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1. Introduction. Innumerable schemes have been developed for
finding approximate numerical values for the zeros of a function f(z). It
is remarkable, considering the diversity of motivating ideas behind these
methods, that so many of them (including the classical Newton-Raphson
method) are essentially nothing more than combinations of Bernoulli's
method and, in effect, the origin shifting procedure of Horner. In turn
these combinations may be formulated in terms of the power series ex-
pansion of a fraction g(z)lf(z) = Σζ=ocnz

n. We present here several meth-
ods of utilizing the information implicit in the coefficients cn, obtaining
several new iterative schemes for approximating zeros and reformulating
some well known ones—frequently in such a way as to provide a simpler
method of computation.

We assume that for computational purposes, if g(z) — ̂ aQanz
n and

/(s) = Σ»-oMn> then the coefficients for g(z)/f(z) = Σ~=ΛZW may con-
veniently be obtained recursively by the standard equations

cobo = α 0

( 1 ) cQbλ + cj)o = aλ

cobn + <?!&„_! + + cnb0 = an

where for convenience, we make b0 = 1 so that each coefficient is given
as a product sum cn = an-1 — b1cn-1 — . . . — bnc0.

By the order of an iteration we mean the concept introduced by
Schroder [19]. If an iteration produces a sequence zn -> a, it is of order
iV if

\zn- a

c a constant.

2. Basic lemma* We base our results on a lemma which specifies
the contribution to the coefficients cn of those zeros closest to the origin.
Let f(z) and g(z) be analytic in \z\ < R and let f(z) have zeros ait i —
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1, , K, of order m4 > 0 and such that 0 < 1 a% \ — a < R, f(z) Φ 0 for
I z I < a. Let g(z) have zeros of order nt ^ 0 at a% with pt = m ^ > 0. If
/(#) vanishes elsewhere in 1 z \ < R, let ft, i = 1, , L be those zeros
of order M% > 0 for which α < | A | = b < jβ, /(s) = £ θ i n α < | s | < & and
for which g(z) has zeros of order Nι ^ 0 with ĝ  = Mt — Nt > 0. If no
such zeros exist in | z \ < i2 let b be any value for which a < 6 < R.
In either case let δ = α/6 < 1.

Under the conditions specified

( 2 )

In the event that no ft occurs, JB4J = 0 and <p(z) and ψ(z) are iden-
tical. φ(2) is analytic in | z \ ̂  b and ^(2) = ΣΓ=o4^w has radius of
convergence Rf > b. ψ(z) is analytic in | z \ < b and τ|τ(z) = Σn=oBnz

n has
radius of convergence R" ^b. Direct expansion of the right hand side
of (2) gives

The functions Pι{n) and Qι(n) are polynomials

+ l)1*1

0 y

Q i i n ) Ά βf(k - 1) !

with (w + I)'*' = (n + l)(w + 2) . (w + k) and (w + I)101 = 1.

LEMMA 1. Under the conditions specified above the coefficients An and
Bn of (3) satisfy
( 4 ) an+1 \An\< C8n+1

and
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( 5 ) an+1 \Bn\< DΔn+1 for δ < Δ < 1 ,

C and D being constants independent of n.

Proof. The proof is immediate by Cauchy's inequality and the re-
marks concerning the radii of convergence Rf and R". Since Rf > b,
\An\< C/bn+1 and an+1 \An\< C8n+1. For any 8<Δ<1, Δ = a\b\ a<V <b
and R" ^ b > br and as before Cauchy's inequality gives (5).

If each qi = 1, then Q^ri) is constant, and Bn satisfies an inequality
like (4). If f(z)jg(z) is a rational fraction with only simple poles, we
may in (5) take Δ — δ, and D as the number of poles in | z \ > α.

It is apparent in (3) that the use of cn to give information concerning
the at is dependent on the smallness of Bn which is governed by ine-
quality (5). Bn may be made smaller in a variety of ways. The most
obvious method is to increase n. Alternately we may attempt to decrease
Δ or D by means of a transformation or by alternation of g(z). We
consider these methods in turn.

3 Methods of Bernoulli and Whittaker, Of particular interest is
the case K — 1, at — α, pt = p.P^n) = P(n), for which

as n-> oo, by Lemma 1. Hence

-acn+1 P(n + 1)

which is Konig's theorem [12].
In the case of a polynomial, use of cnjcn+1 to approximate a is equi-

valent to Bernoulli's method (applied to f(l/z)) with a more or less
arbitrary choice of g(z). With g(z) — 1, cjcn+1 is the basis for Whittaker's
formula [20].

It is worth noting that the rate of convergence of the Bernoulli-
Whittaker method is slower if either p > 1 or some qt > 1, that is if a
or any of the zeros next closer to the origin yield other than a simple
pole. If p — qb = 1, the error is 0(δw+1) as n—>oo9 since P(n) and Qi(n)
are constant. On the other hand if p > 1 the error is O(ljn). Even
with p = 1 if any qi > 1, the presence of the polynomial Qi(n) in Bn

slows convergence, the error being 0(Δn+1), Δ > δ. For this reason, the
choice g(z) = ff{z) is best since it guarantees P(n) = Qί(w) = 1.

The possibility of using the cn to find all ai9 K > 1, and indeed to
find all zeros of f(z) in a region was suggested by Hadamard [4], and
such a generalization of the basic Bernoulli method has been given by
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Aitken [1, 2], Golomb [3], Henrici [6] and Rutishauser [18]. We concern
ourselves here with refinements applicable to finding a single zero of
smallest modulus or a conjugate complex pair.

4 Generalizations of Newton's method* Again let K— 1. Then
any transformation which will decrease δ and Δ in (4) and (5) without
radically increasing C or D will improve the accuracy of cnfcn+1 as an
approximation to a for given n. The most obvious transformation is a
shift of the origin to decrease a — \a\. This scheme was considered for
a simple zero by Housholder [10] and in the general case by Kulik [13].
We present here a theorem giving the order of convergence explicitly in
terms of the value of p.

THEOREM 1. Let f(z) and g(z) be analytic in some neighborhood of
z — a, a zero of order m>0 for f(z) and n^O for g(z) with p = m—n>0.
Let

(6) i^±£=±cn{z)v>*
f(W + Z)

be the Taylor expansion about a point z in the neighborhood of a, and for
fixed N, define the iteration

c^z"\ = Ψ(zn) .

Then there is always a p > 0 such that if \ z0 — a \ < p, zn -> a as
If p — 1 the order of the iteration is at least N + 2. If p > 1 the order
of the iteration is one.

Proof. For p = 1 we have as in (3),

ck(z) = + Bk(z) ,
w (a - zf+1 w

so that

= z + cΛz) - z
cN+1{z)

Q(z)

Obviously a = φ(a), since P(a) = 0, Q(a) Φ 0. We also have Pf(a) — A —
Q(a) Φ 0 and

pw (a) = 0 = kQv-v (α) , ifc = 2, , iSΓ + 1



SOME ITERATIVE METHODS FOR DETERMINING ZEROS 559

and by a theorem of Ludwig [16] there is a p > 0 such t h a t \z0 — a \ < p

implies convergence of {zn} to a and the order of the iteration is at least

N + 2. Since

p^^(a) = (N+2) BN{ά) , Q<*+1> (a) = 0 .

The order is exactly iV+ 2 unless BN(a) — 0.
For p > 1 we have

(a — z)k+2)

with

Hence

and

Pk(z) =

A;!

ψ ( z ) = ^ _

so that 0 < φ'{a) < 1 and convergence occurs in some neighborhood of a,
the order of the iteration being one.

Since the introduction of f'(z) into g(z) guarantees no multiple poles,
we have the following.

COROLLARY. If g(z) = h(z) f'(z), h{a) Φ 0, then p = 1 and the order
of the iteration is at least N + 2.

The iteration may be written explicitly in terms of f(z) and g(z) as

with

DN(z) -

J \ /
O 1

0 0

0

/ «

... o

... o

... o

;) ... f
iV!

2 !

Nl
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For g(z) = 1, N= 0 we have Newton's method. For N= 1, 2, 3, 4
we have iterations given by Hitchcock [7, 8, 9], Kiss [11] and Richmond
[17]. For the general case of g(z) — 1 the iterations given by Hamilton
[5] and Zajta [21] are equivalent to these but give computation only in
terms of the evaluation of the determinants (7). From this point of view
the higher order iterations are of more theoretical than practical value.
In the form (6), however, it is apparent that all that is required for one
cycle is a shift of the origin (perhaps by Horner's method) and compu-
tation of the necessary ck(z) recursively by (1), so that computation is
simple and easily coded for high speed machines. In particular if g(z) = l
or g(z) = f'{z) (which is better, certainly, for multiple zeros) only one
origin shift need be made since the coefficients in the numerator are
automatically given.

An alternative transformation may be used to achieve the same order
of iteration with somewhat simpler computation.

THEOREM 2. Let f(z) and g(z) be analytic in some neighborhood of
z = a, a zero of order m>0 for f(z) and n^O for g(z) with p—m — n>0.
Let

1)]

be the Taylor expansion about w — 0 and for fixed N define the iteration

Zn+1 = Zn(l + -^L) - φ(Zn) .
V cN+1(zy

Then there is always a p > 0 such that if \ zQ — a | < p, zn-+a as n-+oo.
Ifp — 1 the order of the iteration is at least N + 2. If p = 1 the order
of the iteration is at least N + 2. If p > 1 the order of the iteration
is one.

The proof parallels exactly the proof for Theorem 1. The iterations
of Theorem 2 have some advantage in computation, since the coefficients
in g[z(w + 1)] and f[z(w + 1)] can be generated by successive transfor-
mations, forming g(zu) and f(zu) and shifting the origin by u = w + 1.
This has the advantage that no multiplications are involved in an origin
shift to the point 1 by Horner's method. For a second order iteration
(as Newton's method for example) the number of multiplications for the
two methods is essentially the same. For higher order iterations, how-
ever, no additional multiplications are required in the method of Theorem
2 to generate all the necessary coefficients of g[z(w + 1)] and f[z(w +1)].
Again if g(z) — h(z)f'(z), h(a) Φ 0, no multiple pole occurs and the order
of the iteration is at least N + 2.
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5 Variation of the numerator* In the preceding section, use was
made of transformations to improve the value of δ. An alternative
scheme is to decrease the contribution of Bn in (3) by variation of g{z).
Ideally, if f(z) = (s - ά)mQ(z), Q(a) Φ 0, a choice of g(z) = Q(z) would
make Bn — 0. Since Q(z) is not known we attempt to approximate it.
Several rather simple iterations result, which though theoretically applic-
able to any analytic function, are more practical in the case of poly-
nomials because of the simplicity of performing the required division.

LEMMA 2. Let f(z) be analytic in \ z \ < R and let a Φ 0 be a simple
zero of f(z) such that f(z) Φ 0 in \z\ ^ \a\ except at a itself. Let
Δ < 1 be defined as in Lemma 1. Let Qz(w) = (f(w) — f(z))l(w — z), and

be the Taylor expansion about W — 0. The functions

1
ψ(z) - -

Φ)

φN(z) = _ ^ M _ for fixed N^O
cN+1(z)

satisfy the conditions ψ(a) — α, φN(a) —a and \ φf

N{a) \ < PJN+2, P a con-
stant.

Proof. The condition ψ(a) = a is obvious since co(z) = f/(0) —f{z))j—zf(0),
so that cQ(a) = — I/a. More generally,

_ 1 j y f(z)Ί
w — z L f(w)jf(w) w — z L f(w).

and if

with

Sn(z) = Σ^oAfc '̂

then

oM = (f(z)Sn+1(z) -

Hence
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so that φN{cή — a. Moreover

φ'N(«) = l+f'(a)AN+1a
N+2

with

AN+1 = - [/ ' (α)α^ 2 ]- 1 + BN+1 ,

and φ'N(a) = f'(a)aN+2BN+1. By Lemma 1, however, | aN+2BN+1 \ < DΔN+\
and

I ψ'Aa) I < D \f'(a) I zT+2 = PΔN+2 .

The function ψ(z) defines an iteration zn+1 = ψ(zn) which is equi-
valent to one of Lin [14, 15]. The function φN(z) defines iterations zn+1—
ΨN^Π)' Convergence in the latter case can always be achieved in either
one of two ways. By Lemma 2, since Δ < 1, | <p'N(a) | < 1 if N is large
enough. Alternately an initial shift of the origin to a point close enough
to a provides a value of Δ sufficiently small to make | φ'N(a) | < 1 for
any choice of N. In any case the computation of a single cycle consists
of a single synthetic division by w — zn and computation of ck(zn) by (1).

For large N the computation may be greater than the rapidity of
convergence would warrant. An alternative and simpler iteration may
be obtained. The function φN{z) may be written as

1 - f(z)SN+1(z)

If now the denominator is taken as 1, there results

ΨAz) = Z + AN+1z
N+2f(z)

with the property that ψN(a) — a, \ ψN(a) | < PΔN+2, by the same argument
as before. For N large enough or Δ small enough 1 ψ'N(a) \ < 1 and there
is a neighborhood of a in which the iteration zn+1 = ψN(zn) converges to
a. Since ψN(z) is a polynomial this yields a particularly simple iteration
involving no division.

Although the functions ψ(z) and ψN(z) satisfy a = ψ(a) and a—ψN(a)
for a zero of order higher than one, the inclusion of the polynomial term
in AN+1 may prevent convergence.

For zeros occurring in conjugate complex pairs a similar iteration may
be used with synthetic division by a quadratic factor. If w2 + pnw + qn

is an approximate quadratic factor for the roots a ± ίβ we define Qn(w)
by

f(w) = (w2 + Vnw + qn)Qn(w) + Anw + Bn

The expansion
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Qnjw) _ f, / v »
— ^ — Γ 2-ι Lk,\Pni HnjW
f(w) κ=o

approximates that of [w2 + pw + g]"1 for the true quadratic factor. The
new values of pn+1 and qn+1 are obtainable by solving a pair of simul-
taneous linear equations, the simplest of which gives qn+1 — [cQ(pn, g j ]" 1

and pn+1 = - d(pn, <?w)[c0(pw, ^ ) ] " 2

6Φ Combined methods* The methods considered in the preceding
sections may be combined to give still higher order iterations with es-
sentially no increase in computation. In particular we may combine the
transformations of Theorems 1 and 2 with the quotient method of Lemma
2. This gives the following iterations.

THEOREM 3. Let f(z) and g(z) be analytic in some neighborhood of
z — a, a zero of order m > 0 for f(z) and n^O for g(z) with p=:m — i
Let

Qβ(w) = . / » - / ( * ) , Fz{w) = f(zw) , Rz{w) =

 FM ~ ^ ( 1 ) .
w — z w — 1

and let

and

be the appropriate Taylor expansions, and for fixed N define the itera-
tions

and

r
+— 7 Γ1

L

Then for each iteration there is a p > 0 such that if \z0 — a \ < pzn-*a
as n-> 00. If p — \ the order of the iteration is at least N + 3. //
p > 1 the order of the iteration is one.

Proof. We have in the first case
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QAW + Z) == l[λ _ f(z) Ί
,wL f(w + z) Jf(w + z) ,wL f(w + z)

where [/(w + z)]-1 = ΣΓ=o&w(^)^w. Hence

which by Theorem 1 establishes the result. A similar result holds for
ψ(z) with Theorem 2.

It is important to note here that all the coefficients of Qz(w + z) are
automatically generated in the transformation f(w + z), and hence there
is a gain of one in the order of the iteration by using already computed
values in the recursion relations (1). Similarly after the preliminary
transformation Fz{w) = f(zw) the coefficients for both Rz(w + 1) and
Fz(w + 1) are computed simultaneously with no additional multiplications
and there is again a gain of one in the order of the iteration.

7* Computational aspects. From the point of view of explicit for-
mulation in terms of f(z) and g(z) the higher order iterations given in
Theorems 1, 2 and 3 appear so hopelessly complicated as to be of no prac-
tical value. If it is remembered, however, that each of these iterations,
including the classical Newton one, consists in each cycle of a transfor-
mation and computation of product sums by (1), the apparent simplicity
of the lower order iterations is not so evident. In the end it is a matter
basically of applying the Bernoulli method (with appropriate initial con-
ditions), using a periodic transformation to speed convergence. From this
point of view the choice of a given iteration will depend on the relative
simplicity of the operations in (1) and in the transformation. For ma-
chines with a single command to form product sums of m pairs of num-
bers, there are advantages in using higher order iterations and cutting
down the number of transformations.

There are other reasons why the Newton iteration, in spite of its
apparent simplicity, may not be the best choice. It may well be that a
somewhat unrefined first approximation is not good enough for conver-
gence with a lower order iteration but is for a higher order one. This
is not surprising if we recall that the first step in an iteration of any
order is just the Bernoulli method carried that far, yielding, itself, a first
approximation—and in this case Newton's iteration may not be quite good
enough. A simple example is given by the function/(2) = 2z3—§z2 + llz — 3.
Since /(I) > 0, /(2) < 0, a reasonable guess might be z0 = 1 or z0 = 2 as
a starting value. Newton's method (corresponding to g(z) = 1) gives here
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the useless oscillating sequence 1,2,1,2, •••. On the other hand the
third order iteration with z0 = 1 (and little additional work) starts the
sequence 1, 1.25, 1.45, which is converging to the true root, 3/2.

It is interesting to note here that the second order iteration corre-
sponding to g(z) — f'{z) and z0 = 1 does converge, starting 1,1.14, •••.
The reason for this is apparent if one considers that in the early stages,
even for simple zeros, it is likely to be the coefficients of the form Aix

and Btl in (2) which dominate, rather than the value of δ, and g(z) —
f'{z) guarantees values of unity for these.

In the case of multiple zeros, the choice g(z) = /'(#) rather than
g'(z) = 1 is obviously best, even if one is using only the quadratically
convergent methods, since it is only the first choice which preserves the
quadratic convergence. Another situation which is similar to this is the
case of a cluster of zeros close together which will appear at relatively
low accuracy as a multiple zero. In such a case, while the quadratic
convergence of Newton's method is retained, convergence may be slower.
A simple example is given by f(z) — 1 — 1.99cc + .99$2, which has zeros
1 and 100/99 = 1.0101 ••• close together. Using z0 — 0 we have by
Newton's method (g(z) = 1), zλ = .502 to three places, while g(z) = f'(z)
gives zx = 1.005. Even with the much better zQ — .9, g(z) — 1 gives zx =
.952 while g(z) = f'{z) yields zλ = 1.006.
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