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1. Preliminaries* It is well known that compact topological groups
have many properties similar to those of finite groups, which are of
course special cases of compact topological groups under the discrete
topology. The program of this paper is to characterize sets of elements
in a compact topological group which generate a given subgroup and,
conversely, to determine properties of the subgroup generated by a given
set of elements by an investigation of the properties of this set. Tools
for our investigation are the convolution algebra of continuous complex-
valued functions on the group and the system of irreducible represen-
tations of the group. We shall also formulate the results using those
concepts. Our results are straightforward generalizations of known
theorems on generating sets of elements in finite groups1.

From now on G will denote a compact topological group which, as
a topological space, is Tx. It follows that G is Hausdorff and, there-
fore, also normal. Let e denote the identity of G. A subset H of G
will be called a subgroup of G if it is an abstract subgroup of G and
closed, unless the contrary is specifically stated. Let μ denote the nor-
malized Haar measure on G: μ(G) — 1.

A subgroup H with positive measure μ(H) > 0 is necessarily both
open and closed, as are all (left) cosets of H. Thus a compact group
G with such a subgroup is disconnected and the quotient-spaces GjH
(with respect to left cosets of H) is finite and discrete in the quotient
topology. Then l/μ(H) is the index of H in G. The quotient space of
G with respect to left cosets of a subgroup of measure 0 contains in-
finitely many elements and is again compact, Hausdorff and normal.

Let C denote the field of complex numbers and C(G) the set of all
complex-valued continuous functions on G. Defining scalar multiplication
and addition in C(G) pointwise as usual, C(G) becomes a Banach-space
under the uniform norm: | | / | | = sup x e σ {|/(ίc)|} (/ e C(G)). Defining
multiplication in C(G) by convolution,

= f(ooy-1)g(y)dy ,
io

C(G) becomes a Banach algebra. Left and right translations of / e C(G)
by s e G are defined by sf(x) = f(sx) and fs(x) = /(as) respectively.
Both s / and fs are functions in C(G) and every / e C(G) is both left

i See [2].
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and right uniformly continuous.

DEFINITION 1. The subgroup H of G is said to be generated by
a set M c G if it is the smallest subgroup of G containing M.

The subgroup generated by M will be denoted by H(M). It is
evidently the closure of the set of all finite products of positive and
negative powers of elements in M. From a theorem of Numakura2

about compact semigroups it follows that H(M) is already the closure
of the set of all finite products of positive powers of elements of M.

2. Subsets of G and corresponding ideals in C(G). With every non-
void subset M of G we shall associate the set F{M) of all functions
/ 6 C(G) invariant under right translation by every element s e M.

F(M) = {/:/ 6 C(G),f8 = / for all s e M} .

Obviously F(M) is non-void, since it contains the constant functions.
It is clearly a linear subspace of C(G), and it contains with every
/ 6 F(M) the function a * / if a e C(G) since

(α */).(«) = (a*f) (xs) = ( a(xsy-1)f(y)dy
Jo

=(a*f) (x) .= \

F(M) is therefore a left ideal in C(G).
It is clear that Mx a M2 implies F(MΎ) Z) F(M2). If M is the closure

of M in G we have therefore F(M) z> F(M).

LEMMA 1. F(M) = F(Λf).

Proof. We have to show F(M) c F(M). Assume that there is
/ 6 jP(Λf) such that / $ F(M). Then there i s m e ϊ such that f^Φf
and

(1) l l / m - / l l > α for some α > 0 .

Because of the uniform continuity of /, we can choose a neighborhood
F of e such that

^if χ-*ye V.

The set m F i s a neighborhood of m and contains a point m e M. Then
2 See [6] p. 102.
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\f(xm) - f{xm)\ < — for all x e G
Li

since {xmYλxm = m~λm e V. Since f(xm) = fm(x) and f(xm) = f(x) it
follows that \\f^ — f\\ < a/2 which contradicts our assumption (1).
Hence /™ = / and / 6 F(M) for all / e f(M) and the Lemma follows.

Now let / e F(M) and a e M, b e M. Clearly fe = /. Since
f(xa) = f(x) for all x e G, we also have /(ra^α) ^/(xα"1) for all x e G
or /o-i = /. Moreover fjx) = fb(xa) = /(αα) = /(α) for all x e G.
If we denote by H'(M) the abstract (not necessarily closed) subgroup
of G generated by M then evidently F(M) c F(H'(M)). On the other
hand, M c F ( M ) implies F(M) z> F(H'(M)) and therefore F(ΛΓ) =
F(H\M)). Now iϊ(ΛΓ) is the closure of H'(M) in G, and by Lemma
1 we obtain

LEMMA 2. F(M) = F(H(M)).
This result allows us to infer some further properties of the func-

tions of F(M). To simplify the notation, we shall in the rest of this
paragraph write H instead of H(M). Let {grH: r e R} be the decom-
position of G into distinct left cosets of H and G/H be the corresponding
quotient space. For / e F(H) and arbitrary h e H, we have f(grh) =
f(gr), so that / is constant on every coset grH. Conversely every con-
tinuous function on G constant on every left coset of H has clearly the
property fh=f for all h e H and belongs to F(H). Hence F(M) is
the set of all continuous functions on G that are constant on left cosets
of the subgroup generated by M.

Let us denote by C(GjH) the set of all continuous complex-valued
functions on GjH. If we associate with every / e F(H) the function / '
on G/H defined by f'(grH) = f(gr) then / ' e C(GIH) and the mapping
/ - > / ' is a linear one-to-one mapping of F(H) as a linear space onto
the linear space C(G/H).3

To identify the dimension of C(GjH) as a linear space we have to
distinguish two cases.

(a) μ(H) > 0. GjH is finite and discrete. The i = l/μ(H) charac-
teristic functions of the points of G/H form a basis in C(GIH).
Therefore F(H)is finite-dimensional and closed in the uniform norm in
C(G).

(b) μ{H) = 0. GjH is a normal Hausdorff space with infinitely
many points. Therefore C(GjH) and F(H) are infinite-dimensional. Let
F(H) be the closure of F(H) in C{G) and / e F(H). Assume fhφf for
some heH, or

( 2 ) I I Λ - / I I >a f o r s o m e α > 0 ,
3 See [5] p. 110, 111.
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There is / e F(H) such that 11 / - /11 < a/2 or

\f(xh)-f(xh)\ < — for all x e G

IΛ(*)-/(α)|<-| for all x eG

I I Λ - / I K - | .

But then

which contradicts (2). Therefore fh=f for all h e H and F{H) c F(H)
which shows that F(H) is again closed in C(G).

The results of our discussion are summed up in

THEOREM 1. F(M) is a closed left ideal in C(G) consisting exactly
of all continuous functions on G which are constant on each left coset
of the subgroup H(M). As linear subspace of C(G), F(M) is l/μ(H(M))-
dimensional if μ(H(M)) > 0 and infinite-dimensional if μ(H(M)) = 0.

Analogous statements hold for the set of all continuous functions
on G that are invariant under left-translation by every element m e M.

3* Subgroups of G and corresponding ideals in C(G). Let the subset
M of G be a subgroup H. We can reverse the correspondence between
H and F(H) by observing that H is completely characterized by F(H)
as the set of all elements of G which right translate every / e F{H)
into itself. In order to see this we have only to show that for every
m $ H there is / e F(H) such that fm Φ /. Since m~x 0 H we have
H Φ m~Ή. By the complete regularity of G/ίf, there is / ' e C(G/H)
such that f'(H) = 1 and f\m~xΉ) = 0. Defining / e F(H) by the re-
lation f(x) = f\xH) for all x e G, we have /(m"1) = 0 and fm(m~ι) =
/(e) = l. Hence fm Φf.

It follows that for two arbitrary subgroups Hx and H2 of G jF(i?i) Z)
F(H2) implies Hλ(Z H2. The converse is obviously true. We conclude:

LEMMA 3. If Hx andH2 are subgroups of Gx then Hx c H2 if and
only if F(Ht) 3 F{H2).

Taking {e} and G as subgroups of G we have in particular F(e) =
C(G) a n d F ( G ) = {al} i.e., the (left) ideal consisting of all constant
functions.

Let now N be a normal subgroup of G, n e N and / e F(N). For
every a e G w e have nf(x) = f(nx) = f(xnλ) = fnι(x) = /(a?) where nι e N.
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Therefore every element of F(N) is both left and right invariant under
translation by elements of N. For an arbitrary a e C(G) we then have:

(/ * a)n(x) = (/ * a)(xn) = \ f(xny1)a(y)dy = I f(n1xy-1)a(y)dy

= (/ * a)(x) for all x e G

F(N) is then a right ideal and therefore a two sided ideal in C(G).
Suppose now that H is non-normal. Then gH Φ Hg for some g e G.

We can assume that there is h e H such that hg 0 gH. (Otherwise
there would be hλ e H such that ghx $ Hg or h^"1 $ g~λH, and we
could take hλ and g-1 in place of h and g.) Then hgH Π gH = 0. We
shall exhibit functions / e F(H) and a e C(G) such that / * α 0 F(JHΓ).
It will follow that .F(iϊ) is not a two-sided ideal in C(G). Again we
distinguish two cases.

(a) μ(H) > 0. The sets gH and Hg-1 are both open and closed.
Let / be the characteristic function of gH and a be the characteristic
function of Hg~\ Then / e F(H) and a e C(G).

Let us now consider fλ(y) — /(hy^aiy) as a function of y Plainly
/i is continuous. If 2/ e fljg"1 then /̂ T/"1 e /i^iί and /(hy1) = 0, since

" Π ̂ ΐΓ = 0. Therefore fλ(y) = 0 for y e Hg~\ However, for y $ Hg~\
= 0 and again /^T/) = 0. We see that

( 3 ) (/ * a)(h) = ( f(hy-1)a(y)dy - 0 .

On the other hand, using the function f2(y) = /(y^aiy), we see that
f2 6 C(G),f2 ̂  0 and f2{g-χ) =f(g)a(g~1) = 1. Since the Haar integral
is strictly positive on C(G) we conclude that

(4) (/*α)(e)= \ f(y-ι)a(y)dy > 0 .

Comparison of (3) and (4) shows that / * a is not constant on H.
Therefore it cannot belong to F(H).

(b) μ(H) = 0. Since G/H is Hausdorff and normal, there are dis-
joint open neighborhoods U1 and U2 of gH and hgH respectively. In
view of the complete regularity of G/H, we can find / ' 6 C(G/H) such
that / ' ^ 0,f'(gH) = 1, and / ' vanishes on the (closed) complement of
U1 in GjH, which contains in particular the open neighborhood U2 of
hgH.

Defining f(x) = f'(xH), we obtain a non-negative function / e F(H)
assuming the value 1 on gH and vanishing on an open set U (the pre-
image of U2 under the mapping x ~> xH) containing hg. We now choose
a symmetric open neighborhood V of e such that hgV c U and a non-
negative function a e C(G) assuming the value 1 at g-1 and vanishing
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outside the open set Vg~ι. This choice again is possible by the complete
regularity of G.

We again consider the continuous function fx(y) = f(hy~1)a(y). For
y e Vg-1 we have hy~x e hgV c U so that fQiy1) = 0 and fτ(y) = 0.
On the other hand, y $ Vg'1 implies a(y) — 0 and fx(y) = 0. So

( 30 (/ * a)(h) = \ f(hy-1)a(y)dy - 0 .
JG

Considering f<λ{y)=f{y~1)a(y)y we see that / 2 ^ 0 , / 2 e C(G) and
g-1) = 1 > 0. Therefore

(40 (/*α)(e)= f f(y-1)a(y)dy > 0 .
JG

Comparing (30 and (40, we see again that / * a is not constant on
H and does not belong to F(H).

As a result we obtain

LEMMA 4. A subgroup H of G is normal if and only if F(H) is
a two sided ideal in C(G).

The correspondence between F(M) and H(M) for arbitrary subsets
M c G leads yet to another useful result.

LEMMA 5. Let Mτ and M2 be any subsets of G. Then M2 c H{MX)
if and only if F(M1 U M2) =

Proof. Assume first M2 c H{Mλ). Then H(M1 U M2) = HiM,) and
by Lemma 2, we have

F{MX U M2) = FiHiM, U M2)) = F^M,)) - ^(M,) .

Let us now assume that F(M1 U M2) = jP(Λfi). It is clear that F(M2) ZD
F{Mλ U Af2). Using Lemma 2, we get F(H(M2)) z> ̂ ^(MO) and by
Lemma 3 ikί2 c iϊ(M2) c U ^ ) .

Lemma 5 states in particular that an element m e G can be approx-
imated by finite products of positive powers of elements in M if and
only if the set of all function of C(G) which are invariant under right
translation by all elements of M is not reduced by joining m to M.

Taking M2 = G, we obtain as a necessary and sufficient condition
for the set Mλ to generate G that F(M±) be the set of all constant func-
tions on G.

Taking for M1 a subset of a given subgroup H — M2y Lemma 5
states that Mλ generates H if and only if F(Mλ) = F(H).

4. Irreducible representations of G. We now list some definitions
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and facts concerning representations which we shall have to use in the
following.4

Let {i?Cλ): λ e A} be a complete system of inequivalent irreducible
unitary continuous representations of G of degrees r λ respectively. Let
Rw(s) be the matrix associated with the element s in Rw for a given
basis in the corresponding vector space and Rm the identity represen-
tation. Denoting by u^ e C(G) the coefficient in the ίth row and feth

column in iϋ ( λ\ we have u^is"1) — v${s) and

ij * upq —

since the i? (λ) are unitary.
The functions u\j} are linearly independent and form a basis for the

linear space R(G) of all complex linear combinations

( 6 ) I = Σ Σ αί* λ ) ^ } , «Lλ) e C .

(5) shows that R(G) is a subalgebra of C(G). The Peter-Weyl theorem
says that R(G) is dense in C(G) under the uniform norm. More speci-
fically5, every / e C(G) can be uniformly approximated by functions of
the form

(7) l= i

which belong to R(G) as shown below.

Using the notation (α, 6) = \ α(x)6(^)cίx for a e C(G), b e C(G) we
)G

have, as can be verified easily,

8 ) *4λ) * / = Σ CΛ

- Σ (Λ

From (5) and (8) we can conclude that for fixed λ and i the functions
^ί^ (k = 1, 2, , rλ) form a basis for a minimal right ideal J?Sλ) of

^ See [5] § § 39, 40.
5 See [5] Theorem 39D. As pointed out be Prof. Edwin Hewitt in a lecture, one can

choose the approximate identity in the center of C(G) by taking u{x) = v(y1xy)dy and
J G

having v 6 C{G) (v Ξ> 0) vanish outside a sufficiently small neighborhood of e.
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and C(G). Analogously it follows from (5) and (9) that for fixed λ and
k, the functions u^ (i — 1, 2, •• ,r λ ) form a basis for a minimal left
ideal Z4λ) of R(G) and C(G). Finally it follows from (5), (8) and (9) that
for fixed λ the functions u\¥ (i, k = 1, 2, , rλ) form a basis for a minimal
two sided ideal T<λ) in R(G) and C(G). Each of these ideals is closed
because of its finite dimensionality.

Taking I e R(G) as in (6) we have

2 αifc

(10) I * u® = JL Σ a

Γ r λ ~| 1 r λ

and

λ r Γ/ rλ \ -i

— Σ ^λ I Σ ^ i ^ ) * I

We see that R(G) is the direct sum of the minimal two sided ideals
TCλ) which in turn are direct sums of minimal right ideals J2(,λ) and, in
the same way, of minimal left ideals Lίλ).

(12)

is itself a two sided ideal in C(G) but is not closed unless it
coincides with C(G). (This occurs if and only if G is finite).

The numbers (/, v$) appearing in (8) and (9) can be regarded as
the Fourier coefficients of the function / e C(G). For non-zero / there
exist only a countable number of non-zero Fourier coefficients (and at
least one).

Every element a = Σ r χ oc^u^ e Riλ) can be written in vector nota-
tion as a scalar product nίλ)a where u£λ) stands for the basis vector
(u(n\ uίi\ , ulfy and a for the coefficient vector (a19 a2, , α r λ), writ-
ten as column vector. By the definition of uffl we obtain under right
translation by any s e G

(13) [<}].(a0 = u&ϊxs) = Σ v%\xyu<#(8) or
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Right translation by s evidently induces a linear transformation in
Riλ) whose matrix with respect to u£λ) as a basis is just i?(λ)(s), and
Rlλ) is invariant under right translation. For any function a e R\λ\ the
effect of the translation is given by the formulas

(14) as =

as ==

where αs is the coefficient vector of as.

5 Generating sets in G and irreducible representations of G. We
investigate for a given subgroup H of G the intersection of F(H) with
the ideals of R(G), introduced above. If / e F(H) and / Φ 0, then
(/, ttίi}) Φ 0 for some λ, i, k. The function

is different from zero, lies in F(H), and by (8) also in R(G) (in fact in
β(,λ)), therefore in F'(iΓ) = F(H) Π J?2(G) (also in F(H) n i?ίλ)). ^(ff) is
again a left ideal in C(G) since lϋ((?) is a two sided ideal in C(G) and
contains all functions of the form uff*/ for a given / 6 F(ίf). From
(7), we obtain as an immediate consequence

LEMMA 6. F\H) - F(H) Π R(G) is dense in F(H).
Let now / ' e Ff{H). By (11), / ' can be written as a linear com-

bination of functions of the form u\P*f which are by (10) contained
in F(H) Π i?iλ). On the other hand, every linear combination of func-
tions in F(H) Π R[λ) is again a function of F'(H). On account of the
direct decomposition of R(G) with respect to the minimal right ideals
Rlλ\ we see that Fr(H) is, as a linear space, the direct sum of the linear
spaces F(H) n Rlλ),

(15) F'(H) = Σ θ Σ θ [F(H) n Rίλ)]
λ€/i ί = l

some of which may consist only of zero.
Let now F(H) Π Rίλ) be non-zero (we have already seen that there

must be at least one non-zero F(H) Π i?ίλ)) and let //λ) e F(H) Π Rίλ\
We can write //λ) as a scalar product of the basis vector π λ ) of i?ίλ) and
the coefficient vector fw

(16) fϊλ) = ujλ)fcλ) .

The function //λ ) is invariant under right translation by all elements
h e H. In view of (14) this means that
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(17) p> = R^(hψv for all h e H

i.e., f(λ) is an eigenvector of RCλ)(h) with eigenvalue 1 for all h e H.
Conversely, for fixed λ, every eigenvector with eigenvalue 1 common to
all R^(h) (h e H) determines by (16) a function //λ) e F(H) Π R\λ\

Since for a given i, λ linear independence of functions f}λ\gίλ) is
equivalent to linear independence of the corresponding coefficient vec-
tors f(λ), QW we see that the dimension of F(H) Π R[λ) as a linear space
is precisely the number of linearly independent eigenvectors f(λ) common
to all R^ih) (h e H) with eigenvalue 1.

DEFINITION 2. For any non-void subset M of G and for any fixed
λ, let d(κ)(M) denote the maximal number of linearly independent
eigenvectors common with eigenvalue 1 to jβ(λ)(m) for all m e M.

The inequalities 0 ^ c£(λ)(Λf) ^ r λ necessarily hold. In the present
case, we see that d^(H) is the dimension of F(H) Π iϋ[λ) for all i —
1,2, « , r λ since it obviously does not depend on i. Taking dCλ)(H)
linearly independent functions of F(H) Π Rίλ) and r — d(λ)(H) properly
chosen u^ (ί, λ fixed) as a basis for R[λ) amounts to transforming the
representation i?Cλ) to an equivalent one, J?'(λ) = S~1

JR
Cλ)S, in which iϋ' ( λ )

restricted to the elements of if, becomes reducible as representation of
H and is found to contain the identity-representation of H exactly
d(λ)(H) times. Thus d^λ)(H) can also be defined an the multiplicity with
which the identity representation of H is contained in iϋ (λ), restricted
to the elements of H and considered as a representation of H.

F(H) Π R[λ) has the dimension dw(H) for given λ, as we have seen. The
subspace F(H) Π T ( λ ) is the direct sum of all F(H) Π R{^ ( ΐ = l , 2, , rλ)
and has therefore dimension rkd

iκ){H). If there is only a finite number
of non-zero dw(H), then there are only a finite number of non-zero
F(H) n Rίλ) and F(H) Π T<λ\ By (15), we see that F'{H) is a linear
space of dimension Σjλ€A^λdw(H) which is finite-dimensional, and
therefore Ff{H) is closed. But then F'{H) = F(H) by Lemma 6, and
F(H) is of finite dimension Σ λ e ^ λ d ( λ ) ( i ϊ ) . If infinitely many d^(H) are
non-zero then F'(H) is an infinite dimensional linear space and the same
must be true of F(H). Combining this result with the results of
Theorem 1, we obtain:

THEOREM 2. If d(λ\H) is the multiplicity with which the identity
representation of a subgroup H of G is contained in R(λ\ restricted to
the elements of H and considered as a representation of H, then

Σ rλd^(H) = _ L _ if μ{H) > 0 .
λβΛ l^yli)

If μ{H) = 0 then the series ΣλeΛ?\d(λ)(iJ) diverges.
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The sum ΣjλeΛ^\d(λ)(H) can therefore be considered as giving the
" index" of H in G. A subgroup H has measure 0 if and only if
d(λ)(H) > 0 for infinitely many X e A.

Let N be a normal subgroup of G and d(λ)(N) > 0 for a certain λ.
Then F(N) Π R[λ) contains a non-zero function / = Σr

k

λ

=1

a*uM Assume
that aτ Φ 0. The set F(N) is a two sided ideal by Lemma 4, and so is
F'(N) = F(N) Π R(G). Therefore F'(N) contains together with / the
function

/ * uff = — ^ λ ) for arbitrary j , 1 <̂  j ^ r λ .
rλ

This means that R\λ) c Fr(N) and d(λ)(ΛΓ) = rλ. On the other
hand, supposing that for a given subgroup H d(λl(H) assumes only
the values 0 or r λ for all λ e A, we see that F{H) Π R[x) is either zero
or R{κ\ Then F(H) n r ( A ) is either zero or Γ(λ) and F'(H) is the direct
sum of two sided ideals and itself a two sided ideal in C(G). Its closure
F(H) must also be two sided and by Lemma 4, H is normal.

THEOREM 3. A subgroup H of G is normal if and only if d{λ)(H)
assumes only the values 0 or rλ for all X e yt.G

Trivial illustrations of this fact are given by the entire group
G (d(0\G) = 1 and d(λ)(G) = 0 f or λ Φ 0) and by the group consisting of
{e} only {d(λ)(e) = rλ for all λ 6 J).

We proceed now to characterize the generating properties of an
arbitrary subset M of G by means of the representations R{λ). Since
M c H(M), there are by the definition of d(λ)(H(M)) at least d(λ)(H(M))
linearly independent functions in R\λ) that are invariant under right
translation by all elements of M and d(λ)(M) :> dCλ)(H(M)). Conversely,
as seen in the proof of Lemma 2, any such function of R[λ) is also in-
variant under right translation by all elements of H(M) and d{λ\M) fg
d(λ)(H(M)). Together with the previous result, we now have

LEMMA 7. // M is an arbitrary subset of G, then dCλ)(M) = d(λ)(H(M))
for all X e A.

The main result which we can now prove is

THEOREM 4. If M1 and M2 are arbitrary subsets of G, then M2 c
H{Mλ) if and only if dix\Mx U M2) = d^iM,) for all X e A.

Proof. Let M2 c H{Mλ). Then H{Mλ) = H{MX U M2) and d{k\Mx) =
ΛZΊ U Λf2) for all λ 6 J by Lemma 7. On the other hand, the

6 See also [4] and [1] Theorem 1.
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equality d{X\Mx) = d^{M1 U M2) for all λ e A implies by Lemma 7 that

FiHiM,)) Π #ί λ ) = (̂fΓOMx U M2)) (Ί i^λ ) for all λ e Λ ,

F{H{MX)) Π Γ α ) = 2 ^ ^ U M2)) n T°° for all λ e J ,

F>{H{MX)) = FiHiMJ) n S(G) - ^ ( / / ( ^ U M2)) n Λ(G)

^ W U ^ ) (by (15)),

FiHiM,)) = F(H{Mλ U M2)) (by Lemma 6) and

M2 c H(MX) (by Lemmas 2 and 5) .

A number of corollaries are easily obtained. Putting M2 — G in
Theorem 4 and noting that d(λ\G) is positive only for λ = 0 we obtain

COROLLARY 4.1. The subset M of G generates G if and only if
dCλ\M) = 0 for all λ Φ 0.

Taking as M2 a subgroup H and as Mx a subset M of H, we get

COROLLARY 4.2. I%e s^δseί M o/ the subgroup H of G generates
H if and only if d(λ)(M) = d(k)(H) for all λ e A.

Finally, combining the results of Theorem 2, 3 and Lemma 7, we
obtain

COROLLARY 4.3. The subset M of G generates a normal subgroup
of G if and only if d(λ\M) assumes only the values 0 and r λ for all
λ e A. If dίλ)(M) > 0 for only a finite number of λ e A, then M
generates a subgroup of measure ll^xeA^\d(x)(M); otherwise M gener-
ates a subgroup of measure 0.

6 Finite generating sets in G. The preceding results are in par-
ticular valid for finite groups. In that case we are only concerned with
the investigation of generating properties of finite sets of elements.
Schreier and Ulam7 have shown that a connected compact metric group
G is generated by almost every pair of elements. Since the component
of the identity in any compact group G is a connected normal subgroup
of finite index in G, it is clear that there are always a finite number
of generators for a compact metric group.

For the case of a finite set M, there is a simple way to determine
dCλ\M) and to state the conditions of the last theorems and corollaries,
based on the following lemma.

LEMMA 8. Let Ba)(mly •• ,m ί) be the rectangular matrix with r λ

rows and srκ columns obtained by joining horizontally the s matrices
R{K\mk) - R{λ\e) (k = 1, 2, , s). Let ¥λ\mlf , ms) be the rank of

7 See [7] and [8].
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Bw(m19 •• ,m s ) . Then d(λ\{mk:k = 1, •••, s}) = r λ - b(λ\mly - , m , ) .

Since this Lemma has been stated by the author in [1] without

proof it may be suitable to set down a proof here.

Proof. Let B*(λ)(ml9 , ms) be the conjugate transpose of Biλ\mλ, ,
m8). Its rank is the same as that of BCλ\mlf •• , m ί ) . Since R(λ) is
unitary, B*(λ)(ml9 , ms) could have been obtained by placing the s
matrices R^im^1) — Riλ\e) (k — 1, •••, s) below each other. Since
dCλ}({mJύ: k = 1, , s}) ,= ^^({m*:1: & = 1, ••, s}) we have to show that
the rank of B*CλXmlf ••*, ms) is equal to r λ — (^^({m*:1: fc = 1, •••, s}).
In order to simplify the notation, we shall from now on omit the index
λ and the indication of the group elements when possible.

If we denote by As the rs x rs matrix obtained by placing the non-
singular r x r matrix, A, s times along the principal diagonal in a rs x rs
zero-matrix, then As is non-singular and A~XB*A has again rank b. If
u = (u19 , ur) is the basis of the r-dimensional linear space correspond-
ing to the matrix-representation R, then the transition to a new basis
u' in which the d first basis vectors are invariant under the transfor-
mations corresponding to mϊ1, , mj1 is given by the formula nP = u'
where P is a non-singular r x r matrix. In the new basis these trans-
formations are given by the matrices P-\R(ma *)P. The d first columns
in each of these have as their only non-zero elements Γs in the main
diagonal. In each of the matrices P '^^mί" 1 ) — R(e))P those columns
are therefore zero columns. Placing those s matrices one below the
other we obtain, as one can readily see, exactly the matrix P;τB*P.
The rank of this matrix can therefore not exceed r — d and we have
b <; r - d.

Assume that b < r — d. Then one of the columns C'd+1, , C'r in
P;ιB*P, say C'c, would be a linear combination of the other ones. By
a permutation of the vectors ud+1 and uc in u' given by u'Q = u", where
Q is the matrix of the corresponding permutation, we obtain as above
a matrix Q~ιP;ιB*PQ with rank δ in which the d first columns vanish
and the (d + l)-th column appears as a linear combination of the
remaining ones C'd'+1 = Σί-a+2#jCj\

Define 22 as the matrix obtained from R(e) by replacing in the (d +
l)-th column the zeros below the principal diagonal by — ad+2, , — ar

in that order. Passing to a new basis by the formula xx"R = u'", we
obtain as above the matrix RJ1QJ1PS1B*PQR in which, as one can see
easily, the first d + 1 columns vanish. But then the first d + 1 columns
in (PQR^Rim^^PQR have as their only non-zero elements Γs in the
main diagonal. This in turn means that the first d + 1 basis vectors in
it'" are invariant under the transformations corresponding to all elements
m^\k = 1, * ,s). But this contradicts our assumption that there are
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not more than d linearly independent vectors of that property. So
b = r — d, and the lemma is proved.

Lemma 8 allows us to determine dCλ)({m19 •• ,m s}) if the matrices
RCk)(mk)(k = 1, •••, s) are given. Applying Lemma 8 to a single element
m, we see that d{k\{m}) is exactly the multiplicity of the eigenvalue 1 in
2?(λ)(m). if j^(λ)(m) ( j o e s n o £ have 1 as an eigenvalue, then 6(λ)(m) = r λ .

Using Lemma 8, we can also reformulate the preceding results, e.g.
Corollary 4.1 takes the following form: the elements m19 , ms generate
G if and only if b(λ)(mu •••, ms) = r λ for λ Φ 0.. This condition is in
particular satisfied if for every λ Φ 0 there is at least one m ( λ ) among
the m1 ms for which RCλ\m(λ)) does not have 1 as an eigenvalue.
In this case, however, we can even say that the products of the form
mίi ma

ss (0 ^ ak: k — 1, , s) are dense in G and, arranged in a
certain order, form a sequence which is equidistributed in G.8 Similarly
we can see that the hypothesis of Corollary 4.2 is satisfied if for every
λ e A there is at least one m ( λ ) such that the multiplicity of the eigen-
value 1 in R(λ\m(λ)) is exactly d(λ)(H), i.e., the multiplicity with which
R(λ) restricted to H contains the identity-representation of H. Again
in this case we can make the stronger statement that the products of
the form m?i ma

ss (0 <Ξ ak: k — 1, , s) are dense in H and, arranged
in a certain order, form a sequence which is equidistributed in H.
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