ON RADICALS AND CONTINUITY OF HOMO-
MORPHISMS INTO BANACH ALGEBRAS

EpitH H. LUCHINS

1. Introduction. All Banach algebras considered are over the real
field and all homomorphisms considered are algebraic (real-linear). An
algebra is called semi-simple, strongly semi-simple, or strictly semi-
simple, if its Jacobson radical [5], Segal radical [10], or strict radical
[8], respectively, is the zero ideal; that is, if its regular maximal right
ideals, its regular maximal two-sided ideals, or those of its two-sided
ideals which are regular maximal right ideals, intersect in the zero ideal.
Rickart [9, Corollary 6.3] proved that a semi-simple commutative Banach
algebra has the property that every homomorphism of a Banach algebra
into it is continuous. Call an algebra with this property an absolute
algebra. Yood [12, Theorem 3.5] proved that every homomorphism of a
Banach algebra onto a dense subset of a strongly semi-simple Banach
algebra is continuous. Thus a strongly semi-simple Banach algebra is
‘““almost ”” absolute. The question arose: Is a (noncommutative) semi-
simple or strongly semi-simple Banach algebra necessarily absolute ?
A negative answer is furnished in the present note. It is shown that
in order for a Banach algebra to be absolute it is sufficient that it be
strictly semi-simple and necessary that it have zero as its only nilpotent
element. The latter condition is shown to be sufficient for some special
Banach algebras to be absolute.

2. Necessary condition for a Banach algebra to be absolute.

THEOREM 1. Amn absolute Banach algebra has mo mnonzero nilpotent
elements.

Proof. Suppose the Banach algebra B contains a nonzero nilpotent
element. Then there exists a nonzero ve B such that »* = 0. Let A be
an infinite dimensional Banach algebra such that A* = (0). Since A is
an infinite dimensional complete vector space, there exists a discontinuous
linear functional on A; denote it by f(x). Let m(x) = f(x)v. Since f(x)
is linear and v* = 0, 7 is seen to be a homomorphism of A into B.

Let ||y|| be a Banach norm for B. Then ||x(x)|| = |f(x)| [|v|| since
f(x) is a scalar. Since f(x) is discontinuous |f(x)| is not bounded and
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hence 7 is not bounded. Thus 7 is discontinuous so that B is not
absolute.

It is known that if a Banach algebra B is semi-simple and has
a unique norm then a homomorphism of a Banach algebra onto B is
necessarily continuous [9, Theorem 6.2]; that the resulting proposition is
false if the word into is substituted for onto follows from our Theorem 1.
Indeed, this theorem shows that for a Banach algebra to be absolute it
is not sufficient that it have the properties of being simple, semi-simple,
strongly semi-simple and having an identity and a unique norm. Thus,
these properties are possessed by the algebra of all 2 by 2 matrices
over the reals, under a Banach norm, and yet, since this algebra has
nonzero nilpotent elements, Theorem 1 shows that it is not absolute.

3. Sufficient condition for a Banach algebra to be absolute. In [8]
there was introduced the concept of a strictly semi-simple algebra. It
was shown [8, Theorems 2 and 3] that a Banach algebra B is strictly
semi-simple if and only if it is isomorphic to a subalgebra of C(X, Q),
the algebra of quaternion-valued functions continuous, and vanishing at
o, on a locally compact Hausdorff space X.

THEOREM 2. A strictly semi-stmple Banach algebra B is absolute.

Proof. Let A be a Banach algebra with a homomorphism 7' into
Bc(C(X,Q). Let T,a) = T(a)(x). The kernel of T, is closed since @ is
simple, and therefore T, is continuous, whence T, is of bound 1. That
T is continuous can now be shown by the 6-line argument of Loomis
[7, p. 77]. One could also use [12, Theorem 3.5].

COROLLARY 1 (Rickart). A semi-simple commutative Banach algebra
18 absolute.

4, Concerning some special Banach algebras. For each subset S of
a Banach algebra B, let S,(S,) denote the set of all left (right) annihila-
tors of S. B is called an annihilator algebra [3] if B, =0 = B, and if
I, + 0 (I,+ 0) for each proper closed right (left) ideal I, where 0 de-
notes the zero ideal.

Lemma 1 is due to Forsythe and McCoy [4, p. 524].

LEMMA 1. In a ring without monzero milpotent elements every
idempotent is in the center.

THEOREM 3. That a Banach algebra B have zero as its only nilpotent
element is both a mecessary and o sufficient condition for B to be either
strictly semi-simple or absolute, provided any of the following conditions
18 satisfied :
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(a) B is finite-dimensional.
(b) B satisfies the descending chain condition on right ideals.
(¢) B is a semi-simple annihilator algebra.

Proof. 1f B is strictly semi-simple, then Bc C(X, Q) by [8] and
hence has only zero as a nilpotent element. If B is absolute, then zero
is its only nilpotent element by Theorem 1. Conversely, suppose B has
no nonzero nilpotent elements.

Suppose condition (a) or (b) holds. Then B has a nilpotent radical
and therefore is semi-simple; also B is then a direct sum of division
algebras and therefore has the property that every left (or right) ideal
is two-sided [2, p. 463]. Thus B is strictly semi-simple and therefore
absolute by Theorem 2.

Suppose condition (c) holds. Let M be any regular maximal right
ideal in B. Bonsall and Goldie [3, pp. 155-6] show that for any semi-
simple annihilator algebra B, M, = Be where e is a nonzero idempotent,
B is a minimal (closed) left ideal, eB a minimal (closed) right ideal,
(eB), a maximal left ideal, and (Be); = M.

If B has no nonzero nilpotent elements, then e is in the center by
Lemma 1 so that Be = ¢B is a two-sided ideal. But the left and right
annihilators of a closed two-sided ideal are identical [3, p. 159] so that
(eB); = (Be), = M.

Since (eB), is a left ideal, M, which was any regular maximal right
ideal in B, has been shown to be a left ideal. Thus B is strictly semi-
simple since it is semi-simple by hypothesis, and therefore absolute by
Theorem 2.

COROLLARY 2. An H* algebra B is commutative if and only if
any of the following properties is satisfied :

(a) B has mo nonzero nilpotent elements.

(b) B s strictly semi-simple.

(¢) B ts absolute.

Proof. An H* algebra is the closure of the direct sum of matrix
algebras M, [1, pp. 379-380]. If condition (a) holds, then each M, must
have zero as its only nilpotent element and therefore must be one-
dimensional. Hence each M, is generated by an idempotent e, which,
by Lemma 1, is in the center. For u,ve XM, u = Zrie,, v = Zs¢,
7., S, scalars, wv= vu so that M, is commutative and therefore so is
its closure, B. Thus condition (a) implies that B is commutative.

Suppose B is commutative. Since an H* algebra is semi-simple, if
commutative it is strictly semi-simple and cC(X, @) by [8], so that zero
is its only nilpotent element. Hence condition (a) prevails.
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The remainder of the corollary follows immediately from Theorem 3
since an H* algebra is a semi-simple annihilator algebra [6, p. 697].
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