
ON WEAK DIMENSION OF ALGEBRAS

ORLANDO E. VILLAMAYOR

l Introduction. In this note we try to characterize algebras whose
weak dimension is zero, i.e., algebras A which are flat ^'-modules.

In this direction, Theorems 1 and 2 give the corresponding results,
for weak dimension, to known theorems for (strong) dimension. How-
ever, it seems to be more interesting to find relations between these
two dimensions.

Theorem 3 gives such a relation for commutative algebras over
a field. For the non-commutative case, only a weaker necessary condi-
tion is found in Theorem 5. However, in the case of algebras satisfy-
ing the descending chain condition for left ideals a complete picture of
the 0-weak dimensional ones is given in Theorem 6.

Section 6 applies these results to group algebras. In [2] Auslander
partially succeded in characterizing (von Neumann) regular group al-
gebras. However, concerning the group, he only proved the necessity of
the group being torsion and the sufficiency of the local finiteness. The
difference seemed to be related to the Burnside problem. Theorem 8,
then, fills the gap and the problem is now completely solved.

In the last section we study some relaitons between weak dimension-
ality and semisimplicity (in the sense of Jacobson) in tensor products
of algebras.

After this paper was written we received a copy of a paper by
Prof. Harada on the same subject [4]. However, there is no overlap-
ping of the main results.

We would like to express our thanks and indebtedness to Professor
Rosenberg for this helpful advice and criticism.

2 Notations and terminology. Throughout this note we use the
homological notation and terminology of [2].

Since we are dealing with algebras over a (fixed) ground ring K>
all tensor products are suppose to be taken over the ground ring K,
unless otherwise specifically expressed, so, we shall use (x) for (x) .̂
Similarly, homological dimension of algebras are indicated by dim A or
w.dim. A if they are considered over K, or R-dim A (resp. i?-w.dim
A) if they are considered over another ring R.

For a ring, simple and semisimple mean simple and semisimple with
minimum condition for one-sided ideals. Regular will always mean re-
gular in the sense of von Neumann.
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Semisimplicty in the sense of Jacobson is called J-semisimplicity.

3* Characterization of O-weak dimensional algebras. Let A be an
algebra over a commutative ring K. The dimension (resp. weak dimen-
sion) of A as an algebra is, following the classical definitions, the dimen-
sion (resp. w.dim) of A as an Aβ-module, where Ae — A (x) A* (A* the
algebra anti-isomorphic to A). Since A is a cyclic Aβ-module, we shall
start with some considerations on cyclic flat modules (i.e. cyclic modules
M with w.dim.M = 0).

LEMMA 1. Let R be any ring and A a cyclic left R-module. Then
the following conditions are equivalent:

(a) A is R-flat.
(b) Torf{Rjl, A) = 0 for every principal right ideal I in R.
(c) If A — RIJ, a the image of 1 in A and x e J, there exists

y 6 R such that xy — 0, ya = α.

Proof, (a) => (b) is obvious.
(b)=>(c). Let x e J and let I be the right ideal generated by x. Ac-
cording to ([3], VI, Ex. 19, p. 126) condition (b) implies I Π / = IJ.
Since x e I Π J, then xe //, that is, there is a ^ e J such that x = xz,
hence za — 0, and y = 1 — z verifies xy — 0 and ya = a. (c) =φ (a). Let
B — R\I, for any right ideal /. If x e I Π J, condition (c) assures the
existence of an element zej such that xz = x, so that xeU, hence
I π J = IJ . That is, Torf (B, A) = 0 for every cyclic module B ([3],
VI, Ex. 19), so A is flat ([5]).
As a consequence, we obtain

LEMMA 2. Let A = i2/ J &e α cyclic flat left-R-module. If I is a fi-
nitely generated left ideal contained in J, there is a principal left ideal
Γ such that I c Γ e J.

Proof. We proceed by induction on the number of generators of I.
If I has one generator, I = P. Suppose the lemma is true if I has
n — 1 generators, and suppose xu , xn generate f. Let us call a the
image of 1 in A. If a?!, x2e I ^ J, then â α = x2α = 0 and there is an
element yeR such that α?^ = 0 and ya ~ a, hence x2?/α = 0, and there
is a s e ί? such that cc2τ/2 = 0 and za — α, so yza — a. If we call r =
1 — yz then α r̂ = a?!, x2r — x2 and ra = 0. This last condition implies
re J and ί c ^ c j where 7i is the ideal generated by r, x3, , α?n.

From these lemmas, the following well known result may be im-
mediately proved:

COROLLARY 1. If a cyclic left module A = R/I is R-flat and I is
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finitely generated, then A is R-projective.
In fact, Lemma 2 implies I is generated by a single element, say

x, and Lemma 1 assures the existence of ye I with xy — x, hence
R -• Ry is a projection of R onto / and I is a direct summand in R, so
A is projective.

Now, we shall apply these results to characterize O-weak dimensio-
nal algebras and the following theorem corresponds to that one given in
[3] (IX, Proc. 7.7, p, 179) for dim. A = 0.

THEOREM 1. In order that w.dim A = 0 it is necessary and sufficient
that, for every finite set {alf , an\ in A, there exists an element e in
the two-sided A-module A (x) A such that ate = eα^l < i < n) and that,
under the mapping x (x) y —• xy the image of e in A is 1.

Proof. Let aly , an e A. Suppose w.dim A = 0, i.e., A is Aβ-flat.
The elements 1 (x) at — a% (x) 1* belong to / = Ker(Ae -> A), then they
are contained in a principal left-ideal J c J, If % is the generator of
/, z.l = 0(16 A), then there is an element e such that β.l = 1 and
ze = 0, hence (1 (x) αf — α* (x) l*)e = 0 and the necessity of the condi-
tions proved.

To prove the sufficiency, let us consider an element ze J. Thus
z = Σ*Vi (1 ® α ? — ai (8) l)(2/< e >!•% ^ e -A)» s o^ there is an β e A6 such that
(1 (x) α* — α{ 0 l)e = 0, β.l = 1, hence ze — 0 and Lemma 1 implies A
is Ae-flat.

As a consequence of Theorem 1 and [3], (IX, prop. 7.7) we obtain

COROLLARY 2. If A is a finitely generated K-algebra, then w.dim A —
0 if and only if dim. A — 0.

Of course, this result may also be obtained from Corollary 1 and the fact
that Ker(Ae -> A) is a left ideal generated by the set \ai (x) 1* — 1 (x) a*t},
where the α t 's generate A as an algebra.

Now, following the same lines given by Rosenberg and Zelinsky
([9], Th. 1, p. 88) we prove

THEOREM 2. Let A be a K-algebra which is free as a K-module.
If w.dim A — 0, then A is locally finite over K.1

Proof. Let {xt} be a if-basis of A and {blf , bn} be a finite sub-
set in A. If B is the subalgebra generated by the set {blf , bn}, then,

for every zeB,l®z* — z®leAe is contained in the left-ideal gene-
rated by the set {1 (x) bf - bL (x) 1}.

1 An algebra A over a ring K will be called locally finite if every finitely generated
subalgebra is contained in a finitely generated free /C-submodule of A.
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Theorem 1 shows the existence of elements y19 , yk such that

(1 (x) bf - 64 (8) 1) Σ 3*3 ®VT = 0 and Σ J%JVJ = l τ h u s

(l (x) 2* - z ® 1*) Σ Λ (8) vf = o

for every zel?, that is,

Σ ^ (8) ̂  = Σ ^ (8) 2/jS

If we write zxό as a linear combination of the ίc/s, this formula
shows that ^-z is a linear combination of the y's, that is,

hence, z = Σ Λ 2 / J 3 — Σ«,A./ίC.Λ/ί> and, then, 5 is contained in the iΓ
submodule generated by the set {xjVi}

Finally, if we write the elements xiyi in terms of a basis, say {xk}9

since only a finite number of xk's appear in each x0yi9 B is contained
in a finitely generated jK'-free Z-submodule of A.

4. Algebras over a field. In the case K is a field, then, trivially,
A is a iΓ-free iΓ-module and, if w.dim A — 0, the conditions of Theorems
1 and 2 must be satisfied.

The results of [3] (IX, 7.5 and 7.6), referred to weak dimension
(i.e., starting from IX. 28 intead of IX. 2.8a) may be condensed, by using
the equivalence between w.gl.dimiϋ = 0 and R being a (von Neumann)
regular ring [5], in the following proposition:

PROPOSITION 1. If A is a K-algebra over a regular ring K, then
w.dim A = 0 if and only if Ae is a regular ring.

In the case of commutative algebras over a field a complete charac-
terization of the case w.dim A — 0 is obtained in the following result.

THEOREM 3. Let Abe a commutative algebra over a field K. Then,
then following conditions are equivalent:

(i) A is locally separable2

(ii) w. dim A — 0
(iii) A (x) F is regular for every field F containing K.

Proof, (i) => (ii). Obviously, since A is locally separable, it satisfies
the conditions of Theorem 1.
(ii) rφ> (iϋ). This is a trivial consequence of the inequality

w.gl.dim A (x) F < w.gl.dim F + w.dim A

obtained from the spectral sequences [3] (XVI, 5.5a p.347) and the
equivalence between w.gl.dim R = 0 and regularity obtained in [5],

2 An algebra A over a field K is called locally separable if every finitely generated
subalgebra is contained in a (finitely generated) separable subalgebra.



ON WEAK DIMENSION OF ALGEBRAS 945

(iii) ==> (i). If A is commutative and it is not locally finite over K, then
there is at least one element x which is transcendental over K> hence
A contains a subalgebra isomorphic with the polynomial ring K\x\.

For every polynomial p(x), let 0p be the set of elements ye A such
that yp(x) = 0. Let 1= u 0p, then, trivially, 7 is an ideal in A, and
no element of K{x) is in 7; otherwise, if q(x)el, there is a p(x) such
that q(x)p(x) = 0, contradicting the transcendency of x.

If A is regular, for every p(x) there is an element z such that
2(p(#))2 = p{x), hence 1 — zp(ίc) e I and, in A//, the images of all p(x)
have inverses, so A\I contains a subalgebra isomorphic with the field
of rational functions K(X).

Let us call B = A/7. If A is regular, then B is regular too, and,
from the exactness of A -> 7? -> 0 we obtain F(x)A-*F(x)7?->0 exact.
Then, if F(x)A is regular, so is F®B.

Since £ 3 K(X) and if(X) is a field, B is the direct sum of K(X)-
modules isomorphic with K(X), hence, from the fact that (x) distributes on
direct sums, F® B is a direct sum of F (x) J?(X)-modules isomorphic with
F®K(X). Applying now ([2], Prop. 2, p. 659), we obtain w.gl.dim F(g)
B > w.gl.dimF(g) K(X). Then, we must prove just that F®K(X) is
not a regular ring. In fact, if F is any field containing properly K,
then F®K(X) contains a subring isomorphic with F(g)K[X] & F[X],
which is an integral domain, and F®K(X) is the set of rational func-
tions q(x)lp(x) with q(x)eF[X] and p(x)eK[X], hence, it is an integral
domain but not a field because it has no inverse for q(x) e F[X] if
q(x)$K[X], thus F(g)K(X) is not a regular ring.

Thus, condition (iii) implies A is locally finite.
Since A (x) F is regular and commutative, B®F has to be semi-

simple for every finitely generated subalgebra B and every field F con-
taining K, hence B is separable and so A is locally separable.

The result of Corollary 2 can be extended, in the case of algebras
over a field, by using the following result of Kaplansky ([7], Lemma 1).

LEMMA 3. If I is a countably generated left-ideal in a regular ring
R, then dimRI — 0.

A direct implication of this lemma is obtained in

THEOREM 4. Let A be an algebra over a field K. If [A:K] = ^ 0

and w.dim A — 0, then dim. A — 1.

Proof. Since w.dim A — 0 implies A® A* regular, and Ker(Ae -> A)
is generated by the set {xt (x) 1 — 1 (x) xf} (where the x/s are generators
of A) and this set is countable, then Ker(Ae -> A) is projective. Thus,
dim A < 1. Since dim A = 0 implies [A; K] finite, then [A: K] = ^r0

implies dim A = 1.
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We shall say that an algebra A is locally one dimensional if every
finite set of elements is contained in a subalgebra B such that dim B < 1.
The following theorem approximates the result obtained in Theorem 3
for commutative algebras.

THEOREM 5. Let A be an algebra over a field K. If w.dim A = 0,
then A is locally one dimensional.

Proof. Let {a19 « ,αn) be a finite set of elements in A. Let Bo

be the subalgebra generated by this set. Since Ae is regular, there is
an idempotent eλ such that (1 (x) αf — ah (x) l)eλ — 0 and ex is mapped
onto 1 by the natural map σ: Ae -> A (In fact, the left ideal generated
by the finite set {1 (x) at — at (x) 1} is generated by an idempotent
1 — ex which is mapped onto 0).

If x e B, then 1 (g) a* - a (g) 1* = ΣVi (1 (g) α? - α, <g) 1)(^ e Ae), thus
(1 (x) x* — x (x) l*)βx = 0 for every a? e Bo.

Let {&!, , δm} be the set of elements of A appearing in elf and
Bx the subalgebra generated by {a19 , an, bλ, , bm}. Then, by the
same arguments, there is an idempotent e2 e Ae such that (x (x) 1 — 1 (x)
a;*)e2 = 0 for every xeBL, and σ(e2) = 1.

By repeating the process we obtain a chain of subalgebras J30 cz
^ c S j C . . . If we call J5 = u 5 t(i = 1, 2, •) then Theorem 1 implies
w.dim B = 0. In fact, for every finite subset {x19 , xh} in B there
is a finitely generated subalgebra Bfc with ^ei? f c ( l <i<h), then efc+1

satisfies (xt (g) 1* — 1 (g) xf )βfc+1 = 0, tf(efc+1) = 1, and ek+1 e JSe.
Since B is, at most, countably generated, then Corollary 2 and

Theorem 4 imply dimf> < 1.

REMARK 1. According to Proposition 1, if A is an algebra over a re-
gular ring K, w.dim A = 0 implies Ae is regular. Then, in this case,
Theorem 4 may be expressed in the following way:

THEOREM 4'. Let A be an algebra over a regular ring K. If A is
denumerably generated and w.dim A = 0, then dim A < 1.

Thus, Theorem 5 is valid for algebras over a regular ring K.

5* Algebras with descending chain condition* Theorem 3 shows
that, for a commutative algebra over a field, w.dim A = 0 if and only
if A is locally separable. We do not know whether this statement is
true in the non commutative case.

In the case of algebras satisfying the descending chain condition
for left-ideals, the following result, suggested to the author by Professor
Rosenberg, characterizes completely the 0-w. dimensional case.
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THEOREM 6. Let A be an algebra over a field K satisfying the
descending chain condition for left ideals. Then, w.dim A = 0 if and
only if:

(a) A is semisimgle
(b) A is locally finite over K
(c) The center C of A is locally separable.

Proof. If w.dim A — 0, condition (a) follows from the regularity
of Ay (b) from Theorem 1 and (c) from Theorem 3.

Suppose, now A satisfies (a), (b) and (c). Since A is semisimple,
it is a direct sum of (a finite number of) simple algebras St satisfying
conditions (b) and (c), and, because of the direct sum decomposition,
w.dim A — max(w.dim S4). Since each St is a matrix ring over a divi-
sion algebra Dt satisfying (b) and (c) and w.dim St = w.dim Di9 it will be
enough to prove the sufficiency of these conditions for division algebras.

Let A be a division algebra. Condition (c) implies w.dim C = 0.
According to the sub-additivity of the dimension ([9], Th. 5, p.93) we
have w.dim A < w.dim. C + C-w.dim A, then, it is sufficient to prove
that A (x)G A* is regular. This is so if A (g)σ S* is regular for every
finitely generated subalgebra S oί A.

Since A* is locally finite and S* finitely generated, then [S*: C] < oo
and S* is a division ring. Thus A ®z S* satisfies the descending chain
condition. Since A is central simple and S* simple (because now we
are considering A and S as algebras over C), then A (x)0 S* is simple,
hence regular, and the theorem is proved.

6* Group algebras. In [2], Auslander studies necessary and suffi-
cient conditions for a group G and a ring K to obtain (von Neumann)
regular group algebras K(G). He proved the necessity of G being a tor-
sion group and the sufficiency of G being locally finite, besides the con-
ditions on K.

In Theorem 8 we prove the necessity of the local finiteness, and
then regular group algebras are completely characterized.

A similar difference existed between Theorem 3 and 4 in [8], but
by direct aplication of Theorem 2 we fill the gap obtaining the following
result.

THEOREM 7. Let G be a group, S a subgroup contained in the cen-
ter of G and K any commutative ring, then K(S)-w.dim K(G) = 0 if and
only if G/S is locally finite and K is uniquely divisible by the order of
each element in G/S.

In fact, the local finiteness of K(G) as a K(S)-algebra implies the
local finiteness of G/S.
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THEOREM 8. Let G be a group and K any commutative ring. Then
K(G) is regular if and only if G is locally finite and K is a regular
ring uniquely divisible by the order of each element in G.

Proof. A trivial modification in the proof of ([3] X. 6.1) may be
used to prove

w.dim K(G) = γ.w.dimK(σ)K .

Thus, K(G) regular implies w.dim K(G) = 0 and Theorem 2 implies G is
locally finite.

The remaining part of the proof follows from Auslander's result.
It also may be seen as a special case of Theorem 7.

REMARK 2. The proof of the necessity of the local finiteness of G
for a group algebra K(G) to be regular does not need all the homological
machinery. In fact, it follows immediately from the following lemma:

LEMMA 4. Let K(G) be the group algebra generated by a group G
over any commutative ring K and glf - , gn be elements of G. Then
the subgroup S generated by {gly , gn} is finite if and only if there is
an element x e K(G) such that (1 — g^x = 0 (1 < i < n). If this is the
case, x = sy, where s is the sum of all elements in S.

Proof. If S is finite, the sum s of all elements in S satisfies the
equations (1 — gt)x — 0, and so every product sy.

Conversely, suppose (1 — g^x = 0 (1 < i < n). Thus, x = gxx — =
gnx. Since every fe S is a product of powers of the gt

fs9 then fx = x.
Let x = ΣfkjhjihjeG). For every feS,fx — x implies x has a term
kλfhλ and so all elements of S appear multiplied by kjτλ, hence S is finite
(because x is a finite sum). Furthermore, we obtained x = kxshλ + x',
with (1 — gi)x' = 0. By induction on the number of terms in x we
obtain the last result.

A complete proof of Theorem 8 may be obtained as follows: Suppose
K(G) is regular. Then the ring homomorphism σ: K(G) -> K defined by
the group homomorphism G -> {1} implies K is regular.

If K(G) is regular, every finitely generated proper left ideal is
a direct summand, hence it is annihilated, on the right, by a non-zero
element xeK(G). Since all 1 — g are in Kerσ, every finite set gene-
rates a proper left ideal, and so the previous lemma implies G is locally
finite.

Suppose g e G has order n. By Lemma 1 there is an element x
with σ(x) = 1 and (1 — g)x = 0, hence Lemma 4 implies x = sy(s =

and so σ(x) = σ(s)σ(y) = nσ(y) = 1, hence n has an inverse in K
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and the necessity of the conditions is proved.
Suppose, now, K and G satisfy the conditions of the theorem. Let

x = Σ ^ e K e r σ , so, # = Σfci(& — 1). Let S be the subgroup gene-
rated by gly •• ,flrn, m its order and s the sum of all elements in S.
Since m has an inverse m"1 in if, then y = m" :s satisfies #2/ = 0, σ(τ/) =
1, and Lemma 1 implies if is if(G)-flat. So wΛimK(G) = w.dirn^^if =
0 ([3] X, 6.2) and ϋΓ(G) is regular.

7 Weak dimension and Jacobson semisimplicity. A ring will be
called J-semisimple if its Jacobson radical is (0).

If T is a ring and M a left-Γ-module, then the ring HomΓ(M, M),
with the operations defined in the classical way is a topological ring by
defining the finite topology induced by M. ([6], Ch. IV).

If we are in the situation S c β c Komτ(M, M)y where S and R
are rings, we shall say S is dense in R if it is so in the finite topolo-
gy induced by HomΓ(Af, M).

In this section we shall prove the following theorem:

THEOREM 9. Let A be a K-projective K-algebra. If B is J-semi-
simple K-algebra and w.dim A = 0, then A® B is J-semisimple.

Before proving the Theorem we shall state the following lemmas:

LEMMA 5. Let T be any ring and M a left-T-module. If S, R
are rings such that S c: R c; Homτ(M, M), R is regular and S is dense
in Ry then S is J-semisimple.2

Proof. Let xe S. Since R is regular, there are elements y, zeR,
z Φ 0, such that z(l — xy) = 0. Since R c HomΓ(Λf, M), there is at
least one me M such that mz Φ 0 and mz(1~xy) — 0, that is, there exists
an n e M(n — mz) such that n Φ 0 and n — n2V. Now, we have xe S,
yeR, (nx)v = n, and S is dense in R, then there is an ueS such that
(nx)u — n, that is, nλ~xu = 0, and 1 — xu can not have an inverse in S,
so xu is not quasi-regular, and S is J-semisimple.

LEMMA 6. If A is a K-projective K-algebra and B is a K-algebra
which is a subdirect sum of K-algebras Pi9 then A(x) B is a subdirect
sum of A® Pi.

Proof. B is a subdirect sum of P^s if and only if the sequences
B -+ Pi -> 0 and 0 -> B -» Π Pi are exact.

3 The conditions of the lemma are, evidently, stronger that those which are really
needed in the proof. In fact, we only need S to be 1-fold transitive in R and R J-semi-
simple in which, for every element x there is an y such that \-xy has a left annihilator.

It may be seen that, if Sf is commutative, the conditions of Lemma 5 are necessary.
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Now from the exact sequence B -> P4 -> 0 we obtain A (x) B
A (x) P4 -> 0 exact. We need only to prove the exactness of 0 -> A (x) B

Since A is if-projective, we have, from 0 ~> B -> Y[PU the exact
sequence 0 -> A (x) B -» A (x) Π iV We have ([3], Ex. II. 2, 31) a natural
homomorphism

which is, trivially, a monomorphism if A = K. Since (x) commutes with
direct sums, it is a monomorphism if A is iί-free and, a posteriori, if
A is if-projective. Then the composite map gives the exact sequence

and the lemma is proved.

Proof of the theorem. Since B, being semisimple, is a subdirect
sum of primitive rings Pi} then the previous lemma implies that A(x)£
is a subdirect sum of rings A^P^, then, to prove the theorem it is
sufficient to show that the rings A® Pi are J-semisimple. Now, since
P% is primitive, it is dense in a ring of linear transformations, that is,
Pi c: Rt = Hom^Ms, Mt) where the rings Rh are regular and the P/s
are dense in the R^s. Since A is if-projective, we may apply the
spectral sequences [3] (XVI, 5a, p. 347) and then, Rt regular and
w.dim A — 0 give A® Rt regular.

If we show the inclusion A® P^A^RiQ Hom^0jP.(A(x)Mi9 A®M*)
and the density of A(x) Pt into A (x) Rt, Lemma 5 completes the proof
of the theorem.

Since A is if-projective, we have the exact sequence 0 -> A (x) Sh ->
A (x) Λί = A (x) Ho^m(M",, Λf4).

If A is Z-free, the natural mapping A(g)RomF(Mίy M^->Ή.omF(M,
A® M^ is the natural mapping of a direct sum into a direct product,
which is a monomorphism. Since A, being projective, is a direct sum-
mand of a free module, and since both (x) and Hom commute with finite
direct sums, then the given mapping is also a monomorphism.

From the natural isomorphism Ή.omF(Miy A (x) Mt) & Hom,1ΘF(A (x) Mu

A (x) Mt) we obtain the inclusions.

A (x) S, c A (x) ̂  c RomΛΘFi(A (x) Mt, A (x

Let ^6 A (x)A, then x = ^Λaj®r3, and vfc = Σ I ^ Ϊ Θ mΛi(&Λt e A,
mfcί e MJ be a finite set of elements in A (x) Mt. Then a;̂ ^) = Σ ?, ?α f̂ci ®
Tj(mkl). Since the set {mu} is finite and J54 is dense in Rίy for each r}

there is an sjeBi such that rj{mkl) = s^m^O^ then ?/ = Σ α j ® s J
and j/(i;fc) = a?(i;fc), so A® Pi is dense in A (x) i24.
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As a consequence of this theorem we can state the following corol-
lary:

COROLLARY 3. / / A, B are algebras over a field K and w.dim B — 0,
Then J(A (x) B) = J(A) (x) B. (We call J(R) the Jacobson radical of a ring
R).

In fact, since AjJ{A) is semisimple, from the exact sequence

0 -» J(A) ®B-+A(g)B-+ (AIJ(A)) (x) B -* 0

we obtain J(A) (x) B 3 J(A (x) 5) .
From Theorem 2 and ([6], V. 14, Th. 1, p 123) it follows that every

element in J(A) (x) B is quasi-regular, so it is a radical ideal in A® B.
Thus J(A) (x) B c J(A (x) Z?) and the corollary is proved.

This result generalizes ([1], Th. 1).
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