SOME CONNECTIONS BETWEEN CONTINUED
FRACTIONS AND CONVEX SETS

ROBERT SEALL AND MARION WETZEL

The purpose of this paper is to develop certain connections between
the continued fraction solutions and the convex set solutions to some of
the moment problems. In particular, we shall develop some relations
between the work of Wall [3], [4] on continued fractions and the work
of Karlin and Shapley [1] on convex sets. The paper is divided into
two parts:

I. Stieltjes-type continued fractions and convex sets.

II. Jacobi-type continued fractions and convex sets.

Two characterizations of the moment problem for the interval (0, 1),
one by Riesz [2] in terms of convex closures and one in term of Hankel
forms, are well known. The work of Karlin and Shapley [1] shows the
equivalence of these two characterizations. A third characterization in
terms of a Stieltjes-type continued fraction has been given by Wall [3],
[4]. In part T we give an interpretation of the parameters in this con-
tinued fraction in terms of ‘‘distances” in certain convex bodies. This
interpretation, through the work of Karlin and Shapley, immediately
shows the equivalence of all three characterizations.

Solutions of the moment problem for the interval (—1, 1), in terms
of the Riesz condition and Hankel forms, are also well known. In part
II we give a third solution in terms of a Jacobi-type continued fraction.
Again, through an interpretation of the parameters in this continued
fraction in terms of ‘‘distances’ in certain convex bodies and an exten-
sion of the work of Karlin and Shapley, the equivalence of the three
characterizations is immediate.

I. STIELTJES-TYPE CONTINUED FRACTIONS
AND CONVEX SETS

1. The monotone Hausdorff moment problem. A sequence of real
numbers {¢,}(n =0,1,2, ---) is called a monotone Hausdorffi moment
sequence if there exists a monotone nondecreasing real function ¢(u),
0 <u =<1, such that

Cn = Slu”qu(u)’ n = O, 1, 2’ e,
0
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The problem of determining such a function ¢(u) is known as the mono-
tone Hausdorff moment problem. We shall assume throughout part I
unless otherwise designated that ¢, = 1.

Wall [3], [4] has shown that a sequence {¢,} is a monotone Hausdorff
moment sequence if and only if the power series

P(z) = > c2"
n=0
has a continued fraction expansion of the form

(1.1) 1 (1—gJ)9z (- g)9=

e e

1- 1 - 1 = 7

where 0 <g,<1, p=20,1,2,..-. We shall agree that the continued
fraction terminates with the first identically vanishing partial quotient.
The sequence {(1 — g,-)9,i(p =1,2,3, ---) is called a chain sequence and
the numbers ¢, are called the parameters of the chain sequence. In
general the parameters are not uniquely determined and we designate
the minimal set of parameters by m,. In this case m, =0 and (1.1)
takes the form

(1.2) 1 mz (L—m)mz (1—m)mgz
1-1— 1 _ 1 _

Riesz [2], [1], [3] proved that a sequence {¢,} is a monotone Hausdorff
moment sequence if and only if the point (¢, ¢, -+, ¢,), n=1,2,3, ---,
is in the convex closure of the arc whose parametric equations are

x, =t
(1.3) x, = t,

x, =1, 0=t<1.

The geometry of these convex bodies is developed rather fully in the
work of Karlin and Shapley [1].

2. The connecting theorem. Before stating the theorem which
connects continued fractions with convex bodies it is necessary to indicate
some special notations for the Hankel determinants. We set

le e,

(2.1) CCy  +r Cpny
427;: e ) %:0,1,2,"',

CpCpsr *** Cop
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C, Cy e Cpiy
c2 03 e Cn+2

(2.2) Aypar = ces , n=20,1,2, +--,
Cpt+1 Cpsg *** Copay (‘4‘1 = 1) ’
C; — Cy Cc, — Cq ceeCp — Cpay
€, — € € — ¢, e iy — Cora

(2.3) Ayy =  n=1,2.3 ...,
Cn = Cpa1 Cpar = Cnay =% Con—1 — Cin (d_o = 1), and
1—c¢ ¢, — Gy cee €y Cpug
C; — Cy C,— Cy =+ Cpy1 — Cpis

(24) Z:mﬂ: s s n=20,1,2---,
Cn — Cp+1 Cps1 — Cpaz *** Cop — Copuy (2—1 - 1) .

It is well known that a sequence {¢,} is a monotone Hausdorff
moment sequence if and only if the Hankel forms

n n
ul -
2L Cia %y, Civju10i%; ,
is7=0 i.7=0
-1 n
-;Zo (Cisger — Civyaa)ily, ;}lo(cm — Ciaga )T,
i j= =

are all positive semidefinite. In (2.1) replace ¢,, by ¢, and in (2.2)
replace €y i1 BY Coper.  Setting 4,, and 4,,., equal to zero, we have the
single relation

(25) Cp = Cp — An’ %21,2,3,"',

provided 4,_, # 0. Similarly, (2.3) and (2.4) yield

(2.6) En:cn"" Any /n:1y273""9

provided 4,.,# 0. If the sequence {c,) is a monotone Hausdorff mo-
ment sequence, then the quantities ¢, and ¢, have been interpreted as
the ‘““‘downward’’ and ‘“‘upward’’ projections, respectively, of ¢, on the
boundary of the corresponding convex body [1].

We can now state the following theorem:

THEOREM 2.1. If the sequence {c,} is a monotone Hausdorff moment
sequence, then the elements and the minimal parameters in the continued
fraction (1.2) can be written in the forms
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2.7) Mn= (1= My ym, = 2= 5 =1,23 ..., (c, = 0),
071—1 - Qn—l
and
(2.8) my=n"C% 1 gy ="l o _123 ...,
Cp — Qn Cp — Cn

From the proof it will be clear that a more general theorem is true.
If {¢.}, (¢, = 1), is an arbitrary sequence of real numbers and its cor-
responding Stieltjes-type continued fraction is written in the form (1.2),
where no longer it is necessary that 0<m, <1, n=1,2,3, ---, the
relations (2.7) and (2.8) are still valid.

If {¢,} is a monotone Hausdorff moment sequence, then the m, can
be interpreted as the ratio of the ‘‘distance’” of ¢, to the lower boun-
dary to the ‘‘distance’’ between the upper and lower boundaries of the
corresponding convex body. Similar interpretations can be given to the
a, and (1 — m,). By Theorem 2.1 the equivalence of the condition in
terms of Hankel forms and Wall’s characterization in terms of the con-
tinued fraction (1.2), for the existence of a monotone Hausdorff moment
sequence, is apparent.

Proof. The proof depends upon the following lemma:

LEMMA 2.1. The determinants in (2.1), (2.2), (2.3), and (2.4) satisfy
the relation

(2.9) 4k2k = Zk+14k—l + é’.k+12k—19 k=1,2,3,--.

We shall indicate two proofs to this lemma.

Proof (1). By a substitution and an equivalence transformation, we
write the continued fraction (1.2) in the form

1 a a a

2.10 e L T
( ) z—-—1 -2z — 1 —
where a, =1 —m,_)m,, k=1,2,3,.--, (my,=0). The recurrence
formulas for the denominators of the continued fraction (2.10) are given by

(2.11) B,i(2) = By-i(2) — Qg By—o(2), k=1,2,3,---,

(Bo(z) = 1) ’
and

(2.12) By41(?) = 2By(2) — @ By-1(?), k=0,1,2, .-,
(@,=1, B_.,(2) =0, By(z)=1).

Furthermore, we have
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2.13) Bu(p) = Zul® k=1,23, -,
2k-2
and
(2.14) Byon(2) = %M(Z_), k=012 ---,
2k -1

where 4,,_, and 4,,_, are obtained from (2.1) and (2.2), respectively,
and we define

1 ¢ ooy 1

(215) ./_1,216(2) =|C; C3  c0c Cyn 2’ ’ k= 1; 2’ 3’ )

Cp Cra1*** Copoy 27

and
¢, € v, 1
C, €y +ve Cray .
’ =1, 2! 37 *t %y
(2.16) dya(R) =[5 € v Cpan? 1

Chs1 Chag = Cyp 2°

By a sequence of elementary operations on 4,.,(2) and 4,..,(z) it is seen
that 4,(1) = 44—, £ =1,2,3, ---.
Substituting this result in (2.13) and (2.14) we have

(2.17) By(1) = de=1 k=1,2,3, ---.

Zk-2

We also note that

4._.4
2.18 :_—ﬁ—i_, ]:1,2,3’0--, 4_2:1 .
@19 T A de, i ( :
Substituting the results of (2.17) and (2.18) in (2.11) and (2.12), the re-
lation (2.9) follows immediately.

Proof (2). By Laplace’s Development and a sequence of elementary
operations, Lemma 2.1 can be established directly. We shall omit the
details.

The proof of Theorem 2.1 now follows. Using (2.5) and (2.18), the
relation (2.7) is immediate.

The relation (2.8) is established by induction. Assume that
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0=m, <1, n=123, -.-. Using (2.5), (2.6), and Lemma 2.1 it is
clear that

Cc, — ¢C ¢, — C
m, = a, = -2 o =4 2T
Gy — G ¢, — 6

C; — Gy
52*92.

Now assume that m, = %c;i_ Again using (2.5), (2.6), and Lemma 2.1
kT Yk

where ¢, = 1 and we define ¢, to be zero, and m, =

Ay +1
1—m,
in a chain sequence [3], the induction is completed. If m, =1 then m, .,
is defined to be zero. In this case the corresponding moments fall on
the upper and lower boundaries of their respective convex bodies.

in the relation m,,, = , the definition for the minimal parameters

3. Some results from the theory of chain sequences. Regarding
the uniqueness of the parameters g, in the continued fraction (1.1) and
the location of the moments in the convex bodies we have the following
theorem:

THEOREM 3.1. Given a monotone Hausdor(] moment sequence, {c,},
let

(3.1) lim % — % — 4.
Cr, — Cy

If ¢ > 1 the parameters g, in (1.1) are uniquely determined, and if
q < 1 the parameters are not uniquely determined. In case ¢ =1 the
parameters may or may not be unique.

Proof. Wall [3] proved that the parameters in a chain sequence are
uniquely determined if and only if the series

1 ) MMy === My,
= ey B p———

diverges. Making use of this result and Theorem 2.1 our proof is im-
mediate.

We designate the maximal parameters of the chain sequence in the
continued fraction (1.1) by M,. The maximal parameters can be inter-
preted in terms of ‘‘distances’” in the convex bodies by the following
theorem:

THEOREM 3.2. The maximal parameters M, in the continued frac-
tton (1.1) can be written in the form
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(3.2) M= &= L S=Cqr,) n=123,-.-,
Cp — Cyp Cpn — Cyn
where
(3.3) T, =1+ i C_n+1 — Cnuy fn+z — Cnss ., fr — ¢, ,
r=n+l Cpyy — Cpiy Cpaa — Cpay C, — C;
in the case that the a,., r=1,2,38,---, of (2.9) are positive. If

Qpi1y Apas *°°y Upy, are positive, a,..., = 0, (K > 0), and m,,, <1, then
the summation in (3.3) runs only to »n -+ k.

Proof. Wall [3] introduced an expression of the form (3.3) in dis-
cussing maximal parameters. Using his results and Theorem 2.1 our
proof is immediate.

II. JACOBI-TYPE CONTINUED FRACTIONS
AND CONVEX SETS

4, The ‘“‘extended’”’” monotone Hausdorff moment problem. A se-
quence of real number {¢,})(n =0,1,2, ---) shall be referred to as an
“‘extended’”’ monotone Hausdorff moment sequence if there exists a
monotone nondecreasing real function ¢(u), —1 < u < 1, such that

¢, = S wrd(w), =012 .

The problem of determining such a function ¢(u) shall be referred to
as the ‘‘extended’” monotone Hausdorff moment problem. Again we
shall assume throughout part II unless otherwise designated that ¢, = 1.

The work of Riesz [2] can be applied to the ‘‘extended’” monotone
Hausdorff moment problem. A sequence {¢,} is an ‘‘extended’’ monotone
Hausdorff moment sequence if and only if the point (¢, ¢, ---, ¢,), 7 =
1,2,3, .-+, is in the convex closure of the arc whose parametric equa-
tions are given by (1.3) where —1 < ¢ < 1.

Let

(4.1) 1 a2’ a.z’ .
bz+1 —bz+1—bz+1—

be the Jacobi-type continued fraction expansion of the power series
P(z) = i €™
n=0

We shall agree that the continued fraction terminates with the first
identically vanishing partial quotient. We shall show that if the sequence
{c,} is an ‘‘extended’’ monotone Hausdorff moment sequence, then the
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a, and b, of (4.1) have the form of a generalized chain sequence and
the parameters can again be represented in terms of ‘‘distances’ in
certain convex bodies.

5. The connecting theorem. As in §2, it is necessary to indicate
some special notations for the Hankel determinants corresponding to an
‘‘extended’”” monotone Hausdorff moment sequence. We set

1 ¢, e Cy
€ Gy ccc Cpuy
(5'1) 4275: ce ’ %:071r2)“'7
Cp Cps1°°* Cup
1+ ¢ ¢ + ¢, cee Cy F Cpan
GF+6 Gt ©0r Cprr T Cpas
52) A _ e ’ /n:()vlyzr"r
G2 A= (4= 1),
Cn T Cpt1 Cpar T Cpwy *** Cop + Copy
1—oc, € — Gy c0t Cpo1 — Cpay
€ — G ¢y, — ¢4 st Gy Cpay
(53) Z = cse ’ TL~:1,2,3,---’
" (4, = 1), and
Cp-1—Cps1Cp — Cpay *** Cop—y — Cyp
1—o¢ € — Gy c0t Cp — Cpuy
€ — C G — G *0t Cpvr — Cpaog
(54) Z’ . e ’ %:0,1,2,"',
. o+l T -
4., =1).
Cn — Cn+1 Cps1 — Cpay *°® Cop — Copn

The sequence {¢,} is an ‘‘extended’’ monotone Hausdorff moment
sequence if and only if the Hankel forms

n n
D CiayTilly, 2}1 (Civy + Coayrr)ri;

i,Jj=0

)=

= o

n

(Ciag — Cinjsa)®ily .;0 (Cias — Conyrr);5
0 7=

S

%,

<
)

are all positive semidefinite. As in part I replace ¢, by ¢,, in (5.1) and
Cons1 DY Copsy in (5.2). Setting 4., and 4,,., equal to zero, we have the
single relation

(5.5) Cp = C, — , n=123,---.

Similarly, (5.3) and (5.4) yield
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(5.6) G, = ¢, + 2o, =123, - .
An~2

The methods of Karlin and Shapley [1] can be applied so that if the
sequence {c¢,} is an ‘“‘extended’’ monotone Hausdorff moment sequence
then the quantities ¢, and ¢, of (5.5) and (5.6) are again interpreted as
the “downward” and ‘“‘upward’’ projections, respectively, of ¢, on the
boundary of the corresponding convex body.

We can now state the following theorem:

THEOREM b.1. If the sequence {c,} is an ‘‘extended’ monolone
Hausdorif moment sequence, then the elements a, and b, in the continued
fraction (4.1) can be written in the forms

G ay = dml —m, Y1 —1), n=123, -,
Oémngl! (mo—;O)’ 0§ln§1,

(5.8) = Ol n=1,2238 +-,(c,=0),
Capn-z — Can -2
where
(5.9) m, = S = Cm [ — Cwm=1 = G-y
" E:m — Cop ’ * Ezn—l — Cop-1 ’
1__mn:-é2n—czn, 1__l :62"’—1_02"—1,%:1,2,3,""y
Ezn — Cop * 6271.—1 — Cop1
and
(5.10) by =1~ 2m,,(1 —1,_) — 2(1 — m,_)l, n=1,238, -,
(lo = My, = 0) ’
(511) =1 Con-1 = Cop—1 N Qm—z’ n = 2’ 3’ 4’ cee
Con—2 = Cop—s Con—3 — Cap-s

As in part I it will be clear that a more general theorem is true.
If {e.}, (¢, = 1), is an arbitrary sequence of real numbers and its corre-
sponding Jacobi-type continued fraction (4.1) is written in the form
that the a, and b, are given by (5.7) and (5.10), respectively, where
ly, = m, = 0 but it is no longer necessary that 0 <1, <1 and 0 < m, £ 1,
n =128, -+, then the relations (5.8) and (5.11) with (5.9) holding are
still valid.

If {¢,} is an ‘‘extended’’ monotone Hausdorff moment sequence, the
geometric interpretations of the a,, b, [, and m, are apparent.

Proof. The proof depends upon the following lemma.

LEmMA 5.1. The determinants in (5.1), (5.2), (5.8), and (5.4) satisfy
the relations
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(5’12) 42k+1£’2lﬁ+1 = JZIC'H!é’ZIC + 42]\3+Zd—2h’

_ _ _ k=0,1,2,.--.
24%/—/1215 = Azlc+1421c—1 + dogsrdos-1
Proof. By Laplace’s Development and a sequence of elementary
operations, Lemma 5.1 can be established directly. We shall omit the
details.
The proof to the theorem now follows. A well known formula for
the a, is given by

4,,4 4,
(5.13) a, = —=wk-e lc:2,3,4,---,(a :._~>.
’ 42/0—24%:—2 '
The formulas (5.5) and (5.13) yield (5.8).
By a substitution and an equivalence transformation, we write the
continued fraction (4.1) in the form

(5.14) 1 a, @,
b+2z —b,+2 — b, +2 —

The recurrence formula for the denominators of the continued fraction
(5.14) is given by

(5.15) Bu(2) = (b, + 2)Bus(z) — s Bui(2),
k= 1’ 2’ 3; ] (a‘ﬂ = 17 B—-l(z) = Oy Bo(z) = 1) .

Furthermore, we have

(5.16) By(z) = 22(d) k=123 -,
Aog—s

where 4,,_, is obtained from (5.1) and we define 4,,(2) the same as in

(2.15). By a sequence of elementary operations on 4,,(2) it is seen that

dy(—1) = (=14, £k =1,2,3, ---. Substituting this result in (5.16)

we have

(5.17) B(—1) = (=Dt k=1,2,3, .
Z25-2

Setting z equal to —1 in (5.15), using the formulas (5.13) and (5.17),

we can solve for b, and obtain (5.11). We note that if we had set z

equal to 1 and followed a similar procedure, we would have obtained

the formula

(5.18) b, = Con-1 — Can-1 + fm—z — Con-a __ 1, n=2234, .

Con-2 — Cap-g Con-3 — Cop-3

Assume that 0<m, <1, 0510, <1, n=1,2,3,---. Using (5.5),
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(5.6), and (5.9) it can be shown directly that b, =1— 2], and a, =
4ml,(1 —1). Now by using (5.5), (5.6), (5.9), and Lemma 5.1, (5.11)
reduces to (5.10) for n =k, k =2, 8,4, ---. A similar statement applies
to (6.8). If m, =1 then m,,, is defined to be zero. A similar state-
ment applies to [,. In either case the corresponding moments fall on
the upper and lower boundaries of their respective convex bodies.

If (5.18) had been used in place of (5.11) we note that (5.10) would
have been obtained in the form

(5.19) by = 2(1 = 1)1 — Mmyes) + 2myilyey — 1,
n:1y2737 e ,(l0=m0:0).

By Theorem 5.1 and the condition in terms of Hankel forms, we
can now state a theorem which characterizes the existence of an ‘‘ex-
tended’’ monotone Hausdorfl moment sequence in terms of continued
fractions. This theorem is analogous to Wall’s solution [3], [4] for the
regular monotone Hausdorff moment sequence. By Theorem 5.1 and an
extension of the work of Karlin and Shapley, the equivalence of the
continued fraction solution and the condition in terms of Hankel forms,
and hence convex bodies, is apparent.

THEOREM 5.2. The sequence {c,} is an “‘extended’” monotone Hausdor (i
moment sequence if and only if the power series

P(z) = f;cz

has a Jacobi-type continued fraction (4.1) expansion where the a, and
b, are given by (5.7) and (5.10), respectively, and 1, =m, =0, and
00,1, 0=Em, =1, =123, ---.

It should be pointed out that P(2) = S, ¢.2™ is a moment generat-
ing function for the ‘‘extended’” monotone Hausdorff moment problem

if and only if Q(w) = (1 + 2)P(z), where w = 1jfz, is a moment gener-

ating function for the regular monotone Hausdorff moment problem.
From these relations it is observed that the 7, and m, of Theorem 5.1
are equal to m,,., and m,,, n=1,2,3, ---, respectively, of Theorem
2.1. These results are obtained by contraction.

It can also be noted that {c,} is an ‘‘extended’’ monotone Hausdorff
moment sequence if and only if

fdn 2n ’ dn = 3 < " ') ’
{d./2"} ]z_;; n—j Gy
is a regular monotone Hausdorff moment sequence. This result can be

obtained by comparing coefficients in P(z) and Q(w) under the indicated
transformation.
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6. The continued fraction of the first differences. We prove the
following theorem:

THEOREM 6.1. If

1 a,z? a2’ ..
bz+1 —bz+1 —bz+1 —

6.1 1+4+ecz+er+ oo~

where

(6.2) b,=1—2m,,(1 —1,,) —2(1 —m,- ), n=1,2,3, .-+,
6.3) a,=4m,(1—m,)H,A1-1), n=1,23,-.--, (l,=m,=0),
then

af arz? afz .
bfz +1—bfz+1— bz +1—

(6.4) dec, + deg + det 4 oo0 ~

.
’

where dc, = Cpoy — €y =1,2,8, -+, (de, =1 — ¢,), and

(6.5) b¥ =1—-2[,(1 — m,y),

bf=1-2m,,1 -1, — 2[,0 — m,), n=2384,---,
(6.6) ar =2(1-1,),

af =41, — 1. )m,(1 — m,), n=12,3 .0,

Proof. In order to prove the theorem it is necessary to note some
determinants for the sequence {4¢,} corresponding to 4,, and 4,,., of
(5.1) and (5.2), respectively, for the sequence {c,}. Noting (5.3) and
(5.4) we observe that

(6.7 A = dygrry Br = Ay k=0,1,2:--.
We observe directly that

af =1—¢, = de,=2(1—-1).
Using (5.13) and (6.7) we note that

(6.8) ay = R — A_—Zlc+1d_2k—3 .

X *
42k—242k—2 AEk—ldﬂlc—l

The relations in (6.6) can now be established by (5.5) (5.6), (5.9), and
Lemma 5.1.
Now, by (5.5), (5.10), (5.11), and (6.7),

* E
Ao 4;‘;—4 _ Ajrc-zéﬁk-ﬁ

* * * K
4216—2 .4216—3 427(-'3 _4276‘4

(6.9) br=1-—
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— 1 — ZEIG 4_276"3 — A:2k"1 42]6"‘4 s
AZk-l A?k-? A‘Zk—
k=1,2,38,.--, (éﬁfl:Afz: 17_4>f3=0) .

2 AZk—S

Now again by (5.5), (5.6), (5.9), and Lemma 5.1, the relations in (6.5)
follow.

We note that a similar proof could be given for the corresponding
theorem for a regular monotone Hausdorff moment sequence, thereby
giving another proof to this well known result [4].

REFERENCES

1. S. Karlin and L. S. Shapley, Geometry of moment spaces, Mem. Amer. Math. Soc. no
12 (1953). '
2. F. Riesz, Sur certain systems singuliérs d’equations inlégrales, Ann. de rfic. Nor.»
(3) 28 (1911), 34-62.

3. H. S. Wall, Analytic theory of continued fractions, Van Nostrand, 1948.

4. H. S. Wall, Continued fractions and totally monolone sequences, Trans. Amer. Math,
Soc., 48 (1940), 165-184.

THE OHIO STATE UNIVERSITY
DENISON UNIVERSITY








