
SEMI-GROUPS OF CLASS (Co) IN Lv DETERMINED
BY PARABOLIC DIFFERENTIAL EQUATIONS

THOMAS W. MULLIKIN

l Introduction. This paper treats mixed Cauchy problems for the
parabolic partial differential equation in one space variable;

(1.1) u = p(x)uxx + q(x)ux + τ{x)u .

Our results are for non-singular equations, that is, the variable x
is restricted to a finite interval [α, 6], and the function p is real-valued
with p(x) > 0 on [α, 6], The functions q and r may be complex-valued.
We require that p, q and r be in LJ^a, 6] and that p, p' and q be
absolutely continuous with p\ p" and q' in L^ \a, 6].

We impose usual boundary conditions π(u) — 0 by

(1.2) M^uia) + NMb) + Mt2u'(a) + Ni2u'φ) = 0, ΐ = 1, 2 .

The constants Mij9 iV4J are real or complex and the matrix (Mi3; Ni3)
has rank two.

With Equation (1.1) is associated the ordinary differential operator

(1.3) A = p{xW + Q(x)D + r(x)I, D = 4~
ax

With the above restrictions on the coefficients, A is defined in Lp[a, 6]\
1 < P < °o, as a closed operator with dense domain, .D(A), given by

(1.4) -D(A) = {%eLp |% and v! are absolutely continuous

and u, u', u" e Lp} .

The boundary conditions define restrictions A^ of A to subdomains,

(1.5) D(AΊt) ~ {u e Lp\u and u' are absolutely continuous,

π\u\ = 0, and ^, u', u" 6 Lp} .

Our problem is to determine those A* which generate semi-groups
of class (Co) in Lp[a, b] (see Hille and Phillips [1], p. 320). Our main
result is
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1 We denote by Lp[a, b], 1 ̂ p < <χ> the complex Lebesgue space defined by Lebesgue
measure on [a, b]. Any Lebesgue space defined by a different measure μ will be denoted
by ([α,δ],μ).
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THEOREM 4. If π is regular2, the operator AΛ is the infinitesimal
generator of a semi-group of class (Co) in Lp[a, 6], 1 < p < oo.

The theory of adjoint semi-groups (Hille and Phillips [10], p. 426)
can be used to extend the results of Theorem 4 to the Banach space
Loo[α, 6]. However, these results apply only in proper closed subspaces
of Loo, and for brevity we do not include them.

In § 6 we investigate the necessity of regularity of π for the genera-
tion of a semi-group of class (Co) by the special operators OΛ = D2 in
Lp[0, 1]. We have the partial result

THEOREM 5. Let π and π+ be adjoint boundary conditions relative
to the operator D2. If both ΩΛ and Ω^+ generate semi-groups of class
(Co) in any Lp[0, 1], 1 < p < oo, then π and π+ are regular.

We also show that for certain non-regular π the operator βΛ = D2

can be defined either in Lx([0, 1], dx2) or in Lx([0, 1], d(l — x)2) as the
generator of a semi-group of class (Co). These operators can be shown
to be equivalent to singular operators in LJΌ, 1].

We give, what seems to be, the first application of the Feller-
Phillips-Miyadera Theorem (Hille and Phillips [10], p. 360); other appli-
cations have been of its corollary, the Hille-Yosida Theorem. Probably
Theorem 2, where this theorem is applied, can also be proved by an
appropriate use of spectral resolutions of the operators ΩΛ = D2 in Li

and L2, however, we use spectral resolutions in only one instance. In
any case, the eigenfunctions of the A* can be used to give analytic repre-
sentations of the semi-groups. In essence, we simply establish in Lp

a certain type of behavior near t = 0 of solutions to the heat equation
with a variety of boundary conditions.

Extensive application of semi-group theory to parabolic differential
equations have been made by W. Feller ([4], [6], [7], [8]) and E. Hille
[9]. Their papers contain our results for those real differential equation
and real boundary conditions which determine positivity preserving semi-
groups in Lλ and in L2.

We plan in a later paper to present a study which we have made
of the hyperbolic equation

(1.6) uu + a(x)ut = p(x)uxx + q(x)ux + r(x)u .

2. Equivalent semi-group. We make considerable use of the fol-
lowing notions. If {Tt} is a semi-group of class (Co) on a Banach space
U and if H is a linear homeomorphism of U onto another Banach space
V, then it is easily shown that {St} defined by

(2.1) St = HTtH"
2 See G. D. Birkhoff [1], p. 383; J. D. Tamarkin [12]; or Coddington and Levinson |2J,

pp. 299-305.
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is a semi-group of class (Co) on V. We say that {Tt} and {S8} are
homeomorphίcally equivalent.

If ω is a constant and a a real positive constant, and if {Tt} is
a semi-group of class (Co), then {SJ defined by

(2.2) Sf = e ^

is a semi-group of class (Co).1

We make the following

DEFINITION 1. Let {ΓJ and {St} be semi-groups of class (Co) defined
respectively on Banach spaces U and V. Then {Tt} and {St} are said
to be equivalent provided there exist constants ω and a, a real and a < 0,
such that {Tt} and eωίSΛί are homeomorphically equivalent.

For our applications we need the following theorem, which is easily
verified.2

THEOREM 1. Let {Tt} and {St} be equivalent semi-groups of class
(Co) defined respectively in Banach spaces U and F, i.e.

(2.3) St = Hier'TtJH-1 .

The infinitesimal generators A and B are related by

(2.4) B = (ωl+ aHAH-1) , D(B) = HD(A) .

The resolvents of A and B are related by

(2.5) R(\; B) = HR(X - ω; aA)H~ι .

We make now

DEFINITION 2. Let A and I? be closed operators defined respectively
in Banach spaces U and V with dense domains. Then A and B are said
to be equivalent provided there exists a linear homeomorphism H of U
onto F such that (i) D(B) = JEΓD(A) and (ii) J5 = (ωl + aHAH-1) for
some constants α> and a, a real and a > 0.

3, Boundary conditions. The linear forms in (1.2) define a two
dimensional sub-space of a four dimensional complex vector space. It is
convenient for our discussion to specify such subspaces by Grassman
coordinates, which are defined by

2 See Hille and Phillips [10], Theorem 12.2,2 and Theorem 13.6.1,
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A =

D =

Mn

M2l

Mu

MΆ

Nιx

Nn

B =

E =

N2l

Ma

M22

C =

F =

N2l

Mn

N12

Ma

M,2

(3.1)

These coordinates satisfy the quadratic relationship

(3.2) FC - BD = AE ,

and they are unique to within a constant of proportionality. Also, any
constants, not all zero, which satisfy (3.2) define by (3.1) a set of con-
ditions π of rank 2 (Hodge and Pedoe [11], p. 312).

We now define, for brevity in the sequel, four types of boundary
conditions by the following sets:

(3.3)

τ 1 = {π\E= B + D = 0}

τ 2 = {π\E Φ 0, o r E = 0 a n d B + D Φ 0, o r i ^ O a n d

B=C = D = E=F=0},

r3 = {π\F = C = 0 and one and only one of A, B, D, E Φ 0} ,

r 4 = {τr|A = E= 0, J5 = D-= 1 and FC ^ 1} .

Sets τx and τ2 have only the absorbing boundary conditions in com-
mon, i.e. u(a) = u(b) — 0. Sets τ3 and τ4 are disjoint subsets of τ2.
The set τ3 contains only separated endpoint boundary conditions. Rep-
resentatives of these types in the form of (1.2) are easily determined
by imposing the defining conditions in (3.1).

It is a simple matter to check that all boundary conditions in the
set τ2 are regular in the sense of G. D. Birkhoff. With one exception,
u(a) = u(b) = 0, all π in the set τL are non-regular.

4* Ω^ = D2 in Li[0, 1] and L2[0, 1]# For the special operator Ω^ = D2

on [0, 1] we need

LEMMA 1. βtf in Lp[0, 1], 1 < p < oo, is a closed operator ivith
dense domain. Except for those non-regular π given by

(4.1) era(0) + u(l) = 0

au'(0) - u\l) - 0 , a2 = 1 ,

ίfeβ resolvent R(X; Ω^) exists for all λ, 9ί(λ) > ω0 > 0 /or some OJ0, and
R(X; ΩΛ) is expressed in all Lp, 1 < p < oo, 6̂ / α Greenes function as

(4.2) (., ί,
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The proof of Lemma 1 is easy and is omitted.3 We, however, shall
refer to the explicit expression for G(x, t, λ) which is

G(x, t, X) =

— FV~Xsh\/~x{% — t) + shV~Xt>lAshχ/\ (1 — x)

+ DV~Xchy~χ(l - x)\ + chVTtlBVYshVTQ ~ x)

- EXch \/~χ(l - a)] ,

for t < x, and

— C-]/~χshi/~χ(t — x) + (above with x and t interchanged),

,for t > x .

The function J(λ) is given in terms of (3.1) by

(4.4) J(X) = (F+ C)X

(4.3)

where the principle value of i/~λΓ is chosen for SR(λ) > 0.

In § 5 it will be shown that our main result, Theorem 4, follows

easily from the rather difficult

THEOREM 2. If π is regular, then Ω% == D2 generates a semi-group
of class (Co) m Lj[0, 1] and in L2[0, 1].

We prove Theorem 2 by a series of lemmas. Our method of proof
amounts to proving this theorem for the subsets r3 and τ4 of the set r2 of
regular π. These results are then used to define a factorization of R(X; Ω«)
for any regular π by which we reduce estimates on H[iZ(λ; β^ΠI, n =
1,2, •••, which are needed for an application of the Feller-Phillips-
Miyadera Theorem, to estimates on certain functions of the complex
parameter λ.

The necessity for estimating ||[J?(λ; i^XΠI for n > 1 results when
Ω^ generates a semi-group {Tt} for which \\Tt\\ is not bounded by eωt

for any ω. Whether or not \\Tt\\ < eωt for a semi-group of class (Co) in
a Banach space.4 In one instance, part (b) of Lemma 3, we are able to
guess an equivalent norm for L^O, 1] so that the Hille-Yosida Theorem
can be applied, whereas in the Lx norm this does not seem to be the
case.

We have the easy

LEMMA 2. For π in the set τ3, Ωn generates a semi-group of class

(Co) both in L^O, 1] and in L2[0,1J.

3 See Coddington and Levinson [2], pp. 300-305.
4 See Feller [5] where it is shown that if {Tt} is a semi-group of class (Co) in a Banach

space, then an equivalent norm can always be defined by the semi-group so that in this
norm \\Tt\\ < e ω ί ,
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Proof, (a) For L2[0, 1] all such ί2Λ are self-ad joint with negative
spectrum and a set of eigenfunctions which are a basis for L2[0, 1]. It
follows easily that such ΩΛ generate semi-groups of contracting opera-
tors in L2[0, 1]. (b) In L^O, 1] we have by Fubini's Theorem, since
G(x, t, λ) is continuous,

WRiλ ΩJuW < [1\1\G(x,t,X)\\ιι(t)\dtdx
Jo Jo

< ll^Hiinax I \G(x, t, X)\dx .
o<t<i Jo

From (4.3) for these special π one gets easily

Ω)\\ <(4.6) \\{;«)\\

x

By the Hille-Yosida Theorem, Ω^ generates a semi-group of contracting
operators. This completes the proof.

The proof is not so easy for

LEMMA 3. For π in the set τ4, ΩΛ generates in Lx[0, 1] and in
L2[0,1] a semi-group of class (Co).

Proof. Any π in the set τ4 is given by

au(ϋ) + u(ϊ) = 0
(4.7) a ψ 0 .

au'(0) + u'(l) = 0

We note that if the complex constant a in (4.7) is such that \a\ = 1,
then the conditions π are self-ad joint relative to the operator D2.

(a) We set σ — log | a | and define a linear homeomorphism H of
L2[0, 1] onto L2[0, 1] by

(4.8) H[u](x) = e-σxu(x) .

The operator Ω^ equivalent to Q^ is

(4.9) Ω% = D2 + 2σD + σ'l.

Now ΩΛ is a perturbation by the unbounded operator

(4.10) B = 2σD + σ*I

of the operator Ωz, where π is given by

(4.11) au(Q) + u(l) - 0

au'(0) + u'(l) = 0 , a = JL = eίθ .

lαl
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The domain D(B) of B is the same as D(βΛ) = D(Ω-).
Now Ωι is self-adjoint in L2[0, 1] with eigenvalues \n = — (θ +

(2n + l)π)2, n~0, ± 1 , , and eigenfunctions φn(x) = ex$[ί(θ + (2n+ΐ)π)x],
which are a basis for L2[0, 1]. Then β ; generates a contraction semi-
group given by

(4.12) Tt[u] = Σ ane
xn^n{x)y an = (u, φn) .

We want to establish that B is in the perturbing class S4$(β«) of
β^ (Hille and Phillips [10], p. 394). Since D(B) = D(β;) we must es-
tablish that

(i) BR(X; Ωz) is bounded for some λ,
(4.13) (ii) BTt on D(Ω-) is bounded for all t > 0, and therefore

extensible to BTt on L2[0, 1], and

(iii) Γ | | M ^ H ^ < oo .

Now (i) of (4.13) follows immediately from (4.2). For (ii) of (4.13)
we compute for u e D(Ω^)9

(4.14) - ί \\BTt(u)\\l < ±σ\DTt{u), DTt(u)) + σ% Tt(u)\\\

= 4σ*Tt(u)DTt(u)\l - 4:σ\Tt(u), D*Tt{u))

+ σ%Tt{u)\\l.

Using the facts that π(Tt(u)) = 0, | |T e (tt) | | 2 < | |w| | l f and λ, < 0, we get

(4.15) ±\\BTt(u)\\l < σ'WuWl + Aσ*\\u\\l{ max - λne2V} .
25 -co<??.<oo

Therefore, since λβ~λί has on [0, oo) the maximum l/2et,

This proves (ii) in (4.13) as well as (iii)

Since B e ty(Ωz), the operator Ω« generates a semi-group of class
(Co) (Hille and Phillips [10], p. 400). Since ΩΛ is equivalent to βΛ, this
proves our lemma for L2(0, 1).

(b) In Li[0, 1] we do not use a perturbation argument as in L2[0, 1]
because of the difficulty in proving (ii) of (4.13) without using ortho-
gonality relations.

Again let σ = \og\a\ and introduce in Lx[0y 1] an equivalent norm by

(4.17) 11/1|0- \\f(x)\e-°*dx.
Jo
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The identity mapping of L2[0, 1] under these two norms is a linear
homeomorphism and Ω* is equivalent to itself.

We get by Fubini's Theorem

(4.18) ||j?(λ; Ω«)u\\Q < Γ]^(ί) | Γ|G(^, t, X)\e-σxdxdt .
Jo Jo

The Grassman coordinates for (4.7) are A = E — 0, B — D ~ α, C = 1,
and F = a\ and from (4.3) for real λ, λ > σ\σ — log | α | ) ,

ί \a\2sh\/~χ(x - t) + \a\shι/~χ(l + t - x), t < x

\ sh-\/~χ(t — x) + \a\sh-]/~χ(l + x — t), t > x
(4.19) \G(x,t,X)\<- λ ( - l - | α | » + 2|α|cΛ-v/T)

We recognize the right-hand side of (4.19) as the Green's function,
Gx(Xy t, λ), for d2jdx2 and the real boundary conditions πλ given by

(4.20) - \a\u(0) + u(ΐ) = 0

- \a\u'(0) + uf(l) = 0

for which A == E = 0, B = D = | α | , C = - 1, and F = - | α | 2 .
Now the function β"σ:c is an eigenfunction of the operator Ω*+ for

the eigenvalue o*2, where πί is the adjoint of πif which is represented
by (4.20) if | α | is replaced by lα]" 1 . Since these are real boundary
conditions, Gx(x, ty λ), for real λ, defines the Green's function for Ωπ+ if
integration is done with respect to the variable x. Therefore for (4.18)
we have with λ real

(4.21) || R(X Ω,)u 11 „ < Γ M ^ T
Jo x — σ2

dt

This proves that β^ generates a semi-group of class (Co) in Lx normed
by H^llo, and therefore in Lλ with the usual norm. This completes the
proof of our lemma.

The extension to all π in the set r2 is based on

LEMMA 4. Let π be in the set τ2. Then

(4.22) R(\ ΩJ = Σ /i(λ)i?(λ ΩJ ,
ί = l l

where πx and π2 are in the set r4 and π3, , π6 are in the set τ3. The
functions /z(λ) are given by
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(42.3) i = 1, 2, .- ,6 ,

where the at are constants and J(X) for π and zf;(λ) for πt are defined
by (4.4).

Proof. We use the Grassmann coordinates to define the πt as fol-
lows. By adding and subtracting constants we write π as £J=,α,ί(
where

π: (A, B, C, D, E, F) ,

(0, l,C-X,l,0,F-X),

i — 1 0 \

(4.24)

τr3: (1,0,0,0,0,0) ,

π4: (0,1,0,0,0,0) ,

(0, 0, 0, 1, 0, 0) ,

(0, 0, 0, 0, 1, 0) ,

ax = 1, a2 = I X I, α3 = A, a, = B - 1 - | X |, a5 = D - 1 - | X | and
α6 = £7. Now X has to be chosen so that the coordinates of π1 satisfy
(3.2). X is given by

(4.25) X= C - peίθ, θ = arg(C - F) and

1 C - F | + τ / | C - F | a + 2

Using the linearity of the numerator of the Green's function (4.3) in
the constants A, B, C, D, E, and F, we get the expression (4.23).

We shall apply to the functions /t(λ) of Lemma 6 the following:

THEOREM 3. Let /(λ) be analytic in a half plane 9ϊ(λ) > a. Let
f(X) satisfy either of the following conditions:

(i) /(λ) is real for real X and ( - l)fc/(fc)(V) > 0 (or < 0) for all real
X, λ > α, k = 0, 1, , i.e., / is completely monotonic in (a, + oo).

(ii) (a) 1 \f(σ + iτ)\dτ < M < + oo, σ > a, M independent of σ.

(b) lim f(σ + iτ) = 0 uniformly in every closed subinterval of
|T|-»oo

< ^ < + ra.
exist real numbers K > 0 ω

(4.26) Σ l / ( f c ) ( λ ) l-(λ - ωf < iΓ, for n = 0, 1,

λ real, X > ω.
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Proof. Suppose that (i) holds and that /(λ) > 0 for real λ (other-
wise replace / by - / ) . Then |// fc)(^)l = ( - l)*/*(λ) and with ω =
a + 1

(4.27) Σ ί ^ y 1 (λ - ω)* = ± f L ^ L ( o > - λ)A = /(o)), \ > a ) ,
A =O ft? A-=o fc!

since / is analytic in the region sJί(λ) > a. Then (4.26) follows with
K = \f(a + 1)| and ω = a + 1.

Suppose that condition (ii) holds. Then / is the Laplace transform
(Widder [13], p. 265) of a function φ(t) for which φ{t) = 0, t < 0 and
|φ(ί)| < Meσ~\ σ>a. We have (Widder [13], p. 57)

(4.28) /(fc)(λ) = ( - tfe-λtφ{t)dt 3ί(λ) > a .
Jo

So with o) — a + 2 and real λ, λ > ω ,

(4.39) Σ J-^ ( f c ) ( λ ) l (λ - oήk < [^e-^\φ{t)\dt < M .

Therefore (4.26) follows with K = M and ω = α + 2.
We finally come to

Proof of Theorem 2. We shall establish the existence of real con-
stants M and ω > 0 such that in both Lx and L2 for real λ

(4.30) \\[R(X; ΩJT^W < M λ > ω, π = 1, 2, . . . .
(λ — ω)n

By the Feller-Phillips-Miyadera Theorem this will prove our theorem.
In the representation (4.22) for R(X; Ωπ), each Ω^. generates a semi-

group of class (Co) in Lx and in L2, either by Lemma 2 or by Lemma 3.
Then for each R(X; Ωπ), i = 1, 2, , 6 (4.30) holds in Lp, p=l,2, and
M and ω > 0 can be chosen independently of i and p.

Iterates of a resolvent can be computed by

(4.31) ± 1 1 1 ^

(Hille and Phillips [10], p. 184). Making use of (4.22), (4.31) and (4.30)
for each R(X; β^), we get

(4.32) \\[R(X; Ω^W < . M

 γn+1 Σ Σ J ^ ^ ( λ - o>)λ ,
( λ — ω)n+ι ί-i λ=o ft!

real λ, λ > ω, and n = 0,1, .
We suppose now that T is such that either E φ 0 or U + D ^ O .
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The only other regular π is in the set τ3, and has been dealt with in
Lemma 2. With this assumption, each of the functions /έ(λ) of Lemma
4 can be written as

(4.33) /4(λ) = J4 + * L . + A + iΛ(χ) , ΐ = 1, 2, - . . , 6
1/ X X

for uniquely determined constants and a unique analytic function
For 5R(λ) > 0 we have chosen a branch of λ1/2, so that the first

three functions in (4.33) are analytic and satisfy condition (i) of Theorem
3. The functions i^(λ) are analytic and can be shown to satisfy condi-
tions (ii) of Theorem 3. Then (4.32) and (4.33) together with Theorem
3 give our desired result (4.30). This proves our theorem.

5. AΛ in Lp[a, 6], 1 < p < oo. With the tedious work done in § 4,
we now come to our main result

THEOREM 4. // π is regular, the operator AΛ is the infinitesimal
generator of a semi-group of class (Co) in Lp[a, 6], 1 < p < oo.

Proof. The assumptions on the coefficients of A in (1.3) are such

that standard changes of independent and dependent variables5 can be

made to show that AΛ in Lp[a, b] is equivalent in the sense of Defini-

tion 2 to AΛ in Lp[0, 1], where

(5.1) A* = β; + rj .

The conditions π are as in (1.2) and can readily be shown to be regular
if and only if conditions π are regular.

The function rλ in (5.1) is in L^O, 1], and therefore rj is a bounded
operator in any Lp. So AΛ is obtained by perturbing β ; by a bounded
operator. Perturbation theory shows that A* generates a semi-group of
class (Co) if and only if Ωz does (see Hille and Phillips [10], Theorem
13.2.1).

This reduces our proof to that of showing that for regular π the
operators βΛ = D2 generate semi-groups of class (Co) in any Lp[0, 1], 1 <
p < oo. This extension of Theorem 2 we shall now give.

Let π+ denote the boundary conditions adjoint to π relative to the
operator D2 (Coddington and Levinson [2], pp. 288-293). It is readily
checked that the Grassmann coordinates {A'} B',C, Dr, E', F') of π+ are
obtained from those of π by interchanging F and C and taking complex
conjugates. From (3.3) it follows that π+ is in the set r2 if and only if
π is.

5 See Courant and Hubert [3], p. 250.
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Let π, and therefore π+, be regular boundary conditions. Then by
Lemma 1 the resolvent i?(λ; β j exists for 3ΐ(λ) greater than some ω0,
and it is expressed by (4.2).

We denote the norm of a bounded linear operator T in Lp by NP{T}.
Then by Theorem 2 and the Feller-Phillips-Miyadera Theorem (Hille and
Phillips [10], p. 360), we have

(5.2) NP{[R(\; r?«)]n} < MP(X - ωQ)-\ SR(λ) > ωQ ,

p — 1, 2 and w = 1, 2,
Now i?(λ; β j is defined by (4.2) on the space of continuous func-

tions, which is dense in Lp[0, 1], 1 < p < oo. If we let M = max (Mlf M2)
and apply the Riesz Convexity Theorem (Zygmund [14], p. 198), we
obtain (5.2) for 1 < p < 2. By the Feller-Phillips-Miyadera Theorem,
this is sufficient for Ω% to generate a semi-group of class (Co) in Lp,l<
P < 2.

Also by Theorem 2 and the above argument, βΛ+ generates a semi-
group of class (Co) in any Lp [0, 1], 1 < p < 2. It is readily shown that
ΩΛ+ in Lq and β,, + in Lp, 1/p + ljq = 1,1 < p <2, are adjoints of each
other. The theory of adjoint semi-groups (Hille and Phillips [10], Chap-
ter IV) shows that Ω% in Lq generates a semi-group of class (Co), since
ΩΛ+ does in Lp. This completes the proof of our theorem.

6. Norvregular π. One result relating to the necessity of regulari-
ty of π for Ar to generate a semi-group of class (Co) in Lp[a, b] is given in

LEMMA 5. If A^ generates a semi-group of class (Co) in L2[a, 6],
then π is regular.

Proof. As we saw in the proof of Theorem 4, it is sufficient to
prove this result for Ω* — D2 in L2[0,1].

Let π be a set of non-regular boundary conditions. It is simply

a matter of computation to show that for the function u(x) = 1, 0 <

x < —, and u(x) = 0, — < x < 1 we get in (4.2)

(6.1) | | # ( λ ; β > | | 2 > Cλ'3/4

for all real λ sufficiently large and C > 0. Thus, by the Feller-Phillips-
Miyadera Theorem, Ω% does not generate a semi-group of class (Co) in
L2[0,1].6 This proves our result.

We now have7

6 Indeed, this proves that Ώ* does not generate a semi-group of the more general class
(A) in L2[0, 1] since it is not true that λR(λ; nπ)u -> u as λ -> + oo (Hille and Phillips [10],
p. 322).

7 By a more careful analysis, the complete result can probably be proven that re-
gularity of π is necessary for A^ to generate a semi-group of class (Co) in Lp[a, b].
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THEOREM 5. Let π and π+ be adjoint boundary conditions relative
to the operator D2. If both Ω^ and Ω%+ generate semi-groups of class
(Co) in any Lp[0, 1], 1 < p < oo, then π and π+ are regular.

Proof. Suppose that Ω* and Ωπ+ generate semi-groups of class (Co)
in some Lp[0,1]. Then ΩΛ generates a semi-group of class (Co) in
LQ[0, 1], Up + 1/q = 1. An application of the Riesz Convexity Theorem,
as in Theorem 4, shows that Ωπ generates a semi-group of class (Co) in
L2[0,1]. By Lemma 5, π is regular, and therefore also π+. This com-
pletes the proof.

For certain of the non-regular π, other Lebesgue spaces can be
chosen in which operators Ωπ are defined and generate semigroups of
class (Co). The construction of these spaces is suggested by the method
of proof used in part (b) of Lemma 3.

Suppose that conditions π are given by

(6.2) u(0) = au'(l)
\a\ > 1 .

u(l) = 0

Then, if G(x, τ, λ) is the Green's function of Ωπy it can be shown that
Gx(x, τ, λ) == |G(τ, x, λ) | is the Green's function for Ωπyf where conditions
πλ are given by

(6.3) u(0) = 0

^(1) = \a\u'(0) .

Also Ωπι has the real, non-negative eigenfunction φ(x) = σ~1shσx where
a is the largest real root of shσ = \a\σ. In a manner similar to that in
part (b) of Lemma 3, one can show that Ωπ can be defined in the
Lebesgue space L^fO, 1], φ(x)dx) as the generator of a semi-group of
class (Co). This space is also norm equivalent to the space ^([0,1], dx2).

The linear homeomorphism of ^([O, 1], dx2) onto L^fO, 1], d{l — x)2)
defined by u(x) -> u{l — x), shows that Ω« generates a semi-group of
class (Co) in Lx([0,1], d(l — xf) where the conditions it are given by

(6.4) u(0) = 0

u(l) = - au'(0) .

In each of these spaces, LJβ, 1] can be shown to be a dense sub-
space. The operators Ωπ and Ω* can be shown to be equivalent to
singular operators in L2[0, 1].

We do not know whether similar results hold for other non-
regular 7Γ.
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