
THE SUSPENSION OF THE GENERALIZED

PONTRJAGIN COHOMOLOGY OPERATIONS

EMERY THOMAS

1Φ The main theorem. In a previous paper [9] I have defined a
sequence of new cohomology operations, called the generalized Pontrjagin
operations. These operations use as coefficient groups the summands of
a certain type of graded ring: namely, a ring with divided powers
(defined by H. Cartan in [1]), which is termed a /"-ring in [9]. Let
A — Σfc Ak be a ring with divided powers such that each summand Ak

is a cyclic group of infinite or prime power order; we termed such rings
p-cyclic in [9]. Then, the Pontrjagin operations are functions

%\: H™(X; A2k) > H"n(X; Auk) (k, n > 0; t = 0, 1, •)

where Hq(Y, B; G) denotes the gth (singular) cohomology group of the
pair (Γ, B) with coefficients in the group G.

Let C be a cohomology operation relative to integers r, s and coef-
ficient groups G, 77. That is, C is a natural transformation

C: Hr(Y, B; G) > HS(Y, B; Π) .

With each operation C we associate a second operation, S(C), called the
suspension of C. S(C) is a natural transformation

Hr-\Y, B; G) >HS-\Y, B; II)

its definition is given in § 3.
The purpose of this note is to determine S(?βt), where %\ is the

generalized Pontrjagin operation. In order to state our result concern-
ing S(ψt), we need an additional cohomology operation, the Postnikov
square (see [3], [10]). This was defined in [9], but only for a restricted
class of coefficient groups. In this paper we will define the Postnikov
square as a cohomology operation

p: H*(Y, B; A2]6) >H^\Y, B; Aa) , (q, k > 0)

where A21c is an even summand of a p-cyclic ring with divided powers.
We now may state the main result of the paper.

THEOREM I. For any cohomology operation C, let S(C) denote the
suspension of the operation C. Then,
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( i ) S(%\) = p

(iί) S(%\) = 0, ( ί > 2 )

where 0 denotes the zero cohomology operation.
The proof of Theorem I is given in § 5. In § 2 we define the opera-

tion p, while in § 3 we give the definition of the suspension. In § 4 we
discuss relative cohomology operations, while in § 6 we give some addi-
tional properties of the operation p. In particular, we show that
S(p) = 0. Finally, the last section gives the theorem, SS(C) = Cδ, for
any operation C.

I would like to thank Professor N. E. Steenrod for the valuable
suggestions made to me at the time of revising the paper. In particular
the definition of the suspension in § 3 and Theorem 7.1 are due to him.

2 The definition of the Postnikov square. The definition of the
Postnikov square, p, is obtained by first defining a ''model operation'7,
p, which uses only a restricted category <& of coefficient groups. The
category %" is defined as follows: let Zr — Z\rZ (r — 0, 1, •••), where
Z — integers = ZQ. Denote by <g-v the category of all groups of the
form ZB, where θ is zero or a power of a prime. For each group Zθ in
c(^ we have defined a p-cyclic ring with divided powers,

G(ZΘ) = GO(ZΘ) + + Gt(Zθ) + (direct sum) (see [9; 1.17]).
In particular,

Zθ , if θ is zero or odd

Z2θ , if θ is a power of 2.

We define a generator for G2(ZΘ) by

_θ , if θ is zero or odd

.2θ , if θ is a power of 2

where l r = 1 mod r (r = 0, 1, •••)• The group G2(ZΘ) will be the coef-
ficient domain for the operation p. As remarked in [9; § 2], once we
have defined the operation p for the category of regular cell complexes,
the definition easily extends to the category of all topological spaces.
Hence, in what follows we restrict attention to regular cell complexes,
which we will simply term complexes.

Let K be a complex and L a subcomplex of K. Let Zθ be a group
in the category cέ?\ that is, θ is zero or a power of a prime. We define
an operation

p: H%K, L; Zθ) • > H^\K, L; G2(ZΘ))

as follows. Let u e Hq(K, L; Zθ); let β be the homomorphism from Zθ

to G2(ZΘ) given by β(lθ) = Θg2(lθ). Define
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(2.1) p(u) = βju U 8*u) .

Here, 8* is the Bockstein coboundary operator associated with the
exact sequence

o—>z-^->z—>zθ-—>o ,

and the cup-product is taken relative to the natural pairing Zθ (x) Z τ& Zθ.
It is easily seen that this agrees with the usual definition of the

operation p (see [3] and [10]). For let ΰ e Cq(K, L; Z) be a cochain
representing u; that is, 8ΰ — θv, for some cochain v e Cq+1{K, L; Z).
Then, a cocycle representing β*(u U 8*u) is given by ΰ U 8ύ, which
coincides with the definition given in [10].

In [9; 8.14] we defined a function w which goes from Hq(K; Zθ) to
H2q+1(K; Z). This function can be extended to the relative case, follow-
ing the method given in § 4. When this is done it is easily shown that

(2.2) p(u) =

a result we will need later.
The Postnikov square, p, is defined using the operation p as follows:

let u 6 Hq(K, L; A2fc), where A2fc is an even summand of a p-cyclic ring
with divided powers. By hypothesis, A2h is a cyclic group whose order
is infinite or a power of a prime. Thus, there is an integer θ such
that A2lc is isomorphic to Zθf where Z9 e <έf. Let v be an isomorphism
from A2k to Zθ. Then, by 3.1 in [9], for each non-negative integer r
we have defined a homomorphism ζr mapping Gr(Zθ) to A2rlύ, which is an
extension of v1. We define the operation p by

(2.3) p(u) = ζ*pv*(u)

that is, p is the composition of the following functions:

H*{K, L; An) — Hq{K, L; Zθ) -^

H*+\K, L; G2{ZΘ)) — Wq+\K, L; AJ .

We show the independence of this definition from the particular
choice of the isomorphism v (and hence ζ2). This is a consequence of
the fact that

(2.4) LEMMA. pa* = G2(a)*p ,

where a is a homomorphism from Zθ to a group Zx in v^, and G2(a)
is the homomorphism from G2(Z9) to G2(Zτ) induced by the functor G
(see [9; 1.23]).

Using 2.2, the proof of 2.4 is entirely similar to that given for 5.22
in [9] and is omitted here. From 2.4 the proof of the independence of
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the definition of p follows along exactly the same lines as 3.5 and 3.6
in [9]; we omit the details.

3. Suspension of cohomology operations. The definition of the
suspension used here is due to N. E. Steenrod1. Let I denote the unit
interval, [0, 1], and ϊ the subspace {0} U {1}. The group H\If I; Z)
is cyclic infinite; let v be a fixed generator. For each space X
and coefficient group G define a function φ from Hq(X; G) to
Hq+1(I x X, I x X; G) by

(3.1) φ(u) — v x u .

We use singular cohomology for X, and the natural pairing Z(x) G ^G
for the cross-product. In § 7 we prove the following lemma.

(3.2) LEMMA. The function Φ is an isomorphism mapping Hq(X; G)

onto Hq+\I x X, ϊ x X; G)(q > 0).

Consider now any cohomology operation C, which is defined on rela-
tive cohomology groups; say, C maps Hr(X, A; G) to HS(X, A; 77) for
each pair (X, A). Define an absolute cohomology operation, S(C), which
maps Hr~\Y) G) to HS~\Y; 77), for each space Y, by

(3.3) S(C)(u) = φ-1 Cφ(u) (u 6 Hr'ι(Y; G)) .

Using the method described in § 4 we may extend S(C) to an opera-
tion defined on relative cohomology groups, an operation which we con-
tinue to denote by S(C). We wish to apply this construction to the
operation ψt; as defined in [9], this is just an absolute operation. Thus,
to use Definition 3.3 we must first extend the definition of %\ to the
relative case.

4. Relative cohomology operations. Let O(q, r; G, 77) denote the
set of absolute cohomology operations relative to dimensions q, r and
coefficient groups G, Π; that is, if C e O(q, r; G, 77), then C: Hq(X; G)->
Hr(X, 77) for each space X. As is well-known the set O(q, r; G, 77)
is in 1-1 correspondance with the group Hr(K) 77), where K is an
Eilenberg-MacLane space of type (G, q). The correspondance is obtained
by assigning C(ή to t, where c is the fundamental class in Hq(K; G).
Choose now a base point e e K, and let α*: H*(K, e; A)?&H*{K; A)
be the isomorphism induced by the inclusion K c (K, e). For any CW-
complex X and subcomplex A, the homotopy classes of maps (X, A)-*(K, e)

1 This definition has the advantage that it can be used in the case of cohomology

with local coefficients.
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are in one-to-one correspondance with Hq{X, A) G). Thus we define a
relative cohomology operation, C", associated with an absolute operation,
C, as follows:

(4.1) C\u) = / * α * - 1 C ( 0 ,

where u e Hq(X, A; G) and / is a map (X, A) -> (K, e) such that

With the operation C defined, one is then interested in whether the
properties of C extend to the operation C . We now prove a general
lemma which essentially asserts that all the properties of C do carry
over to C .

Let O(qlf •••, qn, r; Glf •••, Gn, 11) denote the group of absolute
cohomology operations, T, in n variables; that is, if ut e H%X', Gt)
(i = 1, , ri), then, T(u19 , un) e Hr(X; II). The operation T extends
to a relative operation, Tf, using the method just given for operations
of a single variable. Suppose now we are given absolute cohomology
operations

C e O(q19 ••-,?„, r; G19 , Gw, //) ,

E e 0(8,, . . . , s , , r; Π19 . . . , 77,, 77) ,

and A e O(gi, •••, qn9 s,; Gx, •••, Gw, 770
(i = 1, 2, . . - , p).

Let C , Ef D'i9 be the corresponding relative operations.

(4.2) PROPOSITION. Suppose that for each space X and cohomology
classes ut e Hqi(X; G4)(i = 1, , n)9 we have

C(U19 , Un) = £/(A(^i, » Ό > , ^1,(^1, " * ' , ^ ) ) -

Then, for each pair (X, A) and classes n\ e Hqι{X, A; Gt) (ί — 1, , n),
we have

C'(u[, . . . , < ) = E'(D[(u[, , < ) , , D'p(u'u , O )

We give the proof at the end of this section, first illustrating the
theorem by giving several corollaries.

(4.3) COROLLARY 1. Let C e O(q, s; R, S), A e 0{qu st; R, S)

(i — 1, 2), where R, S are rings, q = q1 + q29 and s — sλ + s2. Suppose
that

C(uλ U u2) = D^u,) U

/or all classes ut e Hqi(X; R). Then,
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C\u[ U u[) = D[(u[) U A W ,

for all classes u[ e (Hqi(X, A; R).

Proof. Let EB e O(qly q2, g; R, Ry R) and Es e O(sly s2, s; S, S, S)
be the respective cup-products. Let F be the composite operation C o ER.
Using Proposition 4.2 we see that Fr = C o ̂ ^ But since J F 7 ^ , ^2) =

x(μ^, D2(u2)), again using 4.2 we see that

that is,

C'(u[ U wi) - AW) U A W ,

as was to be shown.
Let C, Dιy D2 be the same operations as in Corollary 1. Then,

(4.4) COROLLARY 2. C'(u[ x ^ ) = β ; W x A W > ^ ^ e r e ^ t e ί f α < ^ , Ar, R)
(i - 1, 2).

Proof. Let px: (Xx x X2, A, x X2) -> (X:, AJ, p2: ( ^ x X2, X, x Aa) ->
(X2, A2) be projections. Then,

u[ x u[ — pf{u[) U PΪ(u'2) .

Thus,

C ' ^ ; x %J) = C'(pϊu[ U ^%i) - D[{pTu[) U D'2{VUL[)

- p*(Dίuί) U p ί ( A ^ ) - ( D M x Φ % ) .

Here we have used Corollary 1 and the naturality of the cohomology
operations involved.

To apply this to the operations ψέ, recall the way in which these
operations were defined (see § 3 in [9]). We defined a set of "model
operations'\ Pt, which used as coefficient groups only the groups of the
category ^ (see § 2). The operations ψ t were then defined by compos-
ing the operation Pt with coefficient group homomorphisms; that is,
precisely the same pattern as followed in Definition 2.3. Thus, the
operations ψt are defined in the relative case by simply applying the
method given in this section to the operations P t .

Let PJ be the relative operation obtained from P t . We note several
facts needed later.

(4.5) LEMMA. Let ut e Hqt(Xiy At; Z9) (i = 1, 2), where ZΘ e r#. Then

( l ) P'tfa x o - p w x PίW (ί odd).

If t — 2 and Θ is a power of 2, then,
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( 2 ) Pf

2(Ul x u2) = PJOO x P'2{u2)

Here, v is the homomorphism of Z2 to G2(ZΘ) given by v(l2) = θg2(lθ),
and μ is the factor homomorphism Zo -> Z2. The functions Sq and w
are defined respectively in 9.6 and 8.14 of [9].

Proof. The first statement is a consequence of Corollary 4.3 and
the fact that the absolute operations Pt satisfy this formula2. Equation
4.5(2) was remarked in [9; § 13] for the absolute operations Pt, and the
case dim ni odd. But it follows from 8.12 in [9] that 4.5(2) holds in
general. In fact Theorem 8.11 in [9] can be obtained at once from
equation 4.5(2). The extension of the equation to the relative operation
P't, follows then from application of Proposition 4.2.

Combining Proposition 4.2 and 8.2 of [9] we also obtain

(4.6) LEMMA. Let t be an an integer where t — pL pλ (pt prime).
Let u e H2q(X, A; Z). (Z, e %>). Then,

Since it is in fact the relative operation, P't9 we will work with,
from now on we drop the prime, writing only Pt for both the relative
and absolute operation.

Proof of Proposition 4.2. Let Y = K(Gly qτ) x x K(Gn, qn)9

where each K(Giy qt) is on Eilenberg-MacLane space of type (Git qt).
Let π5\ Y~> K(Gjy qό) (j — 1, •••, n), be the projection map and set
ij = π*(Cj)9 where cό is the characteristic class in Hqj,(K(Gj, qj)\ Gj). Let
βj be a base point in K{Gjy q5) and set Y' = (K(Gly gx), ex) x x
(K(Gn, qn)9 en). Let c'j9 7'5 be the equivalent of t5 and 75. Then, Proposi-
tion 4.2 follows at once from the following three lemmas (we keep the
same notation as used in Proposition 4.2)

(4.7) C(u19 , un) = #(A(^i, , un)9 , Dv(uλ, , un))

if and only if

C(719 . . - , 7») = £ ? ( A ( ^ , ?»), •••, Dp(7, . . . , 7 n ) ) .

(4.8) C ' « -, O = E'(D[(u[, , O , , JD;(%J, , < ) )

if and only if

C'Ol, ••-,"?;) = ^ ' Φ K ^ i , , τ ; ) , . . . , D'P(vu . . , τ;))

2 The operations Sβt are easily defined for odd dimensional classes: see [9; §7],
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(4.9) // C(Ίlf , 7n) = E(D£E, , 7J, • , Dp{719 , 7n»

C'(7J, , Tn) = £7'(A(7J, , 7i), , Z);(7ί, , 7^)) .

We give only the proof of Lemma 4.7, the others being entirely
similar. Assume first we are given classes ut e Hqί(X; Gt) (i = 1, , w).
Let fji X-> ϋ^G.,; ĝ ) be mappings such that / * ( O = w,. Set f = fλ x
• •• x /„: X-> F. Then, by naturality, one has

(4.10) (a) C(ulf . , wn) = /*C(7X, . . . , 7n) ,

(b) A(Wi, , ttn) = /*A(7 l f , 7n) (ΐ - 1, , p).

Suppose now that

C(7i, , 7W) = £τ(A(7i, , 7n), , Dp('i> » 7n)) .

Then, by 4.10,

C K , ••-,%„)= /*£?(A(7!, , 7n), , J?^^, , 7n)) .

But J5 is natural with respect to mappings. Therefore,

(71, , Ίn), , Dp(Ίlf , 7n))
(7!, , 7n), , /*AX71? , 7,))

again by 4.10, which completes the proof of this assertion. The proof in
the opposite direction is trivial.

5 The proof of Theorem I. Recall that the operation s$ t is defined
by means of the model operations Pt and coefficient group homomorphisms.
But it is clear that the isomorphism φ, defined in 3.1, commutes with
coefficient group homomorphisms. Thus, it suffices to prove Theorem I
with s$ t replaced by Ptf the operation p replaced by p, and the group
A2]ύ taken to be a group in the category <£f, say A2Iύ = ZΘ.

Assume first that t is an odd prime p. Since φ is an isomorphism,
the proof of Theorem I (ii) consists simply in showing

Ppφ(u) - 0 , u e H\X; Z9).

But this is immediate; for

Ppφ(u) = Pp(v x u) = Pp{v x u) = Pp(v) x Pp(u) ,

by Lemma 4.5(1). Here, v is a generator of H\If /; Z3). However,
Pp(v) = 0, by dimensionality considerations. Thus, Ppφ(u) = 0; and hence,
S(PP) = 0.



PONTRJAGIN OPERATIONS 905

Now, suppose that t is any integer > 1 which is not a power of 2;
say, t = mp, where p is an odd prime. Then, by Lemma 4.6

Ptφ(u) = Pm o Ppφ(u) = Pm(0) - 0 .

Consequently,

S(Pt) = 0 .

Thus, we have proved Theorem J(ii) for the case t is not a power
of 2. Before concluding the proof of part (ii), we must prove part
(i). Let the classes u and v be as above, where u has coefficients in
the group Zθ. If θ is zero or odd, then by Proposition 7.4 in [9], we
have

P2(v x u) = P2(v x u) — {v x uf — ± v2 x u2 — 0 ,

since v2 == 0. Thus, in this case S(P2) = 0. Suppose now that θ is a
power of 2.

Let r] be the factor map Z -> Zθ. Then, v x u — (η*v) x u, where
the right hand side uses the pairing Zβ (g) Zβτ& Zθ. Thus, using Lemma
4.5(2), we have

P2(v xu) = P2(η*v x u) = P2(η*v) x P2(u)

) x μ*w(u) + μ*w{η*v) x

Now, P2{η*v) — 0, w(η^v) = 0 by dimensionality considerations. Also,
since TJ^V is a 1-dimensional class, Sq^η^v) = ξ^v, where ξ is the natural
map Z-+Z2 (see Steenrod [4; 12.6]). Thus,

(5.1) P2(v x u) = v^K^ x μ*w(w)] .

Consider the following commutative diagram:

Z2®Z2^Z2 > G2(ZΘ) ,

where β is the homomorphism of Zθ to G2(ZΘ) given by /9(la) = Θg2(lθ)
(see 2.1). Then, from 5.1,

P2(v xu) = v*ω'*(ζ (x)

= 0)^(1 (x) ^)^[^ (x) w(%

= v x β^w{u)

= v x p(u) , by 2.2 .

Therefore,
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P2φ(u) = P2(v x u) ~ v x p(u) — ΦP(U) .

That is,

This proves part (i) of Theorem I. To complete the proof of the theorem
we must show that

P2rφ(u) = 0 , (r > 1).

But by part (i) of Theorem I and Lemma 4.6, we have

P2rφ(u) = P a r- l P2φ(u) - P a r-l

= P2rsP2φp(u) = P2r-*ΦP(P(U)) = 0 .

Here, we use property 6.6 of the function p, which is proved indepen-
dently in the next section. This completes the proof of Theorem I.

6, The properties of the operation p. We give here the main
properties of the Postnikov square, p.

(6.1) THEOREM. Let X be a space, and let A — Σ,kAk be a p-cyclίc
ring with divided powers. Suppose that u e Hq(X; A2k) (q, k > 0).
Then;

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

p(u)

if order J

= 0, if

P

1 2 S = 2 ι

order A2k is odd or infinite,

is

(i

f*

2p(u) = 0 ,

a homomorphism,

> 1) and 2M = 0, then ρ(u) = 0,

p(p(u)) = 0 ,

p(u) = pf*(u) ,

p(u) = pa (u) ,

where / * is induced by a map f from a space Y to X, and a^ is
induced by a homomorphism a from A to a p-cyclic ring with divided
powers A!.

The proof of Theorem 6.1 falls into 2 parts. Suppose first that we
have proved 6.2 through 6.7 with the operation p replaced by the opera-
tion p, and the coefficient group A2k restricted to be a group in the
category ^ . Then, the proof of 6.2-6.7 for the general case of the

6 With the exception of 6.5 and 6.6, these properties are noted by J. H. C. Whitehead
in [101.
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function p follows at once, using definition 2.3; that is, p = ζ&pv*. In
particular, 6.2-6.5 are simple consequences of the fact that ζ2* and v^
are homomorphisms; 6.6 follows from 6.3 and 6.5, and 6.7 follows from
the fact that / * commutes with all coefficient group homomorphisms.
Finally, to prove 6.8 for the operation py one uses 2.4 and exactly the
same argument as that used to prove 1(9) in § 4 of [9]. Thus, we are
left with proving 6.2 through 6.7 for the operation p. Let ue Hq{K\ Z),
where Zθ e £Γ\ Then,

( i ) p(u) = 0 , if θ is zero or odd.

This follows at once from 2.1. For if 0 is zero or odd, the homomorphism
β is zero.

(ii) 2p(u) = 0

This again is immediate from 2.1; for it is always the case that
2/5 = 0.

(iii) p is a homomorphism

In § 5 we showed that the operation p is the suspension of the
operation P2. But by 7.4 in [6], all operations which are suspensions are
homomorphisms.

(iv) If θ = 2* (i > 1), and 2u = 0, then p(u) = 0.

Since 2u = 0, we may use Lemma 13.3 of [9]: namely, there are
classes x e Hql{K; Z2) and y e Hq(K; Z2) such that

u = λ*δ*(aθ + v*{y) ,

where δ^ is the coboundary associated with the exact sequence

0 >Z-^Z >Z2 >0,

λ is the natural factor map Z—> Z}1 and v maps Z2 to Zθ by v(l2) =
(0/2)lfl (recall that 0 = 2*, i> 1). Hence, by (iii) above,

p(u) = pk^S^x) + pv*(y)

by 2.4 and (i) above, since δ^^) has integer coefficients. Now,

by 2.2. We show that p(u) — 0 by showing that

G2(v)β = 0 .
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From Definition 2.1 we recall that β maps Z2 to G2(Z2) by β(l2) =
2g2(l2). Hence, using 1.21 and 1.24 in [9],

G2(v)β(l2) = 2G2(v)g2(l2) = 2g2(vl2)

= 2g2((θl2)lΘ) = 2(tf2/4)#2(l ) - (#2/2)l2, = 0 .

For, 6>2/2 = 22ί/2 = 22i-1; and, 2(9 = 2 i+1. But by hypothesis, £ ^ 2; thus
2£ - 1 ^ £ + 1.

(v) p(p(^)) = 0

This follows at once from (ii) and (iv) above,

(vi) f*p(u) = pf*(u) .

This is simply a special case of Theorem 3.6 of [7]. This, then
completes the proof of Theorem 6.1.

We consider one more property of the operation p: namely, its
behaviour with respect to suspension. We continue to denote by S(C)
the suspension of a cohomology operation C.

(6.9) PROPOSITION. S(ρ) — 0, where 0 denotes the trivial cohomology
operation.

Proof. By the same reasoning as given in § 5, it sufficies to prove
Proposition 6.9 with p replaced by the operation p, and the coefficient
group A21c taken to be a group in the category vΓ, say A2k = Z. Thus,
we need simply show that pφ(u) = 0, where u e HQ(L; Zxi). Now by
Nakaoka [2] we have4:

p(Vl x v2) = P2(vL) x p(v2) + p(vλ) x P2(v2) ,

for classes vt e Hqι{Xi} A,; Z) (£ = 1, 2).
Thus,

pφ(u) — p(v x u) = P2(v) x p(u) + p(v) x P2(u) — 0 ,

since P2(v) — p(v) = 0 by dimensionality considerations. Here, v is the

image of v in H\I, /; ZΘ). Hence, S(p) = 0, as was to be proved.

7 The relation SS(C) = Cδ. We give here a theorem, whose proof
is due to N. E. Steenrod.

(7.1) THEOREM. Let C be a cohomology operation, and let 8 be the
relative cohomology coboundary operator. Then,

4 Nakaoka only proves this for the case dim vu v2 even; but the result is true in
general, as is easily shown using Definition 2.1.
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8S(C) = Cδ ,

where S(C) is the suspension of C.
We sketch the proof; let X be a space and A c X a subspace. Let

X' denote the mapping cylinder of the inclusion map A c X. That is,
unite I x A and X by identifying 1 x A with A in X. Let A! = 0 x A.
The inclusions

(X', A') > (X', / x A) < (X, A)

induce isomorphisms of the cohomology sequence of (X, A) and (X', Ar)
with local cosfficients. Thus, we may discuss the behaviour of the
coboundary δ in the cohomology sequence of the pair (X', A').

Consider the following hexagonal diagram (see [8], page 42):

(7.2)

mo x

x X, 1 x

H
n*/

/

k* H"

X)

\ *
H'*(I >

V

*
1

X

3
(

(ϊx

1
•x,

ι* /
X)

ί X

\
\

m

X)

'1 x

k*

I x

X)

X, 0 x X)

Here all homomorphisms other than δ, 8lf and 82 are induced by inclusions.
Standard arguments, using exactness and homotopy equivalence, show
that the arrows around the peripheries are isomorphisms. We agree to
identify Hq(X) with HQ(0 x X) by sending u~> e x u, where e is the
unit of £Γ°(0; Z). At the end of this section we will use diagram 7.2
to prove the following lemma:

(7.3) LEMMA. Let φ be the function defined in 3.1. Then,

Φ = W-1 ,

where kf, 81 are the functions defined in diagram 7.2
Notice that this proves Lemma 3.2; for the functions 819 kf are

isomorphisms. Now let g*: Hq+ι(X', A! U X)~^Hq+1(I x A, I x A) be
induced by the inclusion. Using the fact that / is a strong deformation
retract of a neighborhood of / in I (see [8]; Chapter 1, 11.6), together
with excision, one shows that g* is an isomorhism onto.

(7.4) LEMMA. The following diagram
induced by the inclusion

is commutative, where /* is
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H-+ι(I x A, ϊ x A)^->H"+1(X', A' U X)

Hq(A') δ >H«+\X\ A') .

Thus δ = f*g*~ιΦ.
This is a consequence of Lemma 7.3 and commutativity relations in

a slightly enlarged diagram. We omit the details.
The proof of Theorem 7.1 is an immediate consequence of Lemma

7.4. For let u e Hq(A'). Then, by this lemma,

CS(u) = Cf*g

Using the naturality of the operation C, we have

Cf V-ty(*0 = /

But by Definition 3.1, Cφ = φS(C).
Thus,

C8(u) - fg^ΦSiCXu) = 8S(C)(u) ,

again using Lemma 7.4. This completes the proof of Theorem 7.1.

Proof of Lemma 7.3. We apply diagram 7.2 to the case X— 0,
q = 0, and coefficient group = integers. Then, the unit class of ίΓ°(/; Z)
can be represented as a sum vQ + v19 where

v0 = ifkf-1df(vQ + Vj)f vx = ifkf^dfiva + vλ).

Thus,

δ(v0) = - h(vλ) = v = a generator of ff^/, /; Z). Therefore, by
Definition 3.1,

φ(u) = V X U = (δ^o) X U .

But by the axioms for the cross-product, we may write

(Sv0) x u — 8(v0 x u) .

Furthermore, we have

vQ = i?k?-\e) ,

where e = <if(̂ 0 + ̂ ) = unit of H°(0; Z). Thus,

δ(τ;0 x u) = Siifkf-'ie) x u)

= Siϊkϊ'Xe x u) = hxk?-\e x u) .
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Here we have used the naturality of the cross-product and the commuta-
tivity of diagram 7.2. If we now identify Hq(X) with HQ(0 x X) by
sending u-> e x u, we then have

Φ(u) = 8(v0 x u) = SM'1^) ,

as was asserted.
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