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The purpose of this paper is to develop certain connections between
the continued fraction solutions and the convex set solutions to some of
the moment problems. In particular, we shall develop some relations
between the work of Wall [3], [4] on continued fractions and the work
of Karlin and Shapley [1] on convex sets. The paper is divided into
two parts:

I. Stieltjes-type continued fractions and convex sets.
II. Jacobi-type continued fractions and convex sets.
Two characterizations of the moment problem for the interval (0, 1),

one by Riesz [2] in terms of convex closures and one in term of Hankel
forms, are well known. The work of Karlin and Shapley [1] shows the
equivalence of these two characterizations. A third characterization in
terms of a Stieltjes-type continued fraction has been given by Wall [3],
[4]. In part I we give an interpretation of the parameters in this con-
tinued fraction in terms of "distances" in certain convex bodies. This
interpretation, through the work of Karlin and Shapley, immediately
shows the equivalence of all three characterizations.

Solutions of the moment problem for the interval ( — 1, 1), in terms
of the Riesz condition and Hankel forms, are also well known. In part
II we give a third solution in terms of a Jacobi-type continued fraction.
Again, through an interpretation of the parameters in this continued
fraction in terms of "distances" in certain convex bodies and an exten-
sion of the work of Karlin and Shapley, the equivalence of the three
characterizations is immediate.

I. STIELTJES-TYPE CONTINUED FRACTIONS
AND CONVEX SETS

1Φ The monotone Hausdorff moment problem* A sequence of real
numbers {cn}(n — 0, 1, 2, •) is called a monotone Hausdorff moment
sequence if there exists a monotone nondecreasing real function φ(u),
0 ^ u ^ 1, such that

cn = I undφ(u), n = 0, 1, 2, .
Jo
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The problem of determining such a function φ(u) is known as the mono-
tone Hausdorff moment problem. We shall assume throughout part I
unless otherwise designated that c0 = 1.

Wall [3], [4] has shown that a sequence {cn} is a monotone Hausdorff
moment sequence if and only if the power series

= Σ cnz
n

71 = 0

has a continued fraction expansion of the form

(1.1)
T -

where 0 <̂  gp ^ 1, p = 0, 1, 2, . We shall agree that the continued
fraction terminates with the first identically vanishing partial quotient.
The sequence {(1 — gp-ι)gp)(p = 1, 2, 3, •) is called a chain sequence and
the numbers gp are called the parameters of the chain sequence. In
general the parameters are not uniquely determined and we designate
the minimal set of parameters by mp. In this case m0 — 0 and (1.1)
takes the form

(1.2) 1 mxz (1 —

T - ~Γ -

Riesz [2], [1], [3] proved that a sequence {cn} is a monotone Hausdorff
moment sequence if and only if the point (c19 c2, , cn), n = 1, 2, 3, ,
is in the convex closure of the arc whose parametric equations are

x1 = t,

(1.3)

xn = tn, 0 ^ t ^ 1 .

The geometry of these convex bodies is developed rather fully in the
work of Karlin and Shapley [1].

2, The connecting theorem. Before stating the theorem which
connects continued fractions with convex bodies it is necessary to indicate
some special notations for the Hankel determinants. We set

l c ,

(2.1)
n = 0, 1, 2,
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(2.2) Δ 2 n + ι =

(2.3)

(2.4)

1 — Ci Ci — C2

C1 C 2 C 2 C 3

n = 0,1,2,"-,
(J-! = 1) ,

, ra=l,2, 3, .

(zΓ0 = 1), and

= 0, 1, 2,

-ι = 1)

It is well known that a sequence {cn} is a monotone Hausdorff
moment sequence if and only if the Hankel forms

2L
i, 3 = 0

v
Z-J V^ί + j Ci + j + l)%ί%j

are all positive semidefinite. In (2.1) replace c2w by c2w, and in (2.2)
replace c2n+1 by c2n+1. Setting A^n and ^2W+1 equal to zero, we have the
single relation

(2.5) An n = 1, 2, 3, ,

provided Δn_2 Φ 0. Similarly, (2.3) and (2.4) yield

(2.6) Vft vn -f ,

A
n=l,2, 3,

provided z/w_2 ^ 0. If the sequence {cn} is a monotone Hausdorff mo-
ment sequence, then the quantities cn and cn have been interpreted as
the "downward" and "upward" projections, respectively, of cn on the
boundary of the corresponding convex body [1].

We can now state the following theorem:

THEOREM 2.1. // the sequence {cn} is a monotone Hausdorff moment
sequence, then the elements and the minimal parameters in the continued
fraction (1.2) can he written in the forms
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(2.7) an = (1 - m^m* = Cn ~ Qn , w = 1, 2, 3, , (c0 = 0) ,
@n -1 Q_n - 1

and

(2.8) mn = c " ~ - w , 1 - m n = ! w " " c > > , w = 1, 2, 3, . . . .

From the proof it will be clear that a more general theorem is true.
If {cn}, (cQ = 1), is an arbitrary sequence of real numbers and its cor-
responding Stieltjes-type continued fraction is written in the form (1.2),
where no longer it is necessary that 0 ^ mn <̂  1, n — 1, 2, 3, , the
relations (2.7) and (2.8) are still valid.

If {cn} is a monotone Hausdorff moment sequence, then the mn can
be interpreted as the ratio of the ''distance77 of cn to the lower boun-
dary to the ''distance77 between the upper and lower boundaries of the
corresponding convex body. Similar interpretations can be given to the
an and (1 — mn). By Theorem 2.1 the equivalence of the condition in
terms of Hankel forms and WalΓs characterization in terms of the con-
tinued fraction (1.2), for the existence of a monotone Hausdorff moment
sequence, is apparent.

Proof. The proof depends upon the following lemma:

LEMMA 2.1. The determinants in (2.1), (2.2), (2.3), and (2.4) satisfy
the relation

(2.9) A~Δk = Λ + A - i + ά*+i4*-» fc = 1, 2, 3, .

We shall indicate two proofs to this lemma.

Proof (1). By a substitution and an equivalence transformation, we
write the continued fraction (1.2) in the form

(2.10) — -^- -^- -^_
2 — 1 — 2 — 1 —

where ak — (1 — mfc.1)m]CJ k — 1, 2, 3, , (m0 = 0). The recurrence
formulas for the denominators of the continued fraction (2.10) are given by

(2.11) B2k(z) = B^(z) - a%^B^l%\ k = 1, 2, 3, . . . ,

(B0(z) = 1) ,

and

(2.12) B2k+1(z) = zB2k(z) - a2kB2k^(z), k = 0, 1, 2, . . ,
(α0 - 1, B.λ{z) = 0, B0(z) = 1) .

Furthermore, we have
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(2.13)

and

(2.14)

where Λ2A._2 and
and we define

(2.15)

and

(2.16)

D fa) _ ^2/bW
±->2k,\K/) — " t

ά m-2

= 1,2,3, . . . ,

= 0, 1, 2, ,

^ - I &**e obtained from (2.1) and (2.2), respectively,

C2h^ Zh

= l,2, 3,

1 °2

CQ t/4

fc + i Cfc+2 ^2fc

By a sequence of elementary operations on 4,Ά{Z) and

that Δk(l) = Δt-lt ft = 1,2,3, •••.
Substituting this result in (2.13) and (2.14) we have

(2.17)

We also note that

Bk{l) =

fc = 1,2,3, ••-,
(4(2) = 1)

it is seen

= 1, 2, 3,

(2.18)
A A '
fifc-2 iifc-1

Substituting the results of (2.17) and (2.18) in (2.11) and (2.12), the re-
lation (2.9) follows immediately.

Proof (2). By Laplace's Development and a sequence of elementary
operations, Lemma 2.1 can be established directly. We shall omit the
details.

The proof of Theorem 2.1 now follows. Using (2.5) and (2.18), the
relation (2.7) is immediate.

The relation (2.8) is established by induction. Assume that
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0 ^ mn < 1, n = 1, 2, 3, ••• . Using (2.5), (2.6), and Lemma 2.1 it is

clear that

ΎYI — a — Cl ~ - 1 — Cl ~ - 1

Si Si Si

o ko W —l

where c0 = 1 and we define c0 to be zero, and m2 = ^β

Si Si

Now assume that mk — ~ —. Again using (2.5), (2.6), and Lemma 2.1

in the relation mk+1 = -———, the definition for the minimal parameters

in a chain sequence [3], the induction is completed. If mk = 1 then mL+ι

is defined to be zero. In this case the corresponding moments fall on
the upper and lower boundaries of their respective convex bodies.

3. Some results from the theory of chain sequences. Regarding
the uniqueness of the parameters gp in the continued fraction (1.1) and
the location of the moments in the convex bodies we have the following
theorem:

THEOREM 3.1. Given a monotone Hausdorff moment sequence, {cw},
let

(3.1) l im c_k ~ -k = q .

If q > 1 the parameters gp in (1.1) are uniquely determined, and if
q < 1 the parameters are not uniquely determined. In case q — 1 the
parameters may or may not be unique.

Proof. Wall [3] proved that the parameters in a chain sequence are
uniquely determined if and only if the series

0 0 ΎV) ΎΏ ΎYί

1 + ^ m'm* m *fc-i (1 — mJί l — m2) (1 — mk)

diverges. Making use of this result and Theorem 2.1 our proof is im-
mediate.

We designate the maximal parameters of the chain sequence in the
continued fraction (1.1) by Mp. The maximal parameters can be inter-
preted in terms of "distances" in the convex bodies by the following
theorem:

THEOREM 3.2. The maximal parameters Mn in the continued frac-
tion (1.1) can be written in the form
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(3.2) Mn = ^ ^ L + i»JZ^»(i/rn), n = 1, 2, 3, ,
Cn Q-n Cn Cn

where

{o.ό) l n = 1 + 2-J -=—- L - — =—- '' ~ 9

in the case that the an+r, r = l, 2, 3, •••, of (2.9) are positive. If
αw+1, an+2, •••, αM+r are positive, αw+fc+1 — 0, (k > 0), and mw+fc < 1, then
the summation in (3.3) runs only to n + k.

Proof. Wall [3] introduced an expression of the form (3.3) in dis-
cussing maximal parameters. Using his results and Theorem 2.1 our
proof is immediate.

II. JACOBI-TYPE CONTINUED FRACTIONS
AND CONVEX SETS

4* The "extended" monotone Hausdorff moment problem. A se-
quence of real number {cn}(n = 0, 1, 2, •••) shall be referred to as an
''extended'' monotone Hausdorff moment sequence if there exists a
monotone nondecreasing real function Φ(u), — 1 ^ u :g 1, such that

cn = I undφ(u), n = 0, 1, 2,

The problem of determining such a function Φ(u) shall be referred to
as the ''extended" monotone Hausdorff moment problem. Again we
shall assume throughout part II unless otherwise designated that c0 — 1.

The work of Riesz [2] can be applied to the "extended" monotone
Hausdorff moment problem. A sequence {cn} is an "extended" monotone
Hausdorff moment sequence if and only if the point (clf c2, , cn), n —
1, 2, 3, •••, is in the convex closure of the arc whose parametric equa-
tions are given by (1.3) where — 1 ^ t ^ 1.

Let

-I -. -.9 „ ..9

(4.1)
6^ + 1 — b2z + 1 — bzz + 1 —

be the Jacobi-type continued fraction expansion of the power series

oo

We shall agree that the continued fraction terminates with the first
identically vanishing partial quotient. We shall show that if the sequence
{cn} is an "extended" monotone Hausdorff moment sequence, then the
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ap and bp of (4.1) have the form of a generalized chain sequence and
the parameters can again be represented in terms of ' 'distances'' in
certain convex bodies.

5 The connecting theorem. As in §2, it is necessary to indicate
some special notations for the Hankel determinants corresponding to an
''extended" monotone Hausdorff moment sequence. We set

(5.1)

1 cx

Ci C2
Cn + 1

(5.2) J 2 n + 1 =

n + i ' ' ' ^2n

@2 C2 ~Γ Cs

Cn+1 Cn+ι -\- C +• c « + 1

= 0,l, 2,

(5.3) Δ,n =

£-3

(5.4) z/2ra+1 =

— C2

, n_= 1, 2, 3, ,
(4 = 1), and

, n= 0, 1, 2, ,

The sequence {cn} is an "extended" monotone Hausdorff moment
sequence if and only if the Hankel forms

n

Σ «
i, j = θ

w - 1

are all positive semidefinite. As in part I replace c2n by c2n in (5.1) and
<^2n+i by c2?z+1 in (5.2). Setting A2n and J2W+1 equal to zero, we have the
single relation

(5.5) ^ n Ism = 1, 2, 3,

Similarly, (5.3) and (5.4) yield
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(5.6) cn = cn
= 1, 2, 3,

The methods of Karlin and Shapley [1] can be applied so that if the
sequence {cn} is an "extended" monotone Hausdorff moment sequence
then the quantities cn and cn of (5.5) and (5.6) are again interpreted as
the "downward" and "upward" projections, respectively, of cn on the
boundary of the corresponding convex body.

We can now state the following theorem:

THEOREM 5.1. // the sequence {cn} is an "extended" monotone
Hausdorjf moment sequence, then the elements an and bn in the continued
fraction (4.1) can be written in the forms

(5.7) an = 4mn(l -

(5.8)

where

(5.9) mn -

- ln), n = 1, 2, 3, . . . ,
0 ^ mn ^ 1, (m0 - 0), 0 ^ ln ^ 1 ,

= 1, 2, 3, = 0) ,

~ -2
Z 1 ~ - 2 "- 1

- m. = "-i , w=l,2,3,

and

(5.10) &„ = 1 - 2m,_1(l -

(5.11)

^ 2 Π - 1 Q.2Π-1

2(1 - m^h, n - 1, 2, 3, . ,
(Zo = m0 = 0) ,

_ g2n-2 ~ g2n-2> ^ = 2, 3, 4, .

As in part I it will be clear that a more general theorem is true.
If {cn}, (c0 = 1), is an arbitrary sequence of real numbers and its corre-
sponding Jacobi-type continued fraction (4.1) is written in the form
that the an and bn are given by (5.7) and (5.10), respectively, where
l0 = m0 — 0 but it is no longer necessary that 0 <̂  ln ^ 1 and 0 ^ mw ^ 1,
^ = 1, 2, 3, , then the relations (5.8) and (5.11) with (5.9) holding are
still valid.

If {cn} is an "extended" monotone Hausdorff moment sequence, the
geometric interpretations of the an9 bn, ln, and mn are apparent.

Proof. The proof depends upon the following lemma.

LEMMA 5.1. The determinants in (5.1), (5.2), (5.3), and (5.4) satisfy
the relations
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(5.1^) U2lc + l^2IC + l — ^2fc + 2^2/b + ^2fc+2^2fc> 7 Λ i Λ

fc = 0 , 1 , 2 , -•- .
^ ~ 2ft^2& — ^2/C + 1^2/C-l I ύ'Ak, + 1^2lc-l >

Proof. By Laplace's Development and a sequence of elementary
operations, Lemma 5.1 can be established directly. We shall omit the
details.

The proof to the theorem now follows. A well known formula for
the ak is given by

(5.13) a, = / a*-'*- 4 , fc = 2, 3, 4, •

The formulas (5.5) and (5.13) yield (5.8).
By a substitution and an equivalence transformation, we write the

continued fraction (4.1) in the form

(5.14) aι

&! + z — b2 + z — b2 + z —

The recurrence formula for the denominators of the continued fraction
(5.14) is given by

(5.15) Bk{z) - (b, + z)BIUz) - α fc. A- a(2),

fc = 1, 2, 3, , (aQ=l, B-fc) = 0, B0(z) - 1) .

Furthermore, we have

(5.16) Bk(z) - Jf&L, fc = 1, 2, 3, ,

where Δ21i_2 is obtained from (5.1) and we define Δ2k(z) the same as in
(2.15). By a sequence of elementary operations on A2h(z) it is seen that
A2k{-Ϊ) = ( - l ) ^ * - ! , fc = 1, 2, 3, . . . . Substituting this result in (5.16)
we have

(5.17) Bk{-1) = JtlL)M^.L fc - 1, 2, 3, . . . .
^ 2 f c - 2

Setting z equal to —1 in (5.15), using the formulas (5.13) and (5.17),
we can solve for bk and obtain (5.11). We note that if we had set z
equal to 1 and followed a similar procedure, we would have obtained
the formula

(5.18) bn = _g^-l ~ Canzi + .gan-a ~ g8n-2 _ l f % = 2, 3, 4, .
^2W-2 Y2W-2 ^2Π~3 ^In-Z

Assume that 0 ^ mn < 1, 0 ^ Zw < 1, w = 1, 2, 3, . Using (5.5),
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(5.6), and (5.9) it can be shown directly that bί = 1 — 2l19 and ax =
4m1i1(l — lj). Now by using (5.5), (5.6), (5.9), and Lemma 5.1, (5.11)
reduces to (5.10) for n = k, k = 2, 3, 4, . A similar statement applies
to (5.8). If mΛ = 1 then mk+1 is defined to be zero. A similar state-
ment applies to lk. In either case the corresponding moments fall on
the upper and lower boundaries of their respective convex bodies.

If (5.18) had been used in place of (5.11) we note that (5.10) would
have been obtained in the form

(5.19) bn = 2(1 - U ( l - mn-Ύ) + 2mn-1ln_1 - 1,

n = 1, 2, 3, , (ί0 = m0 = 0) .

By Theorem 5.1 and the condition in terms of Hankel forms, we
can now state a theorem which characterizes the existence of an "ex-
tended" monotone Hausdorff moment sequence in terms of continued
fractions. This theorem is analogous to Wall's solution [3], [4] for the
regular monotone Hausdorff moment sequence. By Theorem 5.1 and an
extension of the work of Karlin and Shapley, the equivalence of the
continued fraction solution and the condition in terms of Hankel forms,
and hence convex bodies, is apparent.

THEOREM 5.2. The sequence {cn} is an "extended" monotone Hausdorff
moment sequence if and only if the power series

P(z) = Σ cnz
n

has a Jacobi-type continued fraction (4.1) expansion where the an and
bn are given by (5.7) and (5.10), respectively, and l0 = m0 = 0, and
0 ^ ln^ 1, 0 ^ mn ^ 1, n = 1, 2, 3, • .

It should be pointed out that P(z) = Σ ^ = o cmzm is a moment generat-
ing function for the ' 'extended" monotone Hausdorff moment problem

if and only if Q(w) = (1 + z)P(z), where w = τ ——, is a moment gener-
1 + z

ating function for the regular monotone Hausdorff moment problem.
From these relations it is observed that the ln and mn of Theorem 5.1
are equal to mm.Ύ and m2w, n — lf 2, 3, •••, respectively, of Theorem
2.1. These results are obtained by contraction.

It can also be noted that {cn} is an ''extended77 monotone Hausdorff
moment sequence if and only if

is a regular monotone Hausdorff moment sequence. This result can be
obtained by comparing coefficients in P(z) and Q(w) under the indicated
transformation.
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6» The continued fraction of the first differences. We prove the
following theorem:

THEOREM 6.1. / /

a2z(6.1) l + Clz + c,. ,
6^ + 1 — b%z + 1 — 63£ + 1 —

(6.2) 6n = 1 - 2m,_1(l - ln^) - 2(1 - mn^)lnf n = 1, 2, 3, . . ,

(6.3) αw = 4mn(l - mn_1)ίn(l - ί j , ^ = 1, 2, 3, , (l0 = m0 = 0) ,

^ ^ ^ ,

6i*2; + 1 — bfz + 1 — 63*2 + 1 —

Δcn = c w + 1 — cn, w = 1, 2, 3, , (Jc 0 = 1 — cx), a n d

(6.5) 6* = 1 - 2ί x ( l - m x ) ,

6* = 1 - 2 m n . 1 ( l - ln) - 2ln(l - mn), n = 2, 3, 4, . . . ,
(6.6) α0* = 2(1 - k) ,

α * = 4 ί n ( l - ln+1)rnn(l - mn), n = 1, 2, 3, .

Proof. In order to prove the theorem it is necessary to note some
determinants for the sequence {Λcn} corresponding to Δ_2n and Δ2n+i of
(5.1) and (5.2), respectively, for the sequence {cn}. Noting (5.3) and
(5.4) we observe that

(6.7) J* = J2fc+1, J* +1 = /2fc+2, k = 0, 1, 2, .

We observe directly that

a: = 1 - C l - z/cx - 2(1 - ZJ .

Using (5.13) and (6.7) we note that

//* //* A A
(β 9>\ / T * = ±J.2fc £l2fc - 4 . Zi2fc + l^ J2fc-3

^ 2 Λ - 2 ^ . 2 ^ - 2 ^2Λ-1^2ft-l

The relations in (6.6) can now be established by (5.5) (5.6), (5.9), and
Lemma 5.1.

Now, by (5.5), (5.10), (5.11), and (6.7),

.2fc-2 ±±2fc-3 ±12Λ-3±i2fc-4
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__ 1 Ά2]

k = 1, 2, 3, , (J?x = Jΐ2 = 1, A% = 0)

Now again by (5.5), (5.6), (5.9), and Lemma 5.1, the relations in (6.5)
follow.

We note that a similar proof could be given for the corresponding
theorem for a regular monotone Hausdorff moment sequence, thereby
giving another proof to this well known result [4].
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