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l Introduction, All Banach algebras considered are over the real
field and all homomorphisms considered are algebraic (real-linear). An
algebra is called semi-simple, strongly semi-simple, or strictly semi-
simple, if its Jacobson radical [5], Segal radical [10], or strict radical
[8], respectively, is the zero ideal; that is, if its regular maximal right
ideals, its regular maximal two-sided ideals, or those of its two-sided
ideals which are regular maximal right ideals, intersect in the zero ideal.
Rickart [9, Corollary 6.3] proved that a semi-simple commutative Banach
algebra has the property that every homomorphism of a Banach algebra
into it is continuous. Call an algebra with this property an absolute
algebra. Yood [12, Theorem 3.5] proved that every homomorphism of a
Banach algebra onto a dense subset of a strongly semi-simple Banach
algebra is continuous. Thus a strongly semi-simple Banach algebra is
" almost" absolute. The question arose: Is a (noncommutative) semi-
simple or strongly semi-simple Banach algebra necessarily absolute ?
A negative answer is furnished in the present note. It is shown that
in order for a Banach algebra to be absolute it is sufficient that it be
strictly semi-simple and necessary that it have zero as its only nilpotent
element. The latter condition is shown to be sufficient for some special
Banach algebras to be absolute.

2# Necessary condition for a Banach algebra to be absolute.

THEOREM 1. An absolute Banach algebra has no nonzero nilpotent
elements.

Proof. Suppose the Banach algebra B contains a nonzero nilpotent
element. Then there exists a nonzero v e B such that v2 = 0. Let A be
an infinite dimensional Banach algebra such that A1 — (0). Since A is
an infinite dimensional complete vector space, there exists a discontinuous
linear functional on A; denote it by f(x). Let π(x) — f(x)v. Since f(x)
is linear and v2 — 0, π is seen to be a homomorphism of A into B.

Let || 7/1| be a Banach norm for B. Then | | τ φ ) | | = 1/0*01 I Ml since
f(x) is a scalar. Since f(x) is discontinuous | f(x) \ is not bounded and
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hence π is not bounded. Thus π is discontinuous so that B is not
absolute.

It is known that if a Banach algebra B is semi-simple and has
a unique norm then a homomorphism of a Banach algebra onto B is
necessarily continuous [9, Theorem 6.2]; that the resulting proposition is
false if the word into is substituted for onto follows from our Theorem 1.
Indeed, this theorem shows that for a Banach algebra to be absolute it
is not sufficient that it have the properties of being simple, semi-simple,
strongly semi-simple and having an identity and a unique norm. Thus,
these properties are possessed by the algebra of all 2 by 2 matrices
over the reals, under a Banach norm, and yet, since this algebra has
nonzero nilpotent elements, Theorem 1 shows that it is not absolute.

3. Sufficient condition for a Banach algebra to be absolute. In [8]
there was introduced the concept of a strictly semi-simple algebra. It
was shown [8, Theorems 2 and 3] that a Banach algebra B is strictly
semi-simple if and only if it is isomorphic to a subalgebra of C(X, Q),
the algebra of quaternion-valued functions continuous, and vanishing at
oo, on a locally compact Hausdorff space X.

THEOREM 2. A strictly semi-simple Banach algebra B is absolute.

Proof. Let A be a Banach algebra with a homomorphism T into
BaC(X, Q). Let Tx(a) = T(a)(x). The kernel of Tx is closed since Q is
simple, and therefore Tx is continuous, whence Tx is of bound 1. That
T is continuous can now be shown by the 6-line argument of Loomis
[7, p. 77]. One could also use [12, Theorem 3.5].

COROLLARY 1 (Rickart). A semi-simple commutative Banach algebra
is absolute.

4. Concerning some special Banach algebras* For each subset S of
a Banach algebra B, let SL(SR) denote the set of all left (right) annihila-
tors of S. B is called an annihilator algebra [3] if BB = 0 = BL and if
IL Φ 0 (IR Φ 0) for each proper closed right (left) ideal /, where 0 de-
notes the zero ideal.

Lemma 1 is due to Forsythe and McCoy [4, p. 524].

LEMMA 1. In a ring without nonzero nilpotent elements every
idempotent is in the center.

THEOREM 3. That a Banach algebra B have zero as its only nilpotent
element is both a necessary and a sufficient condition for B to be either
strictly semi-simple or absolute, provided any of the following conditions
is satisfied:
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(a) B is finite-dimensional.
(b) B satisfies the descending chain condition on right ideals.
(c) B is a semi-simple annihilator algebra.

Proof. If B is strictly semi-simple, then BaC(X,Q) by [8] and
hence has only zero as a nilpotent element. If B is absolute, then zero
is its only nilpotent element by Theorem 1. Conversely, suppose B has
no nonzero nilpotent elements.

Suppose condition (a) or (b) holds. Then B has a nilpotent radical
and therefore is semi-simple; also B is then a direct sum of division
algebras and therefore has the property that every left (or right) ideal
is two-sided [2, p. 463]. Thus B is strictly semi-simple and therefore
absolute by Theorem 2.

Suppose condition (c) holds. Let M be any regular maximal right
ideal in B. Bonsall and Goldie [3, pp. 155-6] show that for any semi-
simple annihilator algebra B, ML — Be where e is a nonzero idempotent,
B is a minimal (closed) left ideal, eB a minimal (closed) right ideal,
(eB)L a maximal left ideal, and (Be)R — M.

If B has no nonzero nilpotent elements, then e is in the center by
Lemma 1 so that Be = eB is a two-sided ideal. But the left and right
annihilators of a closed two-sided ideal are identical [3, p. 159] so that
(eB)L = (Be)R = M.

Since (eB)L is a left ideal, M, which was any regular maximal right
ideal in B, has been shown to be a left ideal. Thus B is strictly semi-
simple since it is semi-simple by hypothesis, and therefore absolute by
Theorem 2.

COROLLARY 2. An J5Γ* algebra B is commutative if and only if
any of the following properties is satisfied:

(a) B has no nonzero nilpotent elements.
(b) B is strictly semi-simple.
(c) B is absolute.

Proof. An i ϊ* algebra is the closure of the direct sum of matrix
algebras Mσ [1, pp. 379-380]. If condition (a) holds, then each Mσ must
have zero as its only nilpotent element and therefore must be one-
dimensional. Hence each Mσ is generated by an idempotent eσ which,
by Lemma 1, is in the center. For u, veΣMσj u = Σrkek, v — Ί,stet1

rk, st scalars, uv= vu so that ΣΛfσ is commutative and therefore so is
its closure, B. Thus condition (a) implies that B is commutative.

Suppose B is commutative. Since an H* algebra is semi-simple, if
commutative it is strictly semi-simple and c C ( I , Q) by [8], so that zero
is its only nilpotent element. Hence condition (a) prevails.
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The remainder of the corollary follows immediately from Theorem 3
since an if* algebra is a semi-simple annihilator algebra [6, p. 697].
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