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Introduction* In this paper Green's function methods are used to
investigate the distribution on the real axis of zeros of solutions of the
complex differential equations

(1) (v(χ)y'ϊ + f(χ)y = o

and

(2) y"'+f(x)y = 0.

In both cases the coefficient f(x) is assumed to be complex-valued and
continuous on a half-line /: x0 < x < oo, while p(x) in equation (1) is
assumed to belong to a special class of complex-valued functions to be
defined in Section I.

Equation (1) or equation (2) is said to be nonoscίllatory on a set E
if no nontrivial solution has an infinite number of zeros in E. In what
follows a solution shall mean a nontrivial solution. Suppose in equation
(1) x is a complex variable and p(x) and f(x) are analytic in a simply-
connected region R. Consider the well known Green's function g(x, s)
for the differential system

(3) (p(x)y')' = 0, y(a) = y(b) = 0 ,

where a and b are distinct points of R1. If a and b are zeros of a solu-
tion of equation (1), then

< [\g(x,8)\\f(x)\\dx\ ,
Ja

where the integral is taken along a path C in R and s is an interior
point of C. Starting with this inequality and imposing various bounds
on \f(x)\, Z. Nehari [7] and P. R. Beesack [3] have obtained nonoscilla-
tion theorems for y" + f(x)y = 0 in various regions of the complex plane
where f(x) is analytic. By the same methods the author [2] has ex-
tended some of these theorems and obtained similar results for equation
(1). The methods used in this paper are essentially those employed in
the sources mentioned above. However, by restricting the independent
variable to the real axis the condition of analyticity is relaxed and
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1 Sufficient conditions for the existence of g(x,s) are given in [2, p 15].
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upper bounds on the number of zeros of a solution on a given interval
are obtained not only for equation (1) but also for the third order equa-
tion (2).

1. A nonoscillation theorem* In this section we will consider equa-
tion (1). It will be assumed that p(x) is continuous and different from
zero on /. In order to make use of Green's function we wish to have
the system (3) incompatible, i.e., possess no (nontrivial) solution on /.

If p(x) is allowed to be complex-valued on /, then the system (3)
may be compatible. For example the system (e~ixy')f = 0, y(2mπ) = 0,
y(2nπ) = 0, m and n distinct positive integers, has the nontrivial solu-
tion y(x) = eix — 1 on I: 0 < x < oo. In order to avoid such examples
and also to be able to make use of certain estimates of Green's function,
only a restricted class of functions p{x) will be considered.

DEFINITION. Let G(I) denote the class of all complex-valued, con-
tinuous and non-zero functions p(x) defined on I: x0 < x < oo which
possess the further property that for any three numbers α, b and c such
that # 0 < α < δ < c < o o ,

( 4 )

( \ \[ dx . [c dx
(a) I —T-r < I — —

\Up(x) iap(x)

d x dx

Note. The class G(I) contains the functions p(x) > 0 which are
continuous on /.

An interesting subclass of G(I) is the collection of complex-valued
functions p(x) in G{I) which possess the additional property that if

- ^ - u(x) + iv(x) ,
*o V(t)

then

and for any x', x" in /, θ' = arctan {dv\άx\du\dx) \x.x, and

arctan I
/ dv/dx \
\ duldx /

can be chosen so that | θ' — θ" \ < π/2. In effect, the image curve of /
under φ(x) cannot change direction by more than π/2.
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Suppose p(x) e G(I). Then the differential system (3) is incom-
patible. Therefore the Green's function for this system exists, and it
has the explicit form

( 5 ) g{x, s) =

\ J*L
)ap(t)a p(t) Js p(t)

dt

d t

)ap(t))χp(t)

dt

, a < x < s

, s < x < b

a < s < b.

Since p(x) e G(I), the inequalities (4) are satisfied and these inequal-
ities together with the above expressions for g(x, s) show that

( 6 ) g(χ9
< -

(a)

Φ)

(0

Γ-
ja

dt
P(t)\

dt

P(t)\

dt

I p{t) I I

x Φ a, b and s Φ α, b.

If y(x) is a nontrivial solution of equation (1) on the interval a< x <b
such that y(a) = y(b) = 0, then the inequalities (4) imply f(x) is not
identically zero on a < x < b and

y(x) = I flf(a?, s)y{s)f(s)ds .
Jα

If x is chosen so that | y(x) | is a maximum on the interval a < x < b,
then (following Z. Nehari [7]):

( 7 ) 1 < [\g(x,s)\\f(s)\ds.
Ja

As a consequence of inequalities (6) and (7),

(a) \b\f(x)\dx[-
Ja Ja

( 8 )

dx
\~PW\

THEOREM 1. Suppose p(x) e G(7), and a, < α2 < αw are
secutίve zeros of a solution of (p(x)yj + f(x)y = 0, a2 > ίc0.
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must satisfy the inequalities

(<*\ Ύi 1 ^

( 9 )

(x)\

(b) n~l<\an\f(x)\([
\p(t)\

(c) n - ^ p ^ ^

Proof. Since p(a ) e G(7), the inequalities (8) are satisfied for a and
6 zeros of a solution of equation (1). From inequality (8a)

* 1 - ^ - , j = 1,2, . - . , » - 1 .
a ιγ\ί rγ J

_ ί ϊr\ ) I

Adding these w. — 1 inequalities,

w - 1 < \

giving the inequality (9a). The inequalities (9b) and (9c) follow in similar

fashion from the inequalities (8b) and (8c), respectively.

The following theorem is an immediate corollary of Theorem 1.

THEOREM 2. Nonoscillation theorem. Suppose p(x) e G(I) and

\p(t)

\f(x)\(^τ^
U Ĵz \p(t) I

where L and M many assume the value + oo. Then (p(x)yf)' + f(%)y = 0
is nonoscillatory on I if either L or M is finite, and if either L or M is
less than 1, then equation (1) is disconjugate on /, i.e., no solution has
more than one zero on I.

In the case f(x) and p(x) are real, the tests in Theorem 2 compare
with known criteria, for example those of W. Leighton [5, Corollary
4.2], E. Hille [4, p. 238], R. A. Moore [6, Theorems 3, 4 and 7 Corollary 1]
and R. L. Potter [8, Theorem 4.2].

2 An example* The substitution y = v/i/'p' transforms equation
(1) into the normal form

(10) v" + F(x)v = 0

where
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+
p 4 V p 1 2 V p

and equation (1) is nonoscillatory if and only if equation (10) is nonoscil-
latory. With p(x) == 1, the constant M in Theorem 2 is infinite, while
the nonoscillation condition

(11) L

is equivalent to

(12) [° x I F{x) I dx < oo .
J^o

In the following differential equation the integral in (12) is infinite,
hence fails to show nonoscillation, while in (11) L < 2, showing that no
solution of the equation can have more than two zeros on /. Let

( - 5 — f - λ — y ' ) ' + , * y = 0, *o = 1 .
V 2 — sin \ogx / (cc + )̂

Since j)(α5) = x2/(2 — sin logx) > 0 on 7, p(x) e G(I), and it is easily esti-
mated that

dt)dx<.
| + | t2 / 2

For equation (13)

£7/ x __ 2 — sin logo? , 1 / — 3cos 2 logx , 2sin logx — 2cos l o g x \
x\x + ί)2 4cc2 V (2 — sin logx)2 2 — sin log$ /

and easy estimations give

[°°x\F(x)\dx > ί°° —
Ji Ji Ax

-r
2 sin log x — 2 cos log ce 3 cos2 log x

2 — sin log x (2 — sin log xf
dx

2 - s i n l o g ^
d

+ 1)

where 0 < I2 < 3/4. Letting £ = logx in /x,

(cosί - sint)2 + cos2ί - 4(sin£ - cosί) \dt/: > — \
36 Jo

36 Jo

From the graph of ft(ί), fc(ί) > 1 for 0 < t < τr/4 and 57r/4 < £ < 2π,
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while k(t) < - 1 for 3ττ/4 < t < πy so | k(t) | > 1 for intervals of length
5ττ/4 out of each interval of length 2π on 0 < t < oo. Therefore £ = oo,

5 00

x I F(x) I dx = 00 .

3* Distribution of zeros Suppose the upper limits of the integrals
on the right in the inequalities (9) are considered as continuous varia-
bles and f(x) is not identically zero on any subinterval of /. Then in
each case the integral is a strictly monotone increasing function of the
upper limit and there exists at most one value of the upper limit for
which equality will hold. If xλ is such a value, then no solution of
equation (1) can have more than n zeros on the interval x0 < x < xx.
Since an> xlf the value xx also gives a lower bound on the magnitude
of the nt\ί consecutive zero on I of any solution of equation (1).

Adapting the notation used in [6], let N(x19 x2) be the maximum
number of zeros any solution of equation (1) may have on the interval
Xi < x < x2- Since in the complex case there is often no zero separation
theorem, the number N(x19 x2) merely puts an upper bound on the num-
ber of zeros a particular solution may have. See [1, Theorem 1.2].

As an application of the above discussion we give the following
theorem:

THEOREM 3. Suppose aλ < α2 < < an, 1 < x0 < aιy are n consecu-
tive zeros of a solution of

{χσy')'

and H = f" \f(x) \ dx < 00. If 0 < σ < 1, then

(14) [1 + (n -

and N(xQ, xj < n. If σ = 1, then

(15)

and N(x0, x2) < n.

Proof. Inequality (14) follows from inequality (9a). Inequality (15)
may be obtained from inequality (14) by letting σ —> 1 or directly from
inequality (9b).

Other lower bounds on the magnitude of the zeros of solutions of
equation (1) can be obtained by considering the maximum value of
I g(x, s)\ on a < x < b, a < s < b. We assume p(x) > 0 and continuous
on /. From the expressions for g(x, s) given in (5) it can be shown
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that the maximum value of | g(x, s) | occurs when x = s and s satisfies
the equation

(16) ( ' " T Γ = Γ - ^ r (Compare [3, p. 231].)
Jα P(X) }s p(X)

As an illustration of this result we give the following theorem:

THEOREM 4. Suppose ax < α2 < < an, 0 < x0 < au are n consecu-

tive zeros of a solution of equation (1) and H= \ \f(x)\dx < oo. If

p(x) = 1 on I, then N(x0, 4(n — 1)/H) < n. If p(x) Ξ= X on I, then
N(xo,xoexv[4:(n-l)IH])<n. If p(x) = x2 on I, then N(x0, oo) <
(H/4:X0) + 1, x0 > 0, /^tice ί/̂ e equation is nonoscillatory on I.

Proof. If p(#) = 1 on /, then from equation (16) s = (α + 6)/2 and
the maximum value of | g(xy s) \ = (6 —α)/4. From inequality (7),

1 < max 1 flf(a?, s) | (βJ+1|/(») I ^ , i = 1, 2, . . . , n - 1
JCtj

so that

4 Jao 4

and αw > 4(n ~ 1)IH. The results for p(x) = OJ and p(#) = α;2 can be ob-
tained in a similar fashion.

4 The equation ym + /(^)τ/ = 0 The differential system y"f = 0,
2/(α) = j/(6) = y(c) = 0, α < 6 < c, is incompatible, so that the Green's
function for this system exists and has the explicit form

(17) g(x,8)

\ (

 {C~ SY

 M (x - a)(x - 6) = Λ l , b < s < c, a < x < s
2 (c — α)(c — 6)

_ 1 / _ v _ A / / / /

_ _ 1/,

1 c-b
2 c — α

(x - α)(a? - 6) = flr31, s = 6, a <x < s

1
2 "" "" *
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An upper bound for | g(x, s)\ on a<x<c,a<s<c can be ob-
tained when a > 0 by considering each of the expressions gi5 above. It
is easily found that

I 0ii | < ^rΛ 9n \<C\\ 031 | < -ξ-, 1̂ 32 | < C2 .
Lt LA

The expression for g22(x, s) can be written as

2 (c — a)(b — α)

whence | g22 | < c2/2, and | ^211 < | g22 \ + (l/2)(ίc — s)2 < c2. Thus in each
case \gtj\ < c2, so

(18) I g(x, s) I < c2 for α < x < c , α < s < c .

Assume /(#) is continuous on I. If ]/(#) is a nontrivial solution of

equation (2) on the interval a < x < c for which y(a) = /̂(δ) = y(c) = 0,

O < ^ o < ^ < & < ^ » then

τ/(x) = \ gf(χ, s)y(s)f(s)ds ,
Jα

and as in § 1,

K

Using inequality (18),

(19) l<c*[\f(x)\dx.
Jα

THEOREM 5. Suppose f{x) is continuous on I: x0 < x < oo, χ0 > 0,

S oo

|/(ίc) I dx — N. If ax < α2 < < an are n consecutive zero of
XQ

a solution of y"f + f(x)y — 0, a± > x0, then

(20) an > V[{n - 1 ) - ( 1 + ( - l)n)j2]j2N, n > S .

Proof. From inequality (19),

(21) l<a*j+X3*2\f(x)\dx, j = l,2,.. , n - 2 .

Let n = 2m. Then adding the inequalities in (21) for j = 2, 4, , 2m — 2,

m - 1 < αL Γ 2 m |/(^) | dx < a\mN.

Therefore a2m =- an> τ/(n — 2)/2JV. If n = 2m + 1, then adding ine-
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qualities in (21) for j = 1, 3, , 2m — 1, m < alm+1N, so a2m+1 = an >
y / ^ __ i)/2N. Combining these two cases the inequality (20) results.

Note 2. Adding the n — 2 inequalities in (21),

5 00

I f(x) I dx — co, this last inequality still yields

lower bounds for the zeros an. For example, if f(x) = V~x + i and
x0 — 0, then

n — 2 < —^[(α,, + 1)3/2 — 1], n > 3 ,

and the positive root of

x7 + 3x6 + 3x5 - — (n - 2)x2 - — (n, - 2)2 = 0
2 16

is a lower bound for an.

5, Higher order equations* The methods employed in deriving ine-

qualities (14) (σ = 0) and (20) can be applied to the A th order differential

equation

(22) y™ + f(x)y = 0 ,

where f(x) is continuous and complex-valued on I. For suppose ax <
x2 < < an are n consecutive zeros of a solution of equation (22),
%! > x0 > 0, n = kq + r > k. Then

K \aj+IC~1\g(χ,s)\\f(χ)\dx, i = i ,2, . . . ,7*- fc + i ,

where (/(#, s) is the Green's function for the system.

y(fc) — 0, y(dj) = 2/(αj+1) = = y(aj+lc-1) — 0 .

Suppose a bound can be found for | g(x, s) \ on the interval a3 < x < aj+k-.x

which is a monotone function, say B(aj+lc-ι)1 of aό+k-λ. Then

where N = \ |/(ίc) | dx < oo. In particular if we conjecture2 B(an) < α^"1,
Jx0

as is the case for k = 2, 3, then

2 This conjecture has been verified for n < 6.
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