A BOUND FOR THE ORDERS OF THE COMPONENTS OF
A SYSTEM OF ALGEBRAIC DIFFERENCE EQUATIONS

BERNARD GREENSPAN

1. The object of this paper is to obtain a bound for the orders of
the components of a system of algebraic difference equations, each com-
ponent of which is of dimension zero. In the analytic case, this roughly
amounts to determining the maximum number of arbitrary functions of
period unity which each corresponding manifold can possess.

2. We deal with difference polynomials in # indeterminates ¥, < - -, ¥,
having coefficients in an inversive difference field, .4, of characteristic
zero. Transforms are denoted by means of a second subscript appended
to Latin letters having a single subscript. Thus, for example, A{) de-
notes the fourth transform of A{. The symbol & {y, ---,¥,] denotes
the ring of difference polynomials in the indeterminates v, +--, ¥,. The
perfect difference ideal generated by a system @ of difference polyno-
mials is designated {@}. Unless there is a possibility for confusion, the
term ‘‘ideal’’ is used for the longer ‘‘reflexive difference ideal’’. It is
well known that every perfect ideal is the intersection of a finite number
of prime ideals, none of which contain any other, [4]. As in ordinary
or in differential algebra, these prime ideals are termed components of
the decomposition of the perfect ideal.

If 4 is a prime ideal in .F {u,, ««-, Uy; Y, ++*, ¥,}, then the u,; are
said to constitute a parametric set of indeterminates, or briefly para-
meters, of A if

(1) A contains no nonzero difference polynomial in the u; alone;

(2) for each k, 1 <k =< p, there exists in 4 a nonzero difference
polynomial in ¥, and wu,, «--, u,.

It is shown in [1, p. 141] that all parametric sets of a given re-
flexive prime difference ideal A contain the same numker of parameters.
This number is known as the dimension of A, and is briefly denoted
dim 4. If the prime ideal has no parameters, we say its dimension is
Z€ero.

By the order of a prime ideal /1 in & {y,, -- -, ¥,}, we mean the alge-
braic dimension of ./, that is 8.7 (i, <<, Du; Ty ==y Yut; Dizs =+ Ynsj
ce0)|For 0°F <y, eee, Y, > [, where 7y, ---, 7, is a generic zero
of /.

A system of difference (differential) polynomials in & {y, +-+, ¥,}
is said to be of type (v, ---,r,) if #, .-+, 7, are the maximum orders
of the transforms (derivatives) of ¥, ---, ¥, respectively that appear in
the system.
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3. Ritt proved the following theorem in [2].

If @ is a system of mnonzero differential polynomials in 7 {y,
ce o, Yu} Of type (1ry, -+, 7,) and X is a component of {@} of dimension
zero, then the order of X does not exceed v, + -+« + 7,.

We shall prove the following analogous, but weaker theorem for a
system of difference polynomials.

THEOREM. Let & be an itnversive difference field of characteristic
zero. If @ is a system of monzero difference polynomials in F iy,
<o, Yot Of type (v, +--, 1) and every component of {@} is of dimension
zero, then the order of each component is at most r, + -+« + r,.

4. LEMMA. Let A, ---, A, be a chain in F [Uy, «++, Uy Y1, ***5 Unl,
A, being of class q + 1. Suppose Ay, ---, A,_, is a characteristic set of
a prime ideal. Then there exist nonzero polynomials G,. ---,G, with
the following properties

(i) For each 7, 1 <5< r, the set

Aly ety Ap-l; Gj

is a characteristic set of a prime ideal.

(i) There exists a polynomial G in u,, ---,u, and a product I of
powers of wnitials of A, -+-,A,., such that I(GA, —G,---G,) is a
linear combination of A,, ---, A,_..

(ili) The G, are of positive degree in y, and the sum of these de-
grees is the degree of A, in y,.

Proof. Let (v) = (Ty, *++, Ty} 1y ==+, 0p-1) be a generic zero of the
prime ideal. Let C,, ---,C, be the irreducible factors of A,(v;y,) in
7 (M[y,]. We note that when the coefficients of the C, are written in
the form ¢/, each +» may be chosen to be a polynomial in the 7; only,
and each ¢ may be chosen of degree in y, less than that of A, in y,,
(1<i<p-—1). Now there exist G,& F [u,, +++, Uy Y1, =**, Ynl, A=ST=7),
and Be F [uy, +++, Uy Yuy **+, Yp-1] With B(¥) #= 0, C;, = G,v; ¥,)/B(®),
degypGj = degprj. In particular, (iii) holds.

Let G=B". Then GA,— G,---G, vanishes when (u,, --, u;
Y, ++=, Yp-1) 18 replaced by (v). For some I as described in the lemma

I(GAp_Gl”'Gr)EC’ [Au”'yAp—l]y
where Ce F [uy, =, Uy Y1, ***, Ypl, degpr < degypAi, asisp-—1).

1 We are indebted to the referee for this proof, which is somewhat shorter than ours
which consisted of a modification of an old proof of J. F. Ritt’s.
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Since C(7;y,) =0, it follows that C = 0, so that (ii) holds.

Letting ¢, be a root of C;,, we see that 4,,--+,4,.,, G, form a
characteristic set of the prime ideal with generic zero (v;¢,). This
proves (i).

5.. We now prove the theorem. Let Y be a component of {@},
If we treat the transforms of v, ---, ¥, as indeterminates in the alge-
braic sense, then difference polynomials of Y can be thought of as ordi-
nary polynomials. Let DI denote the set of difference polynomials
of X considered as algebraic polynomials in the ring F [y, -+, Y
“** 3 Yn ***s Ynu,)- It is readily seen that ¥, ., is an algebraic ideal,
and as 3 is prime, it is a prime ideal.

Denote %, .., by Y. Then S 2@. Assume 7, =7, = +++ = 7.

Let r,— 7=k, ¢=1,---,n—1), and m; = ”2_1101 Consider the fol-
=i

lowing array.

Yo = s Yuwp s Yoty % Yimp * %y Yary
Yas 205 Yoy Yoy * % Yory
(1) Ys, ) y3m37 R yz;~3

For the purpose of constructing a characteristic set of X, let the indeter-
minates be ordered by reading the foregoing array columnwise. Thus,
we have the ordering

Yuis s Yueps Yoo * % Yriyriyy Youys Ysr 0 0
(2) y]mly yzmzv ySmOy ety Yny 0,

yl? ’ yZ'r.;) y37‘ y "%y ynr .
1
- 3 n

Let 9 denote the characteristic set of 3 which we are going to con-
struct with respect to the ordering (2). Denote the polynomial of A
which introduces y,; by AY. We shall show

(al) If wy;, 0 h <7, is introduced by a polynomial in %, then
Y; n+1 18 introduced by a polynomial in ;*

(@2) y, (t=1,---,m), is introduced by a polynomial of 2.

Let A; denote the jth polynomial of 2. Take A, as irreducible,
Assume h = r, and A = A,. In the construction of %, suppose all
letters of (2) up to but not including ¥, ,., have been considered. Thus, if

(3) Ay veey 4,

2 A® will denote the polynomial of 2 which introduces y;. The symbol “yw’" some-
times will be used to designate y;.
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is the beginning of the characteristic set of Y so far constructed, then
1 <a<b. Consider the difference polynomials of Y as ordinary alge-
braic polynomials and let Q,, ( =1, ---,b), denote the set of all poly-
nomials of X of class not more than the class of A, relative to the
ordering (2). 2, will then be a prime algebraic ideal having A, ---, A,
as its characteristic set.

Let R be the algebraic remainder of A, with respect to (3). Then
there is a relation

R = BA, + K1A1 e + KI)AI) ’

where B is a product of powers of the algebraic initials of A, ---, 4,,
and K, ---, K, are polynomials. Since A,e¥, A,e€; and as h < r,,
A,el. Therefore, ReY. Let v be the highest power of v, ,.. that
appears in A, and let R be the coefficient of 7,,, in R. Then

R:Bgal—l_ElAl_}— s +I_(DAI)7

where A, is the transform of the algebraic initial of A, and K,,---, K,
are the coefficients of %Y,., in K, ---, K, respectively. Now as B
¢ Y, we see that B, A,¢ 2. Thus, as each of 4, ---, 4, belongs to
Y, it follows that R¢ Y, whence a fortiori is not zero. Therefore, R
effectively involves ¥,,.,, and R is its algebraic initial.

Now

(4) Ay oo, Ag IR

may be a characteristic set of some prime algebraic ideal. If not, then
by the lemma of §4, there is a polynomial G such that

C(GR—-GI"'G,A)EO, IAU "'yAh] ’

where C is a product of nonnegative integral powers of the initials of
A, ---, A, and the G, are nonzero polynomials such that the sum of
the degrees in ¥,,,., is the degree of R in y,,.,. Moreover, for each j,
l=j=m

Aly ttey, Ah; Gj

is a characteristic set of a prime ideal. Since A4, ---, A,, R belong to
Y, while C does not, at least one of G,, ---,G, is in Y, say G,.

If (4) is a characteristic set of a prime algebraic ideal, designate
this ideal by 2,.,, and rename R, A4,.,. If not, let G, be A,,, and Q,.,
be the prime algebraic ideal of which A4,, ---, 4,, G, is the characteristic
set, Thus, a polynomial A,,, in 3 has been obtained such that

(5) An"';AznAoﬂ
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is a characteristic set of some prime algebraic ideal, 2,., in & [y,
co o, Yinei).® The initial, A4,.,, of A4,., is reduced with respect to A4,,---, 4,
and is lower than A,,, whence is not contained in Y. Let the set of
all polynomials (considered algebraically) of X of class not exceeding
that of A,., be designated X’. Then

(6) Qb+1g2’y

since the polynomials (5) are in Y’, while their initials are not.

In the characteristic set, (5), of 2,.,, let A4,, A,., respectively in-
troduce the cth and dth letters of the ordering (2). Now, as is well
known, the dimension of an ideal equals the number of indeterminates
diminished by the length of a characteristic set. Consequently,

(7) dim Q,,, =d — (b + 1) .

Since A,, ---, 4, are polynomials at the beginning of a characteristic set
of 3,
(8) dim3 =Z¢—b.

Combining (7), (6), and (8), we secure
d—b—1=dimQ,,, =dim>¥ =¢c—0b.

If d — ¢ =1, then dim©Q,,, = ¢ — b = dim 3’. Now suppose d — ¢ > 1.
No characteristic set of 3 contains a polynomial introducing the d—c¢—1
letters between the cth and dth letters of the ordering (2). Therefore,
it follows that the length of any characteristic set of 3’ cannot exceed
b+ 1. Consequently, it cannot be that dim Y =¢—b +7,(j =0,1, -,
d — ¢ — 2), for then every characteristic set of 3’ would have length
greater than b + 1. Hence,

dim ¥’ = dim 2,., .
This, together with (6) imply
(9) Qyey = 3.
Thus, (5) is the beginning of a characteristic set of Y. A,., ef-
fectively involves ¥,.,., since R does. Therefore, A,., introduces ¥, ,.,
and may be considered as A{"*"”. Consequently, our assertion (al) is

established.
We now turn to proving (a2). By way of contradiction, suppose

(10) Alr c ety Ae
is a characteristic set of ¥ and that Yi,, 18 introduced for f values of

3 The dots in ““F{y1, -+ -, ¥i,n+1]’’ represent the letters between w1 and ¥i,n+1 in the
ordering (2).
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1, where f < n. Let these values be designated ¢, ---, 0, and suppose
0, < 0, < +++ < 0;. Extend the rows of (1) to include all transforms of
Yi, *++, Yo. Then reading this columnwise, we get an infinite extension
of the ordering (2). For convenience we make the following definitions.
A polynomial in the ring & [y, ---, ¥;;], where the dots represent the
letters between y, and y;, in the extension of the ordering (2),* will be
said to be of type (¢,7); and if y,; effectively appears in the polynomial,
it will be said to be of effective type (¢,7). Let the set of all poly-
nomials (considered algebraically) of ¥ of class not exceeding that of A,
be denoted 3, (1 =1, ---,¢). We have previously obtained a prime al-
gebraic ideal 2, =2%,,(1=1,.--,¢) having A, ---, A, as its character-
istic set. However, although the method used for getting 2, cannot be
continued beyond 7 = ¢, the process will ke modified slightly so that an
infinite set of prime algebraic ideals ©2,,,, (7 =1,2,3,.-+) will be de-
termined.

Before proceeding, let us make a few observations. Let Af,rl"l) =A,.
Suppose g = 1. Now if U, e Q,, where j < g, A,and A, are respectively
of effective types (u,v) and (u,v + 1), then U, e Q,. This follows at
once since U, e Y,. On the other hand, if U, ¢ 2,, where j < g, and is
of class not exceeding A,, then U, ¢ £, since otherwise U, would be-
long to ¥, and U, would be in ¥, = 2,.

First we determine £,.,; the other ©2,., will be obtained inductively.
Let A, and A, respectively introduce ¥, ,-, and y,,,,. Inthe extension
of the ordering (2), let Yup, € the letter that immediately follows vy, ),
and y,,, the one that immediately precedes y,,. If R, is the algebraic
remainder of A, with respect to (10), then there is a relation

(11) IeAgl - Rg = O, [Aly tt Ac] s

where I, is a product of nonnegative integral powers of the initials of
A, +--, A,. Therefore,

LA, — R, =0, [A,, -+, Al,
where A, and R, denote the coefficients in A, and R, respectively of
the highest power of y,, in A,.

Let Q! be the prime ideal in & [y,, -+ +, ¥., ] generated by 2,. The
polynomials of Q) are those polynomials in Yugog ** s Yup, having coef-
ficients in Q,. It may, of course, happen that u, v, are respectively
equal to u, v, in which case “‘Y,,, =*+, Yup, 18 to be regarded as

simply ‘““y.,,’'. At any rate, we have

(12) LA, — R,e Q).

4 Here and elsewhere, where no confusion can result, the dots represent the letters of
the extension of the ordering (2) between the given letters.
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Now, as I, is free of y,,, ***, Yup, and ¢ 2, it follows that I, ¢ Q.
We claim that A, ¢ 2,. To prove this, we write A, as a polynomial
in the letters v,,,, **+, Yup,- Its coefficients are of type (u,, v,). Re-
garding ﬁg as a polynomial in Yugog-15 ** s Yuyw,-1, 1ts coeflicients are of
type (u,, v, —1) unless v, = 0. If v, = 0, then the coefficients are of type
(4, v;), where in the array (1), v,,, 1s the last letter which appears in
the column headed by ¥,,-,.. In any case, since these coefficients are
reduced with respect to 4,, ---, 4,_,, they do not belong to 2,.,. There-
fore, their transforms are not in 2,. (If g =1, we still see that the
transforms of the coefficients of A, are not in £,. For, if they were in
Q,, then they would belong to ¥, whence A, would belong to 3, a con-
tradiction.) Consequently, ffgl ¢ Q,, as was asserted. It now follows

from (12) that R, ¢ ©,. This means R, + 0, and so that R, effectively

involves ¥,,, that i8 ¥, ;¢ 1. Hence, Rg is the algebraic initial of R,.
From (11) we see R,e Y.
If

(13) Al, M) Ae; Rg

is a characteristic set of a prime algebraic ideal, we denote this ideal
by 2.., and R, by A,.,. If (13) is not a characteristic set of any prime
algebraic ideal, then by the lemma of §4, there is a polynomial H such
that

(14) J(HR, — H,--- H) =0, [Ay, -+, A,

where J, is a product of powers of the initials of A, ---, 4, and the
H, are polynomials of positive degree in v, , such that the sum of these
degrees is the degree of R, in y,,. Moreover, for each j, 1 <j <g,

Aly ""Ae;Hj

is a characteristic set of a prime ideal. From (14) it is seen that some
H,, say H,, belongs to Y. Let H, be A,.,, and 2,., be the prime al-
gebraic ideal of which A, ---, A,, H, is the characteristic set. Thus, a
polynomial A,., in ¥ has been obtained such that

(15) Al; tt Ae+1

is a characteristic set of some prime algebraic ideal 2,,, in [y,
) yulvl]'

Now let us assume as inductive hypotheses:

By If U,eQ,,h=9g—2+7, and A, and A, are respectively of
effective types (u, v) and (u,v + 1), then U,e 2,.

B2) ItU ¢ Q2,, h=9—2+ 73, U, is of type (u,v), A, and A, are
of effective type (u,v) and (u, v + 1), respectively, then U, ¢ 2,.
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(B3) 2.4y, +++, 2., have been constructed by a process similar to
the one described on the preceding pages. That is, if

(16) Au ct Ae+}—1
is a characteristic set of 2,,,_,, the characteristic set of 2,,, will be
Aly ety Ac+J—1y Ae+j ’

where A,., is either the algebraic remainder, R,.,.,, of A,,,.,, with
respect to (16) or else is one of the F; obtained from a factorization
equation of the type

(17) Je+j—-1(FRy+j—1 - Fl b R) = 0, [Alv ct Ac+j—1] y

where J,,,., is a product of nonnegative integral powers of the initials

of A, ---,A,.;,_, and the F, and F are polynomials having properties

analogous to those of the G, and G, respectively, of the lemma of §4.
Our hypotheses have been shown to hold when 7 =1 if g > 1; and,

in fact, it has been proven that (83) is true even if g=1. We now

verify (B1) and (52) for h =1, g = 1; that is, for j =2, ¢ = 1. Thus,

we must prove:

(1) If g =1 and U,e 2,, then U, e Q2,.,.

(p2) If g =1 and U, ¢ 2,, where U, is of type (g, 7,), then U, ¢ Q...
If U,e ,, then for a suitable power N,, of the initial A, of A4,, we

have

NU, =0, [A].
Consequently,
N, U, =0, [A.] .

If N,e@,.,, it would then follow that N, e 2, which is false. There-
fore, N, ¢ 2,.,. Now either A,,, equals the algebraic remainder, R,,
of A, with respect to (10), or else A,., is an H; resulting from a fac-
torization equation of the type (14). In either case, we see that R, e 2,,,,
whenee, from (11), A, € 2,,,. Thus, U, € 2,,, and (1) is proven.

On the other hand, if U, is of type (0, 7,) and ¢ 2,, then U, ¢ 2,
whence U,, ¢ Y. Therefore, U, ¢ 2,,, and (2) is proven.

We are now ready for our induction. We shall prove (71), (v2), (v3),
where these respectively are like (51), (82), (83) with j 4+ 1 replacing j,

Let U,e Q,., and A,., be of effective type (u,v). Since h=g—2-+7
and e=g — 1+ f, it follows that A + 1+ f=e + j. Therefore, by
hypothesis (83), 2,+.+; and A,.,., have been determined. Obviously,
Ayirsr is of effective type (u,v +1). Now for a suitable product of
powers, M,, of the initials of A, ---, A,.,, we have
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MU, =0, [A), «o+, Ayl «

Consequently,
(18) MllUll = Or [Am M) A/L"'l,l] .

By inductive hypothesis (81), Ay, -+, 41 € 24y CTQhi1sy. Let 2}, be
the prime algebraic ideal in .F [y,, «++, Yu.+,] generated by 2,.,. We
know that A, introduces some indeterminate, say the letter immediately
preceding ¥;; in the extension of the ordering (2). Also, we know that
A+, introduces y,,. We assert that M,, € 9,.,.,. To prove this, suppose
otherwise. Then M, has zero remainder with respect to A,, -+, Aysiss
and since M, is free of ¥,,+;, it has in fact zero remainder with re-
spect to A4,, -+, A,,;. Thus, M,,e 2,.;,. Hence, if we consider M, as
a polynomial in ¥z 5.1, *++, Yuosr, its coefficients belong to 2,,,. By the
induction hypothesis (82), therefore, the coefficients of M,, considered
as a polynomial in y;;, ---, ¥., are contained in Q2,cQ,.,. But then
M, e 9,.,, a contradiction. Hence, our assertion that M, & 2,..., is
proved.

If we show that A,.,,€ 2,+1+s, then by (18) we shall have U, € 2,...;,
and so (v1). Now A,.,., either equals the algebraic remainder, R,.,, of
A, .., with respect to A, ---, A,., or else is some polynomial F); result-
ing from a factorization equation of the type (17). That is, we have
either

(19) LisApos — Ay =0, [A,, -+, A/l
or taking A,,,., to be F),
(20) J/L+f(FRn+1 - A/L+1+f ° Fz M F&) = 0, [Au M) Ak,+f] ’

where [,., and J ,, are each products of powers of the initials of
A, -+, A, and F is a polynomial having properties analogous to G of
the lemma of §4.

If (19) is the case, it is immediate that A,.,,€ 2,+1+,- On the other
hand, if we have (20), then R, € 2,:,+;, in which case once again we
have A,..,€ 2,...,. The proof of (v1) is therefore complete.

We turn now to (v2). Let U, ¢ 2,.,, U, be of type (u,v), and
A,., be of effective type (u,v). Then A,,,., is of effective type (u, v+1).
Since every component of the ideal [U,, 2,.,] is of lower dimension than
dim 2,.,, a polynomial, V,, in the parameters of Q,,, can be found such
that

(21) Vl = W1U1 + X1 y
where X, e 2,., and W, is of type (u,v). From (21) we secure
Vn = W11U11 + Xu .
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Since we just proved (v1), we see that X, e Q,.,.,. If we prove that
Vi€ 240145, we would have W, U, ¢ Q,,,.,. Then U, ¢ 2,.,., and
(v2) would immediately follow.

By way of contradiction, suppose V€ 9,...,. Then V, has zero
remainder with respect to A, ---, 4,0, Let A4, ---,A,,f be those
A’s of the characteristic set, (10), of I which respectively introduce
the least transforms of y,, .-+, ¥,,. Suppose 4. = Af,”z‘i), (t=1,---,1).
Note that it is not necessarily the case that =, < m, < --- < x,. Let
Ay ==+, A, be @, -+, T, arranged in order of increasing magnitude. Then
N\, =1. Now the class of V,, in each of the letters y,,---, v, ; does
not exceed the class of 4., ---, A, ; in each of these letters respectively.
Thus, V., has zero remainder with respect to A4,, ---, AAJ,. Suppose no
transform of y,, (¢ = oy, *++, Pn-s), is introduced by any of the polyno-
mials of (10). Write V,, as a polynomial in the y,, following Yo, in
the extension of the ordering (2). These y,;, will all be transforms of
Yoy =+ s Yo, _» hence parameters of 02,.,.;. Therefore, the coefficients
will have zero remainder with respect to A4,, ---, A'\f’ and so belong to
Y. But the inverse transforms are of order less than t, in Yo,» (1 =
1, .-+, f). As Y contains no polynomials of this sort, a contradiction
has been obtained. Consequently, V,, € ©2,.,.,. This proves (v2).

To establish (v3), that is to construct 2,.;,;,, one need only to pro-
ceed in a manner analogous to the way in which ©,., was determined,
except for the specification “H, e Y’

Thus, we have demonstrated for all <:

(83) There exist prime algebraic ideals 2,, 2,, 2,, --- having the prop-
erties

(i) 92,CcQ,cQ,C -+

(ii) a characteristic set of 2, is A, ---, 4;;

(i) 2,=23,(G=1,---,¢);

(iv) if 2,.,.; is an idealin & [y,, -+, Yu), then 2, ..., is an ideal
in L(;}d[yn 0y Yu 'n+l]'

(81) If U,e 2, and A; and A, are respectively of effective types (u, v)
and (u,v + 1), then U, e 2,.

82y If U, ¢ Q,, U, is of type (u,v), 4, and A, are of effiective types
(uw,v) and (u, v + 1) respectively, then U, ¢ £2,.

Let © be the union of the 2, of (83). £ is obviously a prime al-
gebraic ideal, and indeed, as we shall see, a reflexive prime difference
ideal. If U,e 2, then there is some ¢ such that U, e 2,, whence by (51),
for a suitable k, U,e 2, Q. Conversely, now suppose U, e Q2. Then
there are positive integers k, 4, u, v such that A; and A, are of effec-
tive types (u,v) and (u, v + 1) respectively, and U, € Q,. Therefore, by
(82), U,e 2,cQ. This proves our assertion that 2 is reflexive.
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Since the indeterminates y,, «--, Yp,_, are the parameters of 0, it
follows that dim 2 =n — f. Now  is a divisor of a component of
{@}, say A, Therefore, dim 4 =dimQ =n — f+ 0. Hence we have a
contradiction of the hypothesis of the theorem that every component of
{@} is of dimension zero.

Our assertion, (a2), thus has been established.

Let

(22) Av * ‘7Az

be a characteristic set of 3. Before proceeding, several consequences
of (al) and (a2) should be noted.

(¢1). When we reach the point in the construction of (22) where
transforms of each of the letters ¥, ---, ¥, have been introduced, all
succeeding polynomials of (22) introduce ¥'s, ---, %,s in order, no further
transforms from then on being omitted.

(€2). Yiry ==+, Ynr, respectively are introduced by the last » poly-
nomials in (22).

(¢3). In forming (22), certain letters are not introduced by any
polynomial of (22). The indeterminates represented by these letters
constitute a parametric set of 3.

If we continue the construction which yielded (22), new polynomials,
AP 5 can be formed such that for any positive integer m

Alr cee, A“ A(1r1+1), cee, A,(,LTWH); cee ;Agrl-(-m)’ cen, Ag{'na-m)

is a characteristic set of the prime algebraic ideal 271 4m,. i +m CONSIStinG
of all polynomials of 3 of type (7,,r, + m) with respect to the extension
of the ordering (2). Let this ideal be denoted Y™, By (e2), (e3), (1),
it follows that the maximum number of parameters in Y™ for any
nonnegative integer m is », + --- + 7,. Consequently,

(23) dim Y™ <9+ ove 1,

We prove by way of contradiction that the order of Y is at most
r,+ ++- +7,. Suppose the order of Y is more than » 4+ -+ + 7,.
Then for all sufficiently large a,, ---,a,, the dimension of %, ., is
greater than », + .-+ + r,, since by definition the order of X is the al-

gebraic dimension of Y. However, this is a contradiction of (23). Hence,
the theorem.

6. The bound
(24) ’l"l+°"+7’n

5 We are extending the meaning of Ag”, which previously was defined as a polynomial
of 1, that is of (22).
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which was obtained in the previous section will be denoted .2 and
called the Ritt bound. Let

(25) Agsl)’ e, A(IlSn)

be those polynomials of the characteristic set, U, of Y which respec-
tively introduce the least transforms of %, ---,¥,. Then s, <7, (1 =
1,---,n). Then by (¢8) it is clear that the order of X will be given by

=8+ e 8,

In the case of differential equations, Jacobi investigated the problem
of determining the number of arbitrary constants in the solution of a
system of n equations in the variable x and n dependent variables
Yy, ++*, Y. If these equations are denoted

(26) B, =0, G=1,---,n),

and «,; stands for the greatest order of the derivatives of y, in B,
then Jacobi asserted, [5] that the number of arbitrary constants in the
solution of (26) is no greater than

(27) max (@, + +++ + Ay )

where j,, ---, 5, is a permutation of 1, ---,n. However, Jacobi’s work
was largely heuristic and lacked logical rigor.

Ritt in [2, p. 186] has shown that in the case of two algebraic dif-
ferential equations in two unknowns, Jacobi is essentially correct. That
is, Ritt proved:

If 3, of dimension zero, is a component of the system B,, B,, then
the order of ¥ is at most max (a, + oy, @, + ay).

We shall be interested, in the case of n difference equations in »
indeterminates, in obtaining an improvement on the Ritt Bound, and in
seeing how it compares with the Jacobi number, (27), where that num-
ber now applies to difference polynomials. The number, (27), will be
denoted 2.

7. Let F,, ---, F, be a system of n nonzero difference polynomials
of type (v, ---,r,) in the n indeterminates ¥,, ---, ¥,, where every com-
ponent of {F}, ---, F,} is of dimension zero. Suppose among the F7,
there is at least one, say F,, which does not effectively involve any Ys,
for j=1,.--,n. If F, is of effective type (0, ), then the character-
istic set of {F), ---, F,} certainly must contain a polynomial A of the
ring F [y, +-+, Yo,]. Suppose A is of effective type (g, 7). By (¢3) and
(al), we are sure, therefore, that y,,, -, ¥,, are not parameters of 3,
that is of X, .., . Since v < 7,, we have an improvement on the Ritt
bound; 7, in (24) is to be replaced by r. However, we have no simple
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way of determining ¢ and 7. But since r, — 7 =17r, — @ >0, if we re-
place 7, in (24) by ¢, we shall still have a bound which is an improve-
ment on < As 0 and @ are given, the new bound is easily found.
Should it happen that several of the F, are devoid of the Yory then
possibly (although not necessarily) we may get a further refinement.

If a transform® of y, appears in F), let «;; stand for the greatest
order of the transforms of y, in F},, (¢, =1,.--,n). For a fixed 1,
consider the set of numbers

(28) Te — Wy (k=1,:-+,m).

(If some a;, are undefined, then (28) will consist of fewer than n num-
bers). Let &, be the set of values of & among 1, ---, n which will yield
the minimum of the numbers (28). If b, denotes the greatest member
of &,, then it will follow that F; is of effective type (b;, «;,). Hence,
if we replace T, in (24) by Ay, the result will be an improvement on
# if F, does not effectively involve any Yir,-

Let w = max (ry, —ay), (¢=1,+-+,m), and o = .5 — w. Then
¢« = ., and we have the following

THEOREM. Let & be an inversive difference field of characteristic
zero. If F,, ---, F, 1s a system of m nmonzero difference polynomials in
T Y. o, Yn} Of type (ry, -+, r,) and every component of {F,, ---, F,}
18 of dimension zero, then the order of each component 1is at most < .

8. Although < is an improvement on .%, still in many situations
it is larger than 4 and of course, under no circumstances’ is it less
than _“ However, we shall show in the case of two nonzero difference
polynomials F, F, in y,, ¥, that /=« ,whence in such a situation
Jacobi’s number is a bound.®

To prove that s = ¢ in the case of two difference polynomials
F, F, in y,, v, first note that we may assume without loss of generality
that @, = max (a,, @y, Ay, ay). Then 7, =@, and 7, = max (@, @,).
It is easily seen that S <R if and only if

(29) ay > @y and ag, >, .

Now, since ¢ = « < &2, it follows that if (29) is not satisfied that
# =% = . Therefore, suppose the condition (29) holds. In such

¢ Recall y; itself is considered as the zero-th transform of y,.

7 The Jacobi number, .#, has been defined only in the case where no y; is missing
from each F;. If a polynomial does not involve one of the indeterminates, we shall define
its order in that letter to be —1, in which case .# would always have a meaning. In such
a situation, ¢ may be less than #.

8 If one of g1, ¥ is missing from one of F}, Fb and ¢ is defined as in footnote 7),
then ¢ is a better bound than £, since in this case ¥ < .#.
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an event, 1 —a; =0, r,—a, =0, r, —ay, >0, r,—a, >0. Hence,
= min (r, — ay, r, — a3,) and & = r, 4+ 7, — min (7, — g, 7y — Q) =
max (7, + ay, 7, + ay) = /
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