MULTIPLICATION FORMULAS FOR PRODUCTS OF BERNOULLI AND EULER POLYNOMIALS

L. Carlitz

1. Put

$$
\begin{equation*}
\frac{t e^{x \iota}}{e^{\iota}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \frac{2 e^{x t}}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} . \tag{1.1}
\end{equation*}
$$

The following multiplication formulas are familiar [5, pp. 18, 24]:

$$
\begin{equation*}
B_{m}(k x)=k^{m-1} \sum_{r=0}^{k-1} B_{m}\left(x+\frac{k}{r}\right) \tag{1.2}
\end{equation*}
$$

$$
\begin{equation*}
E_{m}(k x)=k^{m} \sum_{r=0}^{k-1}(-1)^{r} E_{m}\left(x+\frac{k}{r}\right) \quad(k \text { odd }) \tag{1.3}
\end{equation*}
$$

Let $\bar{B}_{m}(x), \bar{E}_{m}(x)$ denote, respectively, the Bernoulli and Euler functions defined by

$$
\begin{aligned}
& \bar{B}_{m}(x)=B_{m}(x)(0 \leq x<1), \bar{B}_{m}(x+1)=\bar{B}_{m}(x) \\
& \bar{E}_{m}(x)=E_{m}(x)(0 \leq x<1), \bar{E}_{m}(x+1)=-\bar{E}_{m}(x), \quad(m \geq 1)
\end{aligned}
$$

Then $\bar{B}_{m}(x)$ and $\bar{E}_{m}(x)$ also satisfy the multiplication formulas (1.2), (1.3).
In this note we obtain some generalizations of (1.2) and (1.3) suggested by a recent result of Mordell [4]. In extending some results of Mikolás [3], Mordell proves the following theorem. Let $f_{1}(x), \cdots, f_{n}(x)$ denote functions of x of period 1 that satisfy the relations

$$
\begin{equation*}
\sum_{r=0}^{k-1} f_{i}\left(r+\frac{r}{k}\right)=C_{i}^{(h)} f_{i}(k x) \quad(i=1, \cdots, n) \tag{1.4}
\end{equation*}
$$

where $C_{i}^{(k)}$ is independent of x. Let a_{1}, \cdots, a_{n} be positive integers that are relatively prime in pairs. Then if the integrals exist and $A=a_{1} a_{2} \cdots a_{n}$,

$$
\begin{align*}
& \int_{0}^{A} f_{1}\left(\frac{x}{a_{1}}\right) f_{2}\left(\frac{x}{a_{2}}\right) \cdots f_{n}\left(\frac{x}{a_{n}}\right) d x \tag{1.5}\\
& \quad=A \int_{0}^{1} f_{1}\left(\frac{A x}{a_{1}}\right) f_{2}\left(\frac{A x}{a_{2}}\right) \cdots f_{n}\left(\frac{A x}{a_{n}}\right) d x \\
& \quad=C_{1}^{\left(a_{1}\right)} C_{2}^{\left(a_{2}\right)} \cdots C_{n}^{\left(a_{n}\right)} \int_{0}^{1} f_{1}(x) f_{2}(x) \cdots f_{n}(x) d x
\end{align*}
$$

Received November 24, 1958.

2. We first prove

Theorem 1. Let $n \geq 1 ; m_{1}, \cdots, m_{n} \geq 1 ; a_{1}, a_{2}, \cdots, a_{n}$ positive integers that are relative prime in pairs; $A=a_{1}, a_{2}, \cdots, a_{n}$. Then

$$
\begin{align*}
& \sum_{r=0}^{k_{A}-1} \bar{B}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \bar{B}_{m_{2}}\left(x_{2}+\frac{r}{a_{2} k}\right) \cdots \bar{B}_{m_{n}}\left(x_{n}+\frac{r}{a_{n} k}\right) \tag{2.1}\\
& \quad=C \sum_{r=0}^{k-1} \bar{B}_{m_{1}}\left(a_{1} x_{1}+\frac{r}{k}\right) \bar{B}_{m_{2}}\left(a_{2} x_{2}+\frac{r}{k}\right) \cdots \bar{B}_{m_{n}}\left(a_{n} x_{n}+\frac{r}{k}\right),
\end{align*}
$$

where

$$
\begin{equation*}
C=a_{1}^{1-m_{1} a_{2}^{1-m_{2}}} \cdots a_{n}^{1-m_{n}} . \tag{2.2}
\end{equation*}
$$

In the first place for $n=1$ it follows from (1.2) for arbitrary $a \geq 1$ that

$$
\begin{aligned}
\sum_{r=0}^{k a-1} \bar{B}_{m}\left(x+\frac{r}{a k}\right) & =\sum_{r=0}^{k-1} \sum_{s=0}^{a-1} \bar{B}_{m}\left(r+\frac{s}{a}+\frac{r}{a k}\right) \\
& =\sum_{r=0}^{k-1} \bar{B}_{m}\left(a x+\frac{r}{k}\right),
\end{aligned}
$$

which agrees with (2.1).
For the general case, let S denote the left member of (2.1). Put

$$
A_{\mathrm{s}}=a_{1} a_{2} \cdots a_{\mathrm{s}}
$$

$$
(1 \leq s \leq n)
$$

and replace r by $s k A_{n-1}+r$. Then

$$
\begin{gathered}
S=\sum_{r=0}^{k A_{n-1}-1} \bar{B}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \cdots \bar{B}_{m_{n-1}}\left(x_{n-1}+\frac{r}{a_{n-1} k}\right) \\
=\sum_{s=0}^{a_{n-1}-1} \bar{B}_{m_{n}}\left(x_{n}+\frac{A_{n-1} \delta}{a_{n}}+\frac{r}{a_{n} k}\right) \\
=\sum_{r=0}^{k A_{n-1}^{-1}} \bar{B}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \cdots \bar{B}_{m_{n-1}}\left(x_{n-1}+\frac{r}{a_{n-1} k}\right) \\
\quad \cdot \sum_{s=0}^{a_{n}-1} \bar{B}_{m_{n}}\left(x_{n}+\frac{s}{a_{n}}+\frac{r}{a_{n} k}\right) \\
\sum_{r=0}^{1-m_{n}} \sum_{k_{n-1}}^{k A_{n-1}^{-1}} \bar{B}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \cdots \bar{B}_{m_{n-1}}\left(x_{n-1}+\frac{r}{a_{n-1} k}\right) \\
\quad \cdot \bar{B}_{m_{n}}\left(a_{n} x_{n}+\frac{r}{k}\right) .
\end{gathered}
$$

Continuing in this way we get

$$
\begin{gathered}
S=a_{n-1}^{1-m} n-1 a_{n}^{1-m_{n}} \sum_{r=0}^{k A_{n-2}-1} \bar{B}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \cdots \bar{B}_{m_{n-2}}\left(x_{n-2}+\frac{r}{a_{n-2} k}\right) \\
\cdot \bar{B}_{m_{n-1}}\left(a_{n-1} x_{n-1}+\frac{r}{k}\right) \bar{B}_{m_{n}}\left(a_{n} x_{n}+\frac{r}{k}\right) \\
=a_{1}^{1-m_{1}} \cdots a_{n}^{1-m} \sum_{r=0}^{k-1} \bar{B}_{m_{1}}\left(a_{1} x_{1}+\frac{r}{k}\right) \bar{B}_{2}\left(a_{2} x_{2}+\frac{r}{k}\right) \\
\cdots \bar{B}_{m_{n}}\left(a_{n} x_{n}+\frac{r}{k}\right) .
\end{gathered}
$$

For $k=1$, $(2,1)$ reduces to

$$
\begin{gather*}
\sum_{r=0}^{A-1} \bar{B}_{m_{1}}\left(x_{1}+\frac{r}{a_{1}}\right) \bar{B}_{2}\left(x_{2}+\frac{r}{a_{2}}\right) \cdots \bar{B}_{n}\left(x_{n}+\frac{r}{a_{n}}\right) \tag{2.3}\\
=C \cdot \bar{B}_{m_{1}}\left(a_{1} x_{1}\right) \bar{B}_{m_{2}}\left(a_{2} x_{2}\right) \cdots \bar{B}_{m_{n}}\left(a_{n} x_{n}\right)
\end{gather*}
$$

where C is defined by (2.2); (2.3) may be considered a direct generalization of (1.2).

We remark that a formula like (2.1) holds for any set of functions satisfying (1.4).

We note also that the formula (2.2) can be proved by means of the Chinese remainder theorem. This remarks applies also to formulas (3.4) and (4.8) below.

3. In the next place we have

Theorem 2. Let n be odd and $\geq 1 ; m_{1}, \cdots, m_{n} \geq 1 ; a_{1}, a_{2}, \cdots, a_{n}$ positive odd integers that are relatively prime in pairs; $A=a_{1} a_{2} \cdots a_{n}$; k odd ≥ 1. Then

$$
\begin{align*}
& \sum_{r=0}^{k A-1}(-1)^{r} \bar{E}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \cdots \bar{E}_{m_{n}}\left(x_{n}+\frac{r}{a_{n} k}\right) \tag{3.1}\\
& \quad=C^{\prime} \sum_{r=0}^{k-1}(-1)^{r} \bar{E}_{m_{1}}\left(a_{1} x_{1}+\frac{r}{k}\right) \cdots \bar{E}_{m_{n}}\left(a_{n} x_{n}+\frac{r}{k}\right),
\end{align*}
$$

where

$$
\begin{equation*}
C^{\prime}=a_{1}^{-m_{1} a_{2}^{-m_{2}} \cdots a_{n}^{-m_{n}} .} \tag{3.2}
\end{equation*}
$$

The proof is similar to that of Theorem 1, but makes use of (1.3) in place of (1.2); also the formula

$$
\begin{equation*}
\bar{E}_{m}(x+r)=(-1)^{r} \bar{E}_{m}(x) \quad(m \geq 1) \tag{3.3}
\end{equation*}
$$

is needed.

For $n=1$ and a odd, we have

$$
\begin{aligned}
& \sum_{r=0}^{k a-1}(-1)^{r} \bar{E}_{m_{1}}\left(x+\frac{r}{a k}\right)=\sum_{r=0}^{k-1}(-1)^{s k} \bar{E}_{m}\left(x+\frac{s}{a}+\frac{r}{a k}\right) \\
& \quad=a^{-m} \sum_{r=0}^{k-1}(-1)^{r} \bar{E}_{m}\left(a x+\frac{r}{k}\right),
\end{aligned}
$$

which agrees with (3.1). For the general case let S^{\prime} denote the left member of (3.1). Then

$$
\begin{aligned}
S^{\prime}= & \sum_{r=0}^{k A_{n-1}} \sum_{s=0}^{1}(-1)^{r+s} \bar{E}_{m_{1}}\left(x_{1}+\frac{s A_{n-1}}{a_{1}}+\frac{r}{a_{1} k}\right) \cdots \\
& \cdot \bar{E}_{m_{n-1}}\left(x_{n-1}+\frac{s A_{n-1}}{a_{n-1}}+\frac{r}{a_{n-1} k}\right) \\
& \cdot \bar{E}_{m_{n}}\left(x_{n}+\frac{s A_{n-1}}{a_{n}}+\frac{r}{a_{n} k}\right) .
\end{aligned}
$$

If we put

$$
s A_{n-1}=q a_{n}+t \quad\left(0 \leq t<a_{n}\right)
$$

then $s \equiv q+t(\bmod 2)$, so that

$$
\bar{E}_{m_{n}}\left(x_{n}+\frac{s A_{n-1}}{a_{n}}+\frac{r}{a_{n} k}\right)=(-1)^{q} \bar{E}_{m_{n}}\left(x_{n}+\frac{t}{a_{n}}+\frac{r}{a_{n} k}\right) .
$$

Since n is odd we therefore get

$$
\begin{aligned}
S^{\prime}= & \sum_{r=0}^{k A_{n-1}-1}(-1)^{r} \bar{E}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \cdots \bar{E}_{m_{n-1}}\left(x_{n-1}+\frac{r}{a_{n-1} k}\right) \\
= & \quad \sum_{t=0}^{a_{n}-1}(-1)^{t} \bar{E}_{m_{n}}\left(x_{n}+\frac{t}{a_{n}}+\frac{r}{a_{n} k}\right) \\
& \quad \cdot a_{n}^{k A_{n-1}-1}(-1)^{r} \bar{E}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}\right) \cdots \bar{E}_{m_{n}}\left(a_{n} x_{n}+\frac{r}{k}\right) .
\end{aligned}
$$

Continuing in this way we ultimately reach (3.1).
For $k=1$, (3.1) becomes

$$
\begin{align*}
& \sum_{r=0}^{A-1}(-1)^{r} \bar{E}_{m_{1}}\left(x_{1}+\frac{r}{a_{1}}\right) \cdots \bar{E}_{m_{n}}\left(x_{n}+\frac{r}{a_{n}}\right) \tag{3.4}\\
& \quad=C^{\prime} E_{m_{1}}\left(a_{1} x_{1}\right) \cdots E_{m_{n}}\left(a_{n} x_{n}\right),
\end{align*}
$$

subject to the conditions of the theorem.
4. Theorem 2 can be extended further by introducing the "Eulerian'" polynomial [2] $\phi_{m}(x, \rho)$ defined by

$$
\begin{equation*}
\frac{1-\rho}{1-\rho e^{t}} e^{x t}=\sum_{m=0}^{\infty} \phi_{m}(x, \rho) \frac{t^{m}}{m!} \quad(\rho \neq 1) \tag{4.1}
\end{equation*}
$$

In particular $\phi_{m}(x,-1)=E_{m}(x)$.
We shall assume that the parameter ρ is an f th root of unity. It follows easily from (4.1) that

$$
\begin{equation*}
\phi_{m-1}(k x, \rho)=\frac{(\rho-1) f^{m-1}}{m} \sum_{r=0}^{r^{-1}} \rho^{r} B_{m}\left(x+\frac{r}{f}\right) . \tag{4.2}
\end{equation*}
$$

We accordingly define the function $\bar{\phi}_{n}(x, \rho)$ by means of

$$
\begin{equation*}
\bar{\phi}_{m-1}(k x, \rho)=\frac{(\rho-1) e^{m-1}}{m} \sum_{r=0}^{f-1} \rho^{r} \bar{B}_{m}\left(x+\frac{r}{f}\right) \tag{4.3}
\end{equation*}
$$

It follows from (4.3) that

$$
\begin{equation*}
\bar{\phi}_{n}(x+1, \rho)=\rho^{-1} \bar{\phi}_{n}(x, \rho) \tag{4.4}
\end{equation*}
$$

so that if ρ is a primitive f th root of unity, $\bar{\phi}_{n}(x, \rho)$ has period f. Also by means of (4.1) we readily obtain the multiplication theorem [1] valid for $k \equiv 1(\bmod f)$

$$
\begin{equation*}
\sum_{r=0}^{k-1} \rho^{r} \phi_{m}\left(x+\frac{r}{k}, \rho\right)=k^{-m} \phi_{m}(k x, \rho) \tag{4.5}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
\sum_{r=0}^{k-1} \rho^{r} \bar{\phi}_{m}\left(x+\frac{r}{k}, \rho\right)=k^{-m} \bar{\phi}_{m}(k x, \rho) \tag{4.6}
\end{equation*}
$$

We may now state
Theorem 3. Let $f>1, n \equiv 1(\bmod f) ; m_{1}, \cdots, m_{n} \geq 1, a_{1}, a_{2}, \cdots, a_{n}$ positive integers that are relatively prime in pairs and such that $a_{i} \equiv 1(\bmod f)$ for $i=1, \cdots, n ;$ also let $k \equiv 1(\bmod f)$. Then if $A=a_{1} a_{2} \cdots a_{n}$, we have

$$
\begin{equation*}
\sum_{r=0}^{k_{A}^{A-1}} \rho^{r} \bar{\phi}_{m_{1}}\left(x_{1}+\frac{r}{a_{1} k}, \rho\right) \cdots \bar{\phi}_{m_{n}}\left(x_{n}+\frac{r}{a_{n} k}, \rho\right) \tag{4.7}
\end{equation*}
$$

$$
=C^{\prime} \sum_{r=0}^{k-1} \rho^{r} \bar{\phi}_{m_{1}}\left(a_{1} x_{1}+\frac{r}{k}, \rho\right) \cdots \bar{\phi}_{m_{n}}\left(a_{n} x_{n}+\frac{r}{k}, \rho\right)
$$

where C^{\prime} is defined by (3.2).
The proof is very much like that of Theorem 2 and will be omitted. We remark that for $k=1$, (4.7) becomes

$$
\begin{align*}
& \sum_{r=0}^{A-1} \rho^{\prime} \bar{\phi}_{m_{1}}\left(x_{1}+\frac{r}{a_{1}}, \rho\right) \cdots \bar{\phi}_{m_{n}}\left(x_{n}+\frac{r}{a_{n}}, \rho\right) \tag{4.8}\\
& \quad=C^{\prime} \bar{\phi}_{m_{1}}\left(a_{1} x_{1}, \rho\right) \cdots \bar{\phi}_{m_{n}}\left(a_{n} x_{n}, \rho\right)
\end{align*}
$$

References

1. L. Carlitz, The multiplication formulas for the Bernoulli and Euler polynomials' Mathematics Magazine, 27 (1953), 59-64.
2. G. Frobenius, Uber die Bernoulli'schen Zahlen und die Euler'schen Polynome, Sitzungsberichte der Preussischen Akademie der Wissenschaften (1910), 809-847.
3. M. Mikolás, Integral formulas of arithmetical characteristics relating to the zetafunction of Hurwitz, Publicationes Mathematicae, 5 (1957), 44-53.
4. L. J. Mordell, Integral formulas of arithmetical character, Journal of the London Mathematical Society, 33 (1957), 371-375.
5. N. E. Nörlund, Vorlesungen über Differenzenrechnung, Berlin, 1924.

Duke University

