Ao or ^Aijy for Aυ an
atomic formula. A prenex formula is one of the form QLxx QkxqM
where each Qt is y or 3, each xi is a variable, and ilί is a matrix the
formula is normal if the matrix M is normal. An occurrence of a varia-
ble x in a formula F is /rββ in the formula F if it is not part of a
subformula of the forms yfxG or ^xG. A sentence is a formula without
free occurrences of variables.

It is easily shown by induction that if G is any part of a formula
F, then there is a smallest part of F that is a formula and contains G.
It follows that there is a unique maximal chains of formulas Hu , Hn=F,
each a proper part of the next, and all containing G. The part G is
positive in JP if the number of Hi+1 — ~ Hi is even, and negative if it is
odd. In what follows, G will always be an occurrence of a relation
symbol in F.

An interpretation of a language L is determined by a set A and a

function μ, defined on V\J W[jR, such that μxe A for xe V, ^ e A i P ( w )

for w e W, and /*r 6 2 l P ( r ) for r e i2. We regard 2 as the two element
Boolean algebra with elements 0, 1 and operations ~ , Λ, V, s o that /^
is a function with values (μr) (al9 , αp(r)) equal to 0 or 1 but in practice
we indulge in the harmless ambiguity of treating μw as a subset of AKw)+1
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and μr of Ap(?0, and accordingly using such notation as μw g μw', μrξΞkμr'.
Putting aside the trivial case that L contains no relation symbols of
positive rank, μ unambiguously determines its domain A.

The function μ determines a unique extension mapping all terms of
L into A, by the recursive definition

μ[w(t, , ίp(u0)] = (μw) (μt, , μtpM) .

A further extension mapping all formulas of L into 2 is determined by
the conditions.

( I ) Λθ = 0, μl == 1, /i(~F) - - μF, μ(F A G) = μFΛμG,

μ(F V G) = μFV μG ,

and

( 2 ) /<V^) = 1 if and only if JF = 1 for a l i i ) s u c h t h a t

() if d l if F 1 fμ(3xF) = 1 if and only if AF = 1 for some
λz — μz for all « in V U W U R — {x}. Formally, we define an inter-
pretation to be a function μ thus extended in practice we shall say that

μ and λ agree except on x when we mean that μ and λ agree for all
z in V U TF U i? - {a?}.

A model of L is the restriction 21 of an interpretation μ to the
operation and relation symbols of L. The model 21 may be regarded as
a 'relational system Ji consisting of a set A, its domain, together with
a set of operations %w indexed by the operation symbols w of L, and a
set of relations 2ίr indexed by the relation symbols r of L. If 21 is the
restriction of μ, we call μ an interpretation in the model 21. If μF=lf

we say that F holds for the interpretation μ. Evidently μF depends only
on the domain A of μ, the values of μ on the operation and relation
symbols that occur in F, and the values of μ on the variables that occur
free in F. In particular, if S is a sentence, μS depends only on the
model 21 to which μ belongs, and if μS = 1 we say that S holds in the
model 21.

If Γ and Δ are sets of formulas of L, we say that Γ implies Δ in
L if μΔ = {1} for all interpretations of L such that μΓ = {1}. This
interpretation is evidently independent of L, provided only that Γ and
Δ belong to L we say simply that Γ implies Δ, and write Γ =φ J. We
write μΓ = 1 for μΓ = {1}, and employ such notation as Γ1? Γ2=^F
with the obvious meaning. If Γ =^ Δ and J = ) Γ , then Γ and J are βgwi-
valent and we write Γ^^Δ. That l ^ F expresses that JP is a theo-
rem. A set Γ is called consistent if there exists an interpretation μ such
that μΓ = 1 thus Γ=φO expresses that the set Γ is inconsistent.

See [11], [12].
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3* Preliminary propositions. The set Φ = Φ(L) of all formulas of
L constitutes, in an obvious sense, an algebraic system with operations
0, 1, ^ , Λ, V in fact it is a ' word algebra ', a free algebra without
axioms. The relation F<^G is a congruence on Φ, and the quotient
system Φ is a Boolean algebra, the Lindenbaum algebra of L. If K is
the canonical map of Φ onto Φ, then every interpretation μ of L, when
restricted to Φ, can be factored uniquely in the form μ — fttz where ft is
a homomorphism of Φ onto 2.

The set Φo of all matrices of L constitutes a subalgebra of Φ, and
its image Φo = /c<P0 is a subalgebra of Φ. Every homomorphism θ of Φo

onto 2 can be extended to a homomorphism 0' of Φ onto 2 such that θ'κ
is an interpretation. To prove this we construct the special interpreta-
tion μ induced by θ. For the domain A of μ we take the set of all
terms of L. For a variable x, define μ# — x. For an operation symbol
w and terms ίj, , ίp(w), we define /w by assigning to (μw)(tu , ίP(W))
as value the term w(tu •• ,ίP<»). For a relation symbol r and terms
ίi> ">ίpθ) w e define μr by assigning to (μr)(tly , £p<») the value
#/c[r(£i, , ίpCr))] in 2. By virtue of the last definition, μF = 0/c.F for all
atomic formulas F. Since the images ΛJP of the atomic formulas F
generate Φo, and fticF = 0/c.F for atomic F, it follows that ft = θ on ΦQ

and μ is an extension of θ.

PROPOSITION 1. If Γ is a set of matrices, and J the dual ideal in the

Boolean algebra ΦQ generated by tcΓ, then Γ ^ 0 if and only ifOeJ.

Proof. Assume 0 6 J . Then 0 = ιcF1Λ ΛtcFn for some Fl9

 m ,Fn

in Γ. If μ is an interpretation such that μΓ = l, then each ~μκFι =μFi = l,
whence 1 = ~ftκ j \ Ft = ft A &Ft — P® — 0> a contradiction. Assume 0 ψ J.
Then J Φ ΦQ and J g K for some maximal dual ideal K in 0O If θ is
the canonical map of ΦQ onto 2 with kernel the maximal ideal ΦQ — K
complementary to the dual ideal K, then ΘKΓ g W g fe = 1. If // is
the special interpretation of L induced by the homomorphism θ, then
μΓ — ftkΓ = ΘKΓ = 1, whence Γ is consistent.

COROLLARY 1.1. If Γ is a set of matrices, then Γ =φ 0 if and only if
Γ0=^0 for some finite subset ΓQ of Γ.

Every map σ of the atomic formulas of L, as free generators of Φo,
into Φo, extends to an endomorphism of Φo, which in turn induces an
endomorphism ψ of ΦQ. It follows that if Γ =$> 0 then σΓ ^ 0. Every
map σ of the variables of L into terms of L extends in an obvious way
to a map of the terms of L into terms of L, hence of formulas of L
into formulas of L a transformation induced in this fashion will be
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called a substitution.

PROPOSITION 2. Let Γ be set of sentences S of the form yxL xnM

where the M are matrices, and Γf the set of all formulas σ M where σ is a
substitution and M is the matrix of some sentence S in Γ. Then Γ ==> 0 if
and only if Γr =>0.

Proof. Suppose that Γ' is consistent. Then λΓf — λtzΓ' = 1 for some
interpretation λ. Let μ be the special interpretation induced by the
homomorphism λ of ΦQ onto 2. Let F = yxL xnM be in Γ, and v be
an interpretation that agrees with μ except on x[y •••,#„. Since the
values vx for variables x are terms, we may define a substitution by
setting σx = ιx. Since μx = x for all variables x, vM — μσM— IσM= 1.
This establishes that μF — 1. Suppose Γ1 is inconsistent. Then for all
interpretations μ there is some F = yxL xnM in Γ and some substitu-
tion σ such that μσM = 0. Then setting ^ = μσxl9 i = 1, •••, n defines
an interpretation λ that agrees with μ except on xlf , xn, and such that
λM=0. It follows that μF = 0.

COROLLARY 2.1. //" /̂  is α ŝ ί o/ universal sentences, of the form
F — \fxi xnM, where M is a matrix, then Γ => 0 if and only if Γ0^Q
for some finite subset I\ of Γ.

A prenex sentence S of the language L may be written in the form

S = γα? n X,mi 32/x V#nl ..-XnmβVnM

where w, m1? ---,mn are natural numbers, the xpq and 2/r are variables,
and M is a matrix. The Skolem matrix of £ is the result σM of sub-
stituting σyr = sr(xll9 , a?rmr) and σz = z for all other variables z here
the slf , sn are new and distinct operation symbols which we may sup-
pose uniquely associated with the pair consisting of S and L. The Skolem
form of £ is the sentence γxn xnm σM. The Skolem form belongs to
the language L' obtained by adjoining the symbols slt * ,s n to L.

LEMMA 3. Let S be a sentence of the form

S = \fxu α?Imi32/χ xnl v xnmn3vF ,

where the xpq and yr are distinct variables and F is a formula in which
all occurrences of these variables are free. Let Ff result from F by sub-
stituting for each yr a term σyr that contains no variables other than
#π> * "> χrm. Let S' be the sentence

O = ^fXii ' * * Xim.X-zi ' * ' %nm -F
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Then Sf =φ&

Proof'0. We proceed by induction. For n — 0 the assertion is trivial.
For n — 1 it suffices to observe that if μ is an interpretation such that
μFf = 1, then defining an interpretation λ to agree with μ except on yl9

and setting λy1 — μσyiy gives λF — μF}', hence λF = 1. For n > 1, form
JF"' from F by substituting σ?/r for yr, all ?/r except yn, and let $" =
\fxn ••• α?nm jyF". Then the case % = 1 applies to give Sf =^S", and
the case % — 1 to give S" => S.

PROPOSITION 4. Lei Γ 6β a set of prenex sentences of a language L,
and Γ1', i% cm extended language L', ^ β sβί 0/ αM Skolem forms of the
sentences in Γ. Then Γ holds in a model 21 of L if and only if Γ' holds
in some extension 2t' of % to a model of L\

Proof. By an induction it evidently suffices to establish the con-
clusion under the assumption that Γ1 results from Γ by replacing a
single sentence £ by its Skolem form S'. If Γ* holds in an extension
3ί' of Sϊ to L', it follows by Lemma 3 that Γ holds in 21', and, since Γ
belongs to L, that Γ holds in 91. For the rest, by a second induction it
suffices to establish the conclusion for S=yx19 , xm3yF, Sf=\fx± -xmσF,
F a formula, σxt — xi9 i = 1, , m, and σy — s(x19 , %m), where s does
not belong to L and U is obtained by adjoining s to L.

Assume now that Γ holds in 21. For any al9 « , α m in the domain
A of 21, there exists an interpretation μ in 2Ϊ such that μx, = aiy i — 1, , m.
Since μS = 19 it follows that μ(3yF) = 1, and there exists an interpre-
tation Λ that agrees with /̂  except on y such that λF — 1. By the axiom
of choice we may define a function / from Am into A by choosing for
all a , , am interpretations μ and λ as above and setting f(al9 , αw) =^2/.
Extend 2ί to 2ί; by defining 2I's = / . If μf is an interpretation in 2ί',
then μf agrees with some μ9 λ as above on the variables xl9 •• ,a?m.
Moreover, μ'σy = /(^'a?j, , ̂ 'a?OT) = /(α^ , am) = 2̂/, whence ^ V F =
ΛF= 1. It follows that /^'S' 1 for all interpretations μr in 2Γ, whence
Γ holds in 2ΐ\

COROLLARY 4.1. // Γ is any set of prenex sentences, then Γ =φθ if
and only if ΓΌ φ 0 for some finite subset ΓQ of Γ.

Every sentence is equivalent to a prenex sentence, and, indeed, a
normal sentence. This follows by induction from various immediate con-
sequences of the definitions, of which ^(F A G) <==Φ {~F V ~G) and
yx(F A G)^>(yxFA yxG) are typical. In fact, it is easily seen that

5 C. C. Chang pointed out to me a gap in an earlier version of this proof.
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every sentence S is equivalent to a normal sentence Sf such that a re-
lation symbol occurs positively (negatively) in S' only if it occurs posi-
tively (negatively) in S.

In view of this, Corollary 4.1 yields the Compactness Theorem.

PROPOSITION 5. If Γ is any set of sentences, then Γ = ) 0 if and only
if Γn^Ofor some finite subset ΓQ of Γ.

4. The main theorem* Let S be a prenex sentence, of the form

A second sentence So will be said to arise from S by duplication if
( i ) πu , π are substitutions such that all πtxpq = xι

m, ntyr = y\,
where the xι

m and y\ are distinct variables and
(ii) SQ results from πτM Λ Λ πaM by prefixing quantifiers γα?Jg

and ^yl

r in some order such that, for p <̂  r, γa£β precedes 32/*.

PROPOSITION 6. If SQ arises from S by duplication, then S=^> So.

Proof. Let £ have Skolem matrix σM, in the language U, where
σxm = xpq and σyr — sr(xn, xrm). By Proposition 4, if & holds in any
model 31, then its Skolem form Sr holds in some extension SI' of 3ί to
U. If μ is an interpretation of Lr in SI', then every substitution in-
stance of σM holds in μ in particular, all π^M hold in μ, whence
A πtσM holds in μ. But A πi<Wkf results from A πM by substituting
sr(xu, •• ,4m ) for each y\, whence, by Lemma 3, So holds in 31', and
therefore in SI.

For S as before, a second sentence So will be said to arise from S
by specialization if

(iii) θ is a substitution such that θyr = yr, while each θxpq is a term
in certain new variables ux ,ua together with the yr for r < p and

(iv) So results from ΘM by prefixing quantifiers yuh and 3 ^ in
some order such that γu7 i precedes 3 ^ if uΛ occurs in any θxpq for
p ^ r, and 3?/s precedes 3 ^ if ?/s occurs in any θxpq for p rg r.

PROPOSITION 7. IΓS 0 arises from Sby specialization, thenS^>SQ.

Proof. Let S have Skolem matrix σM in U as before. Define a
substitution ^ by setting pz = 2; for all variables 2 other than the 2/r> and,
by recursion on the order of quantification of the yr in So, defining
pyr — pθo yr = sr(pθxn, , pθxrπlr). Since all 2/β that occur in ^σ?/r occur
in some &£p(i for p ^ r, all such ys precede 2/r i

n So, and the recursion
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if legitimate. Since θyr — yr, pθyr ~ pyr = pθσyr by the above definition,
while for all other variables z, σz ~ z and again pθz — pθσz. Suppose
now that S holds in a model 21 of L, and hence, by Proposition 4, that
the Skolem form Sf of S holds in an extension 2Γ of 2ί to U. Then, for
every interpretation μ in 2Γ, all instances of σM hold, and, in particular,
pOσM holds. Since pθσ = pθ, pOσM = pθM. Now / tfΛf results from ΘM
by the substitution /?, and puh — uh, while ρyr contains only those ulh

that occur in the pβxpq for p <. r by induction, using (iii), these are
among the uh that occur in θxpq for p ^ r, and hence among the uh

that precede yr in So. Therefore Lemma 3 applies to establish that SQ

holds in 2X; and thus in 21.
Let Sι, S2 be prenex sentences of the form, for 5 = 1,2,

with Skolem matrices σMs in a language L', where σ^ g = x8

pq, σyl =
s? (ίcϊi, a#m.r). Then Sι and S 2 will be called propositionally inconsistent
if there exists a substitution ^ in U that is one-to-one on all atomic for-
mulas of each σM8 SUCh that ησM1,ησM*=$>0.

PROPOSITION 8. If S1, S* are propositionally inconsistent, then Sι S2==>0.

Proof. Suppose S\ S 2 were consistent, hence both held in some
model 2ΐ of L. Using Proposition 4, all instances of σM1 and σM2 would
hold for all interpretations in a certain extension 2ί' of 2ί to a model of
ZΛ Then ησMx and ^σ-Λί2 would hold for all such μ, and μθ = 1, a con-
tradiction.

In propositions 6, 7 and 8 we have attempted to isolate the chief
ideas that underly the Main theorem the proof of this theorem can
now be accomplished by easier and more natural stages, although at
the cost of a small amount of repetition.

MAIN THEOREM. Let S1 and S'2 be prenex sentences such that Sι, S2=>0.
Then there exist prenex sentences T\ T\ Uι and U2 such that (1) T1 arises
from Sι, and Tλ from S2, by duplication) (2) Uι arises from Tι, and U2

from T\ by specialization and (3) Uι and U2 are propositionally incon-
sistent.

Proof. Let S\ S\ M\ M\ σ and L, Ώ be as above. (There is clearly
no loss of generality in taking common values of n and the mr} and a
common substitution <r, for Sι and S\) By Proposition 4, S\ S2 =^> 0 im-
plies that their Skolem forms are inconsistent. By Proposition 2, the
set of all instances of σM1 and σM2 is consistent. By Corollary 1.1
some finite set of these instances is inconsistent. Therefore there exist
substitutions ηl9 ---,ηa in the language U such that
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ηλσM\ , rjaσM\ ηλσM\ , ηaσM% =φ 0 .

Define substitutions πl9 •••, πa such t h a t all πtaή,q — afy and πty*=$t,

% and yf are new and distinct variables. Define σr such t h a t

σfx\\ = x% and σ'̂ /ί* = s*(x\l, , .τδ4r) thus σ'πtM* = τr,σilίδ for all π*.
Define 7; such that r ^ = ^ q then ησ'πjή8 = ηπ%σMι = η^μM1. Define
Mδ = A π*Λf then ?σ-'Mδ = A πtσM\ and yσ'ΛfJ, 7σ'Af|S=φO.

Let Sa be the sentence obtained from Mo by prefixing quantifiers
yaffq and ^yf in an order such that, if z and z' are two of these varia-
bles and the term ησ'z is shorter than the term ησ'z', then the quanti-
fication of z precedes that of zf. If p <J r, the term ^σ-'ar̂  = ηx% is a
proper part of the term τtσ

fφ = s*(^{, , ^<L r), whence y a ^ precedes
32/?* in S«. Thus Sυ arises from Sδ by duplication.

Let S\ have Skolem matrix σQMQ where σQx% = ^ and σo2/r =
s^i , x%, •••)> the arguments ranging, in order of occurrence in So,
over all a^ that precede yr in Sδ. One has ησ'x8jq = ^ σ 0 ^ , but
5?σ'ί/r = s δ ( ^ j , . , ^ f m?.) while the term ησύyf = s«*(..., 3 ^ , •) begins
with a different operation symbol and contains additional arguments.
To bring these into agreement, define a transformation χ on terms as
follows :

( 1 ) χz — z for a variable z
( 2 ) ^σ- '^ = χησ.yf

( 3 ) for any term t = ^(ί ! , , ίP(W)) not of the form rjσ'yf ,

χt = ^(χίi, •• ,χ£p(wo)

The clause (2) if legitimate, by an induction on length of ησ'yr. For
χησQyf — sf( , χη%%, •••) contains χησfylk only for those xησ 'y^ that
occur in some # ^ g for p ^ r, and it follows by an induction that for
all of these s < p. Let Ld be the language obtained from L by adjoin-
ing the symbols sfΛ Although neither χ nor χη is in general a substi-
tution, when applied to terms of Lo, which do not contain symbols s8

r,
the clause (2) is never invoked consequently the restriction % of χη to
Lύ is a substitution.

Since ησ'M\, rfσ
fMl =Φ 0, and 7 induces a transformation on terms, it

follows that χησ'Ml, χησ'Ml =Φ 0. Now tησ'yf — χησQyf by definition,
while σ'x% — x% = σox^ implies that χ^σ'a^J = Z^σo^

δJ; it follows that
fS = γj]σQMl = ηQσ QMl, the last since σQMl belongs to Lu. Hence,

Dropping the subscripts on Sjj, we now have the situation at the
beginning of the proof, but with a = 1, that is with a single substitu-
tion η such that ^σilί1, ^ M 2 = ) 0 . Prom the set of all terms that occur
in 7jσMB obtain a set J3δ by deleting successively any term that is ex-
pressible, by means of the operation symbols of L, in terms of the rest.
Since each ησy\ = s\(y}x\λ, •• , ^ L . ) where s\ does not belong to L, we
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can suppose that all the ησyl belong to B\ Let δj, •••,&£ be the re-
maining elements of Bδ. Then for each x\q (that occurs in M8) rμ^ is
expressible in terms of the ησyl and b\. More precisely, if u\y , u\ are
new and distinct variables, and r a substitution such that τyl = yσyl,
riι\ = δ*. then there exists in L a term θx\q in the variables y% and δi
such that τθx\q = ^ Q . We extend 0 to a substitution by setting θz = z
for all 2 other than the xι

pq, x2

m.
Let S8 be the sentence obtained from ΘM8 by prefixing the quanti-

fiers y/ul and 32/̂  in an order such that if z and zf are two of these
variables, and τz is shorter than τz\ then z precedes zr in S\. To verify
that So arises from Sδ by specialization, we observe that, for (iii), if yl
occurs in θxm then τyl — ησyl is a proper part of τθx\q = rtχ\q whence
r < v and, for (iv), if z is any y\ or u\ and 2; occurs in βx\q for p ^ r ,
then τz is a part of τjχ\q which is in turn a proper part of rtσy\ — τy\,
whence z precedes yl in SI.

Let So have Skolem matrix σQΘM8, where σ&m = z for all variables
z other than the yl and σoί/?

δ =sJr( , ^ L •••)> the arguments ranging
in order over all 24 that precede y\ in *S§. From ^σikί1, ησM1 =φ 0 it re-
mains to construct 0̂> one-to-one on the atomic formulas of σ^βM1, σ0ΘM'\
such that η0σoΘM1

yηQσoΘM'z=^O. For this define a transformation χ on
terms as follows :

( 1 ) χz — z for a variable z
( 2 ) χθτσyl = χτσoyl
( 3) for any term t = w(tu , ίpCw0 not of the form r#σ?/δ,

^ί = w(χtl9 ---,χtpW) .

As in an earlier situation, this definition is legitimate, and the restriction
ηQ of χτ to the language Ld obtained from L by adjoining the symbols
sir is a substitution. As before we conclude from yjσM\ ησM'1 => 0 that
%τθσM\ χτOσM* => 0,
Now

and

It follows that χτθσM8 = yQσQΘM\ whence

It remains to show that %σ-0 = χrσ-0 is one-to-one on the terms of
each #Mδ. We show first that r#σ is one-to-one on such terms. These
terms are terms in the variables u\ and yl, containing only the operation
symbols of L. Note that τθσui = τθu\ = τui = δj and r^σ j/J
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From the construction of B, it follows that, for two such terms t and
V', τθσt — τθσt' cannot hold for one of t, V a variable unless t = V. Sup-
pose now that t = w(tlf , tpM) and V = w'(^, , t'?W)). Comparing
the first symbols we conclude from τθσt = τθσV that w — w', and the
arguments agree :

r&r^ = τθσt[ i = l, , ρ(w) — p{wf) .

By induction on the length of the shorter of ί, £' we conclude that each
tι ~ t[, whence t — V.

Finally, χτσQyί = χτθσy* by definition, and χτσQu8 — χτui = γτθσu*.
Hence χτσ0 — χrθσ on terms of ΘM8. But χ is evidently one-to-one on
terms that do not contain the symbols s8

ύr. Hence, for terms t and V of
ΘM8, στσQt = tτσjt1 implies χτθσt = χτθσV', hence τθσt = τθσVy and, by the
property of τθσ established above, t — V. This completes the proof of
the Main Theorem.

5. The Interpolation theorem. Let S and T be sentences of a lan-
guage L such that S =$>T. Then there exists a sentence S° of the language
L such that S ==> S°, S° =Φ T, and that a relation symbol occurs 'positively
in S° only if it occurs positively in both S and T, and occurs negatively
in S° only if it occurs negatively in both S and Γ.

Proof. S is equivalent to a prenex sentence S1 such that a relation
symbol occurs positively (negatively) in S1 only if it occurs positively
(negatively) in S. And ~ T is equivalent to a prenex sentence S2 such
that a relation symbol occurs positively (negatively) in S'z only if it oc-
curs negatively (positively) in T. Since S1, S2 ==> 0, by the Main Theorem
there exist prenex sentencs U1 and U2 such that S1 =φ U1, S2 =φ U2, that
U1 contains the same kinds of occurrences of relation symbols as S1 and
U2 as S2, and that ησM1, ησM2=^0 where σM\ σM2 are the Skolem matri-
ces of Z71, U2, and η is a substitution that is one-to-one on the atomic
formulas of each of σM1, σM2. All this is not altered if we modify U1,
U2 by reducing Mι, M2 to normal form.

It will suffice to find S° such that Uι =φ> S°, and S°, U2 =φ 0, and a
relation symbol occurs positively (negatively) in S° only if it occurs posi-
tively (negatively) in Uι and negatively (positively) in U2. Write M8 =
V M\, each M\ = /\M\jy and each M\5 either A\} or ^Afj where A\3 is
an atomic formula. Define M° = y/M°t where MS = 0 if Λf J =Φ 0, and
otherwise Λf? results from M by deleting all M\3 such that ^ ^ I J j is not
equivalent to some τjσM\k. Let S° be the sentence obtained from U1 by
replacing its matrix M1 by the matrix M°. It is immediate that the oc-
curences of relation symbols in S° are related to those in U1 and U% in
the required manner. Moreover, since M1 =^> M° is immediate, it follows
easily that U1 =φ S°.
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It remains to show that S°, U2 => 0, and for this it will suffice to
to show that ψM\ ησM2 => 0. Since ησM1 A ?}(rM2=$0, then for all i, h,
ηvM\ Λ ησM\ =φ 0. We want to conclude that for all i, h, ^σMSΛ^
Since σ is clearly one-to-one on the terms of M1, so is ησ, and
implies ifcfl=φθ, whence by definition M\ = 0, hence σ̂ ΛfS = 0 and the
conclusion follows. If 3?σj|ί2A ==> 0 the conclusion is immediate. In the re-
maining case there exist j and k such that <^7jσM\jζ^ ησM\lc. But then,
by definition, M\ still contains the conjunct M\3, and again
Since ησMl Λ ησ-Ml ^ 0 for all i, h, it follows that
completing the proof.

It was stated in the introduction that the Interpolation Theorem
remains true for the predicate calculus with identity. Precisely, we
restrict the definition of a language to apply only to those that contain
a fixed relation symbol e of rank two, and the definition of interpreta-
tion to admit only those μ for which μe is the identity relation on the
domain of μ. The relation S^T then acquires a stronger meaning.
Nonetheless, the Interpolation Theorem as stated remains true in this
new sense. (It may be well to note that e is included among the re-
lation symbols mentioned in the conclusion of the theorem.) In fact, all
statements in this paper remain true in the new sense, apart from two
modifications. First, Proposition 1 must be modified by enlarging J to
contain (the coset of) each formula e(t,t),t a term, and to contain any
formula Ff obtainable from a formula F in J by replacing an occurrence
of a term ί by a new term V, provided that e(ί, V) is in J. Second, in
the proof of the Interpolation Theorem, the M\ as described above must
be similarly enlarged by adjoining to each the finite set of all M\5 of
the form A or ~A, A atomic, such that Ml^Mlj in the present sense.

The Interpolation Theorem can be refined in other ways. Condi-
tions can be imposed on the internal structure of the atomic formulas
r(ti> * * *>*W)) containing the relation symbol r. For example, define
an /-occurrence of r in S to be one in which each tif for i e /<= {1, p(r)}
is a variable universally quantified in S. Then it can be required that
r have Z-occurrences is S° only if it has /'-occurrences in $ and /"-oc-
currences in T, where J" c / c= /'. Alternatively, stronger conditions
can be imposed on the external context in which a relation symbol occurs.
For example, suppose all positive occurrences in £ of a relation symbol
r are in formulas A ' α A where A and A! are atomic formulas, and that
none of the relation symbols appearing in the parts A! of these formulas
have positive occurrences in S, except possibly in parts A then S° can
be required to contain no positive occurrences of r. Such refinements of
the Interpolation Theorem have proved useful in the study of homomor-
phisms and subdirect products of models, but because of their special
nature it does not seem worthwhile to give separately formal statements
and proofs of these results.
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