
ON TCHEBYCHEFF POLYNOMIALS

J. L. ULLMAN

1Φ Introduction* Let C be a closed bounded set having an infinite
number of points. There is a unique polynomial Tn(z) of degree n, and
with one as coefficient of zn, such that if Pn(z) is any other polynomial
with the same normalization,

(1.1) Mn = max | Tn(z) \ < max \Pn(z) \ .
zee zeo

This is the Tchebycheff polynomial of degree n associated with C

l.l Assume that C has positive capacity, used throughout to mean
logarithmic capacity, and a connected complement D. The conductor
potential for such C is a real valued function U(z) defined in D with
the properties: (1.2) U(z) is harmonic at finite points of D, (1.3)
U(z) — log \z\ is regular at infinity and zero there, (1.4) there is a num-
ber p > — Co such that U(z) > p for z in D, (1.5) if {zt} is a convergent
sequence of points with limit point on the boundary of Ό, then
lim U(Zi) — p, except perhaps when the limit point belongs to a subset
of the boundary of capacity zero. The function U(z) has a unique rep-
resentation as a Lebesgue-Stieltjes integral

(1.6) U(z)= [\og\z-t\dμ .

where μ is a completely additive, positive set function defined for Borel
measurable sets, if it is specified that the carrier of μ consist of bounda-
ry points of D. [2].

1.2. Fejer [1] proved that the zeros of Tn(z) lie in the convex hull
H of C The consequence

(1.7) \znt\^R9

where zni is a zero of Tn(z), and R is a finite constant independent of
n, will be sufficient for later reference. Let

(1.8) pn=± logMn.
n

Szego [3] proved that
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(1.9) Km ft, = ρ ,

where p is essentially defined for a set C of positive capacity in §1.1,
and is taken as zero when C has zero capacity. If C does not have a
connected complement, p is obtained by taking for D in §1.1 the un-
bounded component of the complement of C. The above results in con-
junction with an argument due to R. Nevanlinna [2, p. 127], can be
used to show that

(1.10) l im-l log |Γ^) | = U(z) ,
n

for z in the complement of H. The following results concern the ex-
tension of (1.10) to points of D in H.

1 3 Summary of results* Let C be a closed, bounded set of positive
capacity, and with connected complement D. Let vn(S) be the total
multiplicity of the zeros of Tn(z) in the set S. If E is a closed subset
of D, then

(I) li
n

and

(II) lim f ±\og\Tn(z)\- U{z)
n

dA = 0 .

If Γ is a continuously diff erentiable curve consisting of points of D, and
with interior denoted by /(/"), then

(III) lim ΞzIίίΠL = μ(I(Γ)) .
n

The set function μ is defined by (1.6). In the case D is bounded by a
finite number of analytic, Jordan curves, then

(IV) vn{E) < P ,

where P is a constant depending on E, but not on n. Also in this case

(V) l i m ^ l o g | Γ n ( s ) | = U(z),
n

for z in E, with the possible exception of a set of measure zero.

2. The results concerning the zeros of Tn(z), namely (I) and (IV),
are established first.

2.1. LEMMA 1. Associated with D is a set of domains {Dn},
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n = 1, 2, , with the properties:
(a) Dn is an unbounded domain,

(b) the closure of Dn is contained in Dn+1, that is Dn c Dn+1,
(c) each point of D is contained in some Dn.

LEMMA 2. Let u(z) be harmonic at finite points of D and regular
at infinity. Furthermore, if {zj is a convergent sequence of points
with limit point on the boundary of D, suppose that lim inf u(zt) ̂  0,
except possibly if the limit point belongs to a subset of the boundary
of capacity zero. If, in the exceptional cases, lim inf u{zt) 7> —7, 0 ^ 7 < °°,
then in fact 7 = 0, and u(z) ̂  0, for z in D. [2].

2Φ2# The generalized Green's function of D with pole at w, G(z, w),
where the variable z and the parameter iv are points of D, has the prop-
erties:

(2.1) G(z, w) > 0,
(2.2) G(z, w) is harmonic in z, except if z — w, and is regular at

infinity,
(2.3) G(z, w) + log \z — w\ is regular when z = w,
(2.4) if {Zi} is a convergent sequence of points with limit point on

the boundary of D, then \m\G{zi,w) exists, and is equal to zero, except
perhaps if the limit point belongs to a subset of the boundary of capacity
zero, and

(2.5) at the exceptional points lim sup G(zu w) gΞ M < 00, a constant
depending on w, but not on {zt}. When w — 00,

(2.6) G(z, 00) = U(z) - p, and
(2.7) for finite or infinite w, G{z, w) = G{ιv, z).

2.3. LEMMA 3. To each domain Dk there is a positive constant

mk, such that

(2.8) Pn-P^r
n

Proof. Let

(2.9) wn(s) = —log|Γ»(s)| ,
n

and let znl, , znm, m ^ n, be the zeros of Tn(z) in D. The convention
used in listing zeros will be to repeat multiple zeros according to their
multiplicity. Consider the function

(2.10) v
n
(z) - (p

n
 - u

n
(z)) + (U(z) - p ) ~ ̂ {

n
G(z, z

nm
)) ,
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(2.11) - Ax{z) + A2(z) - A,{z) .

Let {zt} be a convergent sequence of points of D with limit point on
the boundary. Now, lim Afa) ^ 0 by (1.1), (1.8) and (2.9), lim inf A2{z,) ^ 0
by (1.4), and lim A ^ ) = 0, except possibly if the limit point belongs to
a subset of the boundary of capacity zero. In the exceptional case
lim sup Ad(Zi) ^ M < oo, by (2.5). In addition vn{z) is harmonic in D and
regular at infinity. The conditions of Lemma 2 are thus satisfied so
that

(2.12) vn{z) ^ 0 ,

for z in D. Let znU , znp, p ^ m, be the zeros of Tn{z) in Dh. Then,
by (2.1), (2.7), (2.10), (2.12),

(2.13) pn-p- (un(z) - U(z)) ^ ±(G(znι, * ) + • • • + G(znp, z)) .
n

If mk is the lower bound of G(z, oo) on Dk, then the value of (2.13) at
z = co yields (2.8).

2.4. Proo/ o/ (I). The set E will be contained in an element of
{Dn}, say Dh, Hence by (2.8) and the definition of vn(S),

(2.14)

The result then follows by (1.9).

2.5. Proof of (IV). Szego [4] has shown, under the added restric-
tion on D, that

(2.15) P n - P £ * ,
n

where K is a constant not depending on n. This together with (2.8)

yields

(2.16) vn(Dk) ^ A .

Thus if Dk contains E, the assertion follows.

3. The next results proved are (II) and (V) concerning the mean
convergence in the general case, and the point wise convergence in a
special case, of the sequence un(z) = 1/nlog \Tn(z)\.

3A. Let Dk again be a domain containing E. Assign to each point
of E a circle centered at the point, lying in Dk, and with radius not



ON TCHEBYCHEFF POLYNOMIALS 917

exceeding 1/3. By the Heine-Borel theorem, a finite number of circles
cover E. Hence it is sufficient to prove (II), replacing E by a circle in
Dk with radius less than 1/3.

3.2. Let snu , snnχ be the zeros of Tn(z) in the complement of
Dk+1 and let rnl, , rnnι be the zeros in Dk+1. By the convention of
listing multiple zeros, nλ + n2 = n. Note that by (I),

(3 1)

Next define

(3.2)

and

(3.3)

Now

(3.4)

(3.5)

(3.6) <Ξ

l i m #t/2

n

sΛ{z) = n (2
i-l

T> (rΛ TT (r
K>n\Z) — 11 \*

i = i

^lθg|Γ n(2)|

n

— o

swί) ,

~ TO

^- J- log |SB(2)| + l l o g \Rn(z)\ - U(z)
n nx n

n
log|Λ»(2)|

It will be shown in §4.3 that the first term of (3.6) tends to zero uni-
formly in E. Also in E, \U(z)\ has a finite upper bound, so by (3.1),
the second term also tends uniformly to zero in E.

3.3. Proof of (II). By the remarks of §§3.1 and 3.2, it is sufficient
to prove

(3.7) lim — ( log \Rn{z) \dAz = 0 ,
n JU-α|<δ

where \z — a\ < 8 is a subset of Dk and δ ̂  1/3. Let

(3.8) ! l o g |ien(*)| = (log \z - t\dμn .
n J

The integral in (3.7) then has the upper bound

(3.9) ( If log\z-t\dμn\dAz
J | β - α | < δ > | J l ί - α | < 2 δ I

+ \ I \og\z — t\dμ.ndA7, .
J \z-a\<8,\ J |β-αl^2δ
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By (1.7) μn(S) is zero for any set S in the exterior of \z\ = R. Hence
the second integral in (3.9) is bounded by

(3.10) rδ2—max{|log \R + δ | | , |log|δ| |} .
n

This tends to zero by (3.1). The first integral can be written

(3.11) ί ([ log , 1 .dμn)dAa,
JU-α|<δΛJ|ί-α|<2δ \Z — t\ /

since

(3.12) \z - t\ £ \z - a\ + \t - a\ < 3δ ^ 1 .

The order of integration can be changed, to yield

(3.13) ί (flog 1 dA,)dμu,
J(t-α|<2δ|2-αl<δVJ \Z — t\ /

or

(3.14) ( g(t)dμn ,
J | ί - α | < 2 δ

where

τrδ2log , δ < \t — a I < 2δ ,
\t-a\

(3.15) flf(ί)= i

δ 2 =

From this it follows that an upper bound for (3.11) is

(3.16) —g(a) .
n

This tends to zero by (3.1).

3.4. Proof of (V). The contents of §3.2, in particular (3.6), re-
duce the proof to showing

(3.17)
n

for z in E, except possibly for a set of measure zero. Fy (IV) there
are less than P zeros in E for each n, and each of these, by (1.7) is
inside or on the circle \z\ = R. Hence it is sufficient to show

(3.18) lim rn(z) = lim — |log |s - α n | | = 0 ,
n
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where \an\ <̂  R, for \z\ < Q, a disc covering E, with the possible ex-
ception of a set ϊ 7 of measure zero. For a fixed integer A; > 0,

(3.19) rn(z) > j -

either if

(3.20) \z~an\

or

(3.21) U - α w |

Now (3.20) will ultimately fail to hold since \z — an\^R + Q. Let
T(k) be the set of z for which (3.21) holds infinitely often, and let
T(k, p) be the set where (3.21) holds for some n Ξ> p. It is clear that

(3.22) T(k)czT(k,p).

Hence if me(S) designates the exterior measure of a set S,

(3.23) me(T(k)) £ me(T(k, p)) ^ TΓΣ e χ P
jfe

This bound holds for all values of p. Thus the exterior measure of
T(k), and hence its measure, is zero. Since T is the set where

(3.24) lim sup rn(z) > 0 ,

each point of T is contained in one of the sets T(k). There are a de-
numerable number of the latter, each having measure zero. T thus has
measure zero.

(4

It

(4

4

•1)

is

.2)

. Let

first shown that

lim

1
nλ

sn(z)

Λog\Sn(z)\.

= U(z) ,

for z in Dk+i, and that the convergence is uniform in Dk. This result
completes the argument based on (3.6). The divergence theorem is then
applied to (4.2) to yield the proof of (III).
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4.1. LEMMA 4. If

(4.3) σn = max sn{z) ,
meσ

then

(4.4) lim σn = p .

Proof. By (1.1), (1.8), (2.9), (4.3),

(4.5) σn = max sn(z) ̂  max unχ{z) — ρnι .

Let zλ be a point of C for which

(4.6) σn = s^) .

Then

(4.7) pn ^ ^ ( ^ ) = ^sn{zx) + —log I Λ ^ ) I,
n n

n n

Now zλ is bounded from Dk+1, the domain containing the rniy and | r w ί |
has a bound independent of w by (1.7). Hence there are positive con-
stants, a and b, such that

(4.8) 0 < α ^ k - r n t | ^ b < oo ,

for all n and ΐ. Combining this with (3.3) and (4.7) yields

(4.9) pn > ^σn - ^K ,
n n

where K = max {|log a |, |log 61}. From this and (4.5) it then follows that

(4.10) Pnι ^ ^ JLPn + J^K .

The conclusion of the lemma now follows by (1.9), (3.1).

4 2 Form the function

(4.11) w n ( z ) = σn- sn{z) - ( p - U(z)) .

This can be treated like vn(z), (2.10), to show that it is positive in D.

LEMMA 5. The functions wn(z) converge to zero in Dk+19 and uni-

formly in Dk.

Proof. Let the disc \z — a \ ̂  γ lie in DΛ + 1, and let z1 = a + rexp (iθ),
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r ^ s < 7. Since wn(z) is positive in Dfc+1, and clearly harmonic there,
the inequality

(4.12) JL—LWn(μ) ^ wn{zλ) ^ l ±
7 + s

n(μ) ^ n{λ) ^ n()
7 + s 7 — s

holds. This shows that the convergence of wn(a) to zero implies the
uniform convergence to zero in the circle \z — a\ = s, and that if wn(a)
does not converge to zero, the same will be true at each point of the
circle. A similar relationship holds between the convergence of wn(oo)
and the convergence of wn(z) for \z\ Ξ> s, a domain lying in Dk+1. Thus
the set of points of D]c+1 where lim wn(z) = 0 is an open set, and the
set where lim wn(z) Φ 0 is also an open set. Since Dlc+1 is open and
connected, it cannot be expressed as the sum of two disjoint open sets,
so that one of these sets must be a null set. Since wn(^) = σn — p, a
quantity tending to zero by Lemma 4, the non-null set is the one for
which lim wn(z) = 0. By the Heine-Borel theorem, Dk can be covered
by a finite number of circles lying in Dk+1, one of which will be of the
form \z\ g: s. The convergence will be uniform in each circle, and hence
uniform in Dk.

(4.13)

43. For application to (3.6), note that

1

n,
ΛogSn(z)- U(z) ^ \wn(z)\ + \σn - p\ .

Thus by Lemmas 4 and 5, the left side converges uniformly to zero in

Dk, and hence in E.

4A. Proof of (III). There is no loss in generality in assuming that
Γ lies in Dk. If z = a + r exp (iθ), r ^ s < 7, then

(4.14) \{wn{z))Λ^ Wn{a\\ { w n { z ) ) Λ ^ , \ 2

(7 - sf

where ( )x denotes the partial derivative with respect to x. It is as-
sumed that a is on Γ, and that \z — a\ ^ s lies in Dk+1. The same in-
equality holds for the partial derivative with respect to y. The con-
vergence of wn(a) to zero thus yields the uniform convergence to zero
of the partial derivatives in the specified circles. An application of the
Heine-Borel theorem then shows that the convergence is uniform on Γ.
Thus

(4.15) lim - L [ (wn(z))xdy - {wn{z))ydx = 0 .

Using (4.11), it is seen that this is equivalent to
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(4.16) limΊr\ (sn{z))xdy ~ (sn(z))ydx

)xdy - (U(z))ydx .

Let Xn(S) be the total multiplicity of the zeros of Sn(z) in the set S.
Now both U(z) and sn(z) are harmonic on Γ, and Γ is of sufficient smo-
othness for the application of the divergence theorem, so that the result

(4.17) Km MlίQL = μ(I(Γ))

n

is obtained. For any set S it follows from (3.2) that

(4.18) vn(S) - Xn(S) ^ vn(Dk+ι) = n2 .

Thus, by (3.1) and (4.7) applied to

(4.19)

the proof of

λ

(HI)

n(l
n

is

Γ)) < vn(I(Γ)) <
n

completed.

Xn(I(l

n
n
n

5. Relationship to a paper by Walsh and Evans. The results (I)
and (III) we obtained by other methods in [7], and another form of dis-
cussing the asymptotic behavior of Tn(z) for z in the complement of C
was used. The result (IV) is not found in [7], and we will discuss in
more detail, and in a slightly more general context the significance of
this and the other results.

Domain Polynomials. Besides the Tn(z), there are other sets of
polynomials which are associated with general sets C in the plane. We
mention only the Garleman polynomials [3], Cn(z), which require that C
have connected complement, and Faber polynomials [5], Fn(z), which re-
quire that the complement of C be simply connected. These are adequate
to illustrate our remarks.

The Location Problem is an apt name to give to results relating to
the location of zeros of domain polynomials, and known results suggest
the further distinction of interior location and exterior location, corre-
sponding to whether we refer to zeros on C or in the complement of C.

Results on Exterior Location. For sets with simply connected com-
plements, and bounded by a simple analytic curve Γ, it has been shown
by Johnston [3] and the author [5] that ultimately the zeros of Cn(z)
and Fn{z), respectively, lie inside any simple interior level curve of Γ.
It is not known whether this is true for Tn(z), although (IV) shows that
the zeros lie ultimately inside any exterior level curve.
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A basic observation of this paper and [7] is that when C has a
multiply connected complement, then zeros of Tn(z) can lie in the com-
plement of C and be uniformly bounded from C for arbitrarily large n.
In the sense defined by (I) the number must be small in comparison
with n, although they can exceed any finite bound. The refinement of
(IV) states that if C is bounded by a finite number of analytic curves,
then there is an absolute constant for any exterior level curve of C,
which ultimately cannot be exceeded by the number of zeros of Tn(z)
exterior to this level curve. What has not been shown is whether a
constant exists for the complement of C itself. Examples indicate that
if there is such a constant, it cannot be less than k — 1, where k is the
number of boundary components of C.

Interior Location. Formula (III) states that the proportion of zeros
on any component of C, for Tn(z), approaches the harmonic measure of
the component. Where on the component the zeros accumulate is not
known. The existant examples, namely Tn(z) for the circle and ellipse,
indicate that the limit points of the zeros, which can be called the
center, have an interior location in the set. No precise characterization
of the center for Tn(z) has been found. In [6] a study is made of the
center for Fn(z). The indications are that the center will not be the
same set for the different classes of domain polynomials.
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