
ON UNIQUENESS QUESTIONS FOR HYPERBOLIC
DIFFERENTIAL EQUATIONS

JOHN P. SHANAHAN

1. Statement of results* This note is concerned with the existence,
uniqueness, and successive approximations for solutions of the initial
value problem

Zxv = f(x, V> z, P> Q), z(Xf 0) = σ(x), z(0, y) = τ(y) ,

where σ(0) = τ(0) = z0, on a rectangle R: 0 ^ x ^ α, 0 ^ 7 / ^ 6 . By a
solution is meant a continuous function having partial derivatives almost
everywhere and satisfying the integral equation

( 1 ) z(x, y) = σ{x) + τ(y) - zQ + I \ f(s, t, z(s, ί), zx(s, ί), sy(s, t))dsdt.
Jo Jo

Actually it will be clear from the conditions imposed on σ, τ and / that
any solution of (1) is uniformly Lipschitz continuous. Let D be the
five-dimensional set D = {(x, y, z, p, q,) : (x, y) e R and z, p, q arbitrary}.
Let f(x, y, z, p, q) be defined and continuous on D, such that \f(x, y, z,
p, q,)\ < N = const, for (x, y, z, p, q) e D. Let σ(x), τ(y) be defined and
uniformly Lipschitz continuous on 0 <S x ^ α, 0 <£ j/ ̂  6, respectively
(so that |σ(x) — σ(#)| ^ ϋΓla? — ά|, |τ(y) — τ(y)\ ^ iί|^/ — y\ for some cons-
tant K) and let σ(0) ="r(0) = z0. In addition, for (x, y) e R and arbi-
trary z, p, q, z, p, q assume that

( 2 ) \f(x, y} z, p, q,) - f(x, y, z, p, q)\ ^ φ(x, y, \z - z\, \p - p | , \q - q\) ,

where φ(x, y, z, p, q) is a continuous, non-negative function defined for
(x, y) e R and non-negative z, p, q, non-decreasing in each of the vari-
ables z, p, q, and with the property that for every {a, β), where
0 < a ^ α, 0 < / 5 ^ 6 , the only solution of

5 xCy

1 <p(8, t, z(s, t), zx(s, ί), zy(s, t))dsdt
o j o

i n t h e r e c t a n g l e R Λ β : 0 ^ x <£ α , 0 ^ τ / ^ / 3 i s ^ = 0 .

THEOREM (*). Under the above assumptions on σ, τ, f and φ, (1)
possesses one and only one solution on R. This solution is the uniform
limit of the successive approximations defined by
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(40) zo(x, y) = σ(x) + τ(y) - z0

and, for n = 1, 2, 3, , by

(4n) zn(x, y) = zo(a?, y) + I \ f{x, y, zn^(8, t), z ^ x(s, ί), z ^ y(
J o j o

The existence assertion of (*) neither implies nor is implied by that
in Hartman-Wintner [3] and its generalizations due to Conti, Szmydt,
Ciliberto, Kisynski (for references, see [6] and [2]). The uniqueness
assertion of (*) can be considered as a crude analogue of Kamke's
uniqueness theorem (cf. [5], p. 139) in the theory of ordinary differen-
tial equations. Finally, the assertion concerning the convergence of
successive approximations is an analogue of a result on ordinary differen-
tial equations (cf. Viswanatham [8] and references there to van Kampen,
to Wintner and to Dieudonne, and Coddington and Levinson [1]).

A theorem similar to (*), in which / and ψ do not depend on p, q
is proved by Guglielmino [2]. The proof of (#) below will be a generali-
zation of that of [2]. A uniqueness theorem for (1) involving a majorant
function of the form φ{z, p, q) = φ(\z\ + \p\ + |g|) is given in [6]. (After
the completion of this manuscript, I learned1 of a paper 'On the exis-
tence theorem of Caratheodory for ordinary and hyperbolic differential
equations" by W. Walter, written at about the same time, which con-
tains a theorem in the direction of the uniqueness assertion of (#).
Walter's assumptions, however, are somewhat different.)

REMARK. It will be clear from the proofs that (*) remains valid
if f z> V> QJ (?i T are n-vectors (say, with the norm \z\ = Σϊ-i|s*l or
\z\ = max fls1!, , \zn\) if z = (z\ , zn)). Of course φ will still be a
function of 5 variables, (not of (3π + 2) variables as / is).

A theorem suggested by Nagumo's uniqueness theorem (cf. [5], p. 97)
for ordinary differential equations is the following:

THEOREM (**). Let f(x, y, z, p, q) be defined, continuous and bounded
on D, and satisfy, for xy > 0 and arbitrary z, p, q, z, p, q,

( 5) \f(x, y, z, p, q,) - fix, y, z, p, q) ^ cx(x, y)\z - z\\xy +

o(x, y)\p - p\ly + cjίx, y)\q - q\\x ,

where c^x, y), i = 1, 2, 3, are non-negative, continuous functions such
that

Ci + C2 + C3 = 1 .

Let σix), τiy) be as in (*), and, in addition, let
1 Added in proof, 4 April 1960. Since this paper was accepted for publication, the

following related articles have appeared: W. L. Walter, Ueber die Differentialgleichung
Uχy=f(x,y,u,ux,Uy), I and II, Math. Zeit., 7 1 (1959), 308-324 and 436-453; my attention
has also been called to the paper of J. B. Diaz and W. L. Walter, On uniqueness theorems
for ordinary differential equations and for partial differential equatitions of hyperbolic
type, to appear in Trans. A.M.S..
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( 6 ) * , ( + 0) = lim σx{x), τv(+ 0) = lim τv(y)

exist. Then (1) has at most one solution z = z(x, y). Further'more, if

(6*) 0,(0,0) > 0 ,

then a solution exist and is the uniform limit of the successive approxi-
mations (4).

In (6), x\oτ y] tends to + 0 through the set of values on which σx

[or τy] exists.
Nagumo's theorem follows from Kamke's (with φ(x, y) = y/x). How-

ever (**) does not follow from (*) because φ(x, y, z, p, q) is assumed
continuous on x = 0 and on y = 0.

REMARK 1. (##) is valid if /, z, p, q, σ, τ are w-vectors (say z =
(z\ -. ,«n) and either \z\ = Σϊ- i | s* l or \z\ = max(|31 |, •••, \zn\)).

REMARK 2. A modification of an example of Perron [7] in the
theory of ordinary differential equations will show that (*#) is false if
cx = const. > 1, c2 == c3 = 0 (so that / does not depend on p, q). Also,
a modification of an example of Haviland [4] shows that successive
approximations need not converge if cx = const. > 1, c2 = c3 == 0.

The proof of (#) will be given in §§ 2-4 below; that of (**) in §§ 5-6;
finally, the proof of the last remark will be indicated in § 7.

The results above answer some questions suggested by Professor P.
Hartman. I also wish the acknowledge helpful discussions with him.

2 Proof of (*)• Preliminaries, In the proof of (*) below, there
is no loss of generality in supposing that φ is bounded, say 0 ^ <p(x, y
z, P, Q,) ύ 2iV on D. For otherwise ψ can be replaced by ψ, where
φ(x, y, z, p, q) equals φ(x, y, z, p, q) or 2N according as φ(x, y> z, p} q)
does not or does exceed 2N. It is clear that φ is continuous and non-
decreasing in each of the variables z, p, q. Furthermore, the only solu-
tion z(x, y) of

J xΓy _

I φ(s, t, x(s, ί), zx(s, ί,), zυ(s, t))dsdt
o j o

on any rectangle Rxβ : 0 <; x g α ( g α), 0 ^ y ^ β(<L b) is z = 0.

In order to see this, note that φ(x, y, 0, 0, 0) = 0 because z = 0 is
a solution of (3). Hence there exists an ε > 0 such that 0 ^ φ(x, yy z,
p, q) g 2N if \z\, \p\, \q\ < ε. Suppose that z(x, y) Φ 0 is a solution of
(3') on Raβ. Let d, 0 ^ d ^ (α2 + /32) ,̂ be the largest value of r for
which «(a?, y) Ξ 0 in the intersection S r of α?2 + 2/2 ^ r2 and i?αβ. If U
is any neighborhood of Sd (relative to RΛβ), there exists a rectangle i?γδ

in U on which 2 ΐ O . Since z = 0 on Sd, it is clear that if Z7 is "suffi-
ciently small", then, on [/(hence on RyS), \z\ < ε and, almost everywhere,
l̂ xl + \zv\ < ε But then 2; ̂  0 is a solution of (3) on Ry8. Since this
is impossible, the only solution of (3') on Raβ is z = 0.
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It will be convenient to have the following notation. Rx denotes a
subset (not always the same) of R of the from E x [0, 6], where E is a
(Lebesgue) measurable subset of [0, a] with means E = α. Similary,
R2 is a subset (not always the same) of the form [0, α] x E, where E
is a measurable subset of [0, b] and means E — b. Partial derivatives
zx, zy of a function z will be denoted by p, q.

3 Lemma for (*)• The proof of (*) will depend on the following
lemma.

LEMMA 1. Let a(x, y), β(x, y) γ(#, y) be non-negative, measurable
functions defined on R, Rlf R2, respectively, such that a is continuous,
β is uniformly Lipschitz continuous with respect to y and γ is uni-
formly Lipschitz continuous with respect to x, In addition, let

( 7 ) a(x, y) ^ \'\Vφ(s, t, a(s, t), β(s, t), y(s,t))dsdt ,
Jojo

( 8 ) β(x, y) S \"φ(8, t, a(x, t), β(x, t), y(x, t))dt ,
Jo

5 X

φ{sy y, a(s, y), β(s, y), γ(s, y)) ds ,
o

where φ satisfies the conditions of (*) and is bounded. Then a == β =

Note that the Lipschitz continuity of β [or a] with respect to y [or x]
is assumed to be uniform with respect to x and y.

The proof of the lemma below follows a suggestion made by R.
Sacksteder. My original proof, which will be omitted, depended on two
results. The first result is an existence theorem for

5 χCv
φ(s, t, z(s, t), p(s, t), q(s, t))dsdt ,

o j o

where ψ is a non-negative, uniformly Lipschitz continuous function
which is non-decreasing in x and in y. This existence theorem is
proved by using the successive approximations z0 = ψ(x, y) and

xCy

(11) zjx, y) = zo(x, y)+\\ Φ(8, t, zn-19 p n - 1 9 qn

Jojo

which satisfy

(12) zn ^ zn+1, p n ^ p n + 1 , qn S Qn+i -

The second result is the fact that if ψ is replaced by another function
ψ with similar properties and, almost everywhere,

(13) ψ ̂  φ, ψx^ φx, ψy^ψy,
then the corresponding solution z satisfies

(14) z^z, p ^p, q Sq -
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Proof. Define sequences of successive approximations as follows:
Let

(15) zQ(x, y) = a(x, y), uo(x, y) = β(x, y), vQ(x, y) = y(x, y)

and, for n ^ 1,

(16) zn(x, y) = I \φ(s, t, zn^(sf ί), t ^ s , ί), iv^s, t))dsdt ,
j o j o

(17) un(x, y) = <p(#, ί, Z ^ E , ί), ^-^(x, ί), ^-i(^> t))dt,
Jo

(18) vn(a?, 2/) = I φ(s, y, z^s, y), un^(s9 y), vn^(s9 y))ds .
Jo

The functions zn, un, vn are defined on sets R, Rlf R2, respectively, which
can be taken independent of n. The inequalities (7), (8), (9) give the
case n = 0 of

(19) zn ^ zn+1, un ^ un+1, vn ^ vn+1 .

The cases n > 0 of these inequalities follow by induction by virtue
of the monotony of φ.

The boundedness of φ implies the uniform boundedness of the func-
tions zn, un, vn. Hence, as n —> oo

(20) z = lim zn, % = lim un, v = lim vn ,

exist on R, Rly R2, respectively. It is clear from (15) and (19), (20) that

(21) O g α ^ z , 0 ^ β Su, 0 ^ 7 ^ ^ .

Lebesgue's theorem on term-by-term integration under bounded
convergence implies

(22) z(x, y) = \ \ φ(s, ί, φ , ί), w(s, t), v(s, t))dsdt ,
Jo Jo

ΓV

(23) w(α?f 2/) = \ φ(x, t, z(x, t), u(x, t), v(x, t))dt ,
Jo

(24) v(x, z) = I φ(s, y z(s, y)9 u(s, y), v(s, y))ds .
Jo

It is clear that zy = u, zy — v almost everywhere. Thus the assumptior
on φ concerning (3) shows that z == u = v = 0. Lemma 1 follows fron
(21).

4 Proof of (*)• (i). Let z(xf y) be a solution of (1). There exisi
functions u(x, y)t v(x, y) defined on sets Rif R2, respectively, such that

Γ*Γy

(25) z(x9 y) = σ(x) + τ(y) - z0 + \ \ f(s9 ί, φ , ί)» ^(s» 0» ^(s^ t)dsdt ,
Jo Jo

(26) u(x9 y) = (/«(«?) + \ /(a?, ί, z(fl5, ί)>
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f(s, y, φ , y), zx{s, y)9 zy(s, y))ds ,
o

and the relations u — zx and v = zy hold almost everywhere. In order

to see this, note that almost everywhere on R,

f(x, t, z(x, t), zx(x, t), Zy(x, t))dt ,

o

Zy(%, V) = σv(v) + \ f(β> V> Φ > y), zx(s, y), zy(s, y))ds ,
Jo

The expressions on the right side of these equations are defined for
{x, y) on sets Rl9 R2, respectively. Define u(x, y)y v(x, y) to be these ex-
pressions on Rlf R2. In particular zx = u and zy = v almost everywhere.
Hence (26), (27) hold on (possibly different) sets R19 R2. Clearly (25) is
valid for all (x, y) on R.

(ii). Uniqueness in (*). Suppose that (1) possesses two solutions
z = zλ(xf y), z2(x, y) on R. Let uλ(xf y), vx(x9 y) and u2(x, y), v2(x, y) be
the functions associated with z19 z2 by (i). Let a = \zλ — z2\, β = \ux — u2\,
7 = 1^ — v2\. If the relations (25) for z = z19 z2 are subtracted, it is seen
that the inequality (2) for / implies (7). Similarly (26), (27) imply (8),
(9) respectively.

The functions α, β9 y satisfy the assumptions of Lemma 1. Hence
the uniqueness assertion in (*) follows from Lemma 1.

(iii). Existence and successive approximations. Let zo(x, y), zjix9 y),
• be the successive approximations defined by (4). Corresponding to
each zn(x, y)f it is possible to introduce functions un(x, y)f vn(x, y) de-
fined on sets Rlf R2y respectively, and satisfying u0 = σx(x)t v0 = τy(y),

(28n) zn(x, y) = σ(x) + τ{y) - z0

(S, ί, Zn^(s, ί), Wn-xίs, t), Vn-^8, t))dδdt ,

5 y
f(X9 t, Zn-^X, ί), Un-^X, ί), Vn-X (X9 t))dt ,

o

5 x

f(s, y, zn-x(x9 ί), wn-i(s, y), vn-x{x, t))ds .
o

The sets Rlf R2 can be assumed to be independent of n.
Let Zmn = \zm - zn\, Umn = \um - wn|, Vmn = |vm - vn| and

(31) = 1 u b

It is clear that Zm w, Z7OTn, VTOn are uniformly Lipschitz continuous with
respect to (x, y), x, y, respectively, and that a corresponding statement
holds for ak9 βk9 γfc.

By subtracting the relation (28n) from (28W_X) and using the inequal-
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ity (2) for /, it is seen that

Zmm(x, z) ^ I \φ(s, t, Zm.λ nφ, t), Umml nφ, t), Vm-± nφ, t))dsdt .
Jo Jo

Thus, if m, n ^ fc, the monotony of ^ shows that

>(s, ί, α*-i(s, ί)ι ft-i(s, ί), 7*-i(s
Jo Jo

Hence

I ^(s, ί, akφ, ί), /3fc-!(s, ί), Tfc-iίs,

o j o

Similarly

$</
φ(x, t, aκ.x{x, t), Λ_!(x, ί), Ύjfc-xίa?,

0

yk(x, y) ^ I 9?(s, y, αfc_x(s, 2/), /9fc_x(s, 2/), y^s, y))ds .
Jo

By (31), the sequences {ah(xf y)}, {βk(x, y)}, {7fc(a?, ?/)} are non-increas-
ing (and non-negative). Let a(x, y), β(x, y), y(x, y) denote the respec-
tive limits of these sequence, The Lipschitz continuity of ak, βky yk is
preserved under the limiting process. Lebesgue's theorem on term-by-
term integration under bounded convergence gives the inequalities (7),
(8), (9). Hence Lemma 1 shows that a = 0, β = 0, γ = 0 on R, Rlf R2,
respectively. This implies the existence of the functions z = lim zn,
u = lim un, v = lim vn on Rlf R2, as n —> 00, satisfying (25), (26), (27). It
is clear that the limit function z(x, y) is a solution of (1).

Finally, the equicontinuity of the functions zn(x, y) (implied by
their uniform Lipschitz continuity) shows that z(x, z) is the uniform
limit of the zn(x, y). This proves (*).

5. Lemma for (**)• The proof of (**) will depend on the follow-
ing lemma:

LEMMA 2. Let a(x, y)9 β(x,y), y(x, y) be non-negative, measurable
functions defined on R, Rlf R2, respectively, so that a is continuous, β
is uniformly Lipschitz continuous with respect to y and y is uniformly
Lipschitz continuous with respect to x. Furthermore, assume that

(32) a(x, y)\xy -> 0 as 0 < xy -> 0

and that, uniformly with respect to x and y, respectively,

(33) β(x, y)\y —* 0 as y —* 0 and y(x, y)\x —> 0 as x —> 0 .

Finally, suppose that

(34) a(x, y) ^ (T {φ, t)a(s, t)/st + φ, t)β(s, ί)/ί
Jojo

+ o3(s, t)y(s, ί)/s} dsdt ,
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(35) β(x, y) ^ [V {c^x, t)a(x, t)jxt + c2(x, t)β(x, t)/t
Jo

+ c3(x, t)j(xf t)/x}dt ,

(36) 7(x, y) S \ {φ, y)a(s, y)/sy + φ , y)β{s, y)\y
Jo

+ Φ> y)y(s, y)ls}ds,

where clf c2, c3 are as in the first part of (**). Then a == β = γ = 0.

Proof. By (32), if a(x, y)\xy is defined as 0 when xy = 0, it becomes
a continuous function on R. Hence, it assumes its maximum Mλ at some
point (x1

fy
1) e R. Let M2 == l.u.b. β(x, y)\y and M3 = l.u.b. y(x, y)jx

for (x, y) e R.
Note that there exist numbers Mjky where j , k = 1, 2, 3, satisfying

(37) Mjfc ^ 0 and Σ ΛfjJb = 1 for j = 1, 2, 3 ,
fc = l

and

(38,) M^Σ^M*-

If Mi ̂  0, then ML = αία;1, T / 1 ) / ^ 1 holds for some point (x\ y1) of i2
with xΎyλ > 0. In this case, (38X) follows from (34) with (x, /̂) = (a?1, T/1) if

(39) Mlk = (ΛJV1)-1 (" ("
J

If Mλ = 0, let Λf1Jt = cfc(0, 0).
In order to obtain (382), let (x^yj), where j — 1, 2, •••, be points

of R such t h a t lim (xjf yό) = (^2, #2) exists, l i m ^ ^ j , 1/̂ )/̂ ^ = M2 and
lim /5(α;̂ , /̂) = β(v) exists uniformly for 0 ^ 7/ ̂  6. Then (35) leads to
(38,) with

(40) M2fc = 0/2)-1 \yck(x\ t)dt or M t t = ck(x\ 0)
Jo

according as y2 > 0 or ?/2 = 0. A relation of the type (383) is obtained
similarly.

Let Mj = max (Mu M2, MΆ). Suppose, if possible, that Mj > 0.
Assume, for the moment, that Mj > M3 if j φ / . Then, by (37) and
(38j), MJJ = 1 and MJk = 0 for k φ J. But the derivation of (38j) can
then be modified to obtain Mj < Mj. For example, if J = 1, then
φ , t) ΞΞ 1 and c2(s, ί) = c3(s, ί) = 0 in (34) when (x, y) = (x\ y1), while
α(s, ί)/sί is nearly zero for small st, so that one obtains Mλ < Mλ. Or
if J = 2, then #2 > 0 and cx{x\ t) = 1, c2(#2, ί) = c3(α;2, ί) = 0 for 0 ^ t
^ 2/2, while the relations

give M2 < Λί2 since /3(ί)/έ is nearly 0 for small t by the uniformity of
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the first limit relation in (33).
Similar arguments show that if two or three of the numbers M19

M2, M3 are equal to Mj > 0, one is led to a contradiction. Hence Mj = 0.
This proves the lemma.

6. Proof of (**). ( i ) . Uniqueness in (**). Let z = zx(x, y), z2(x, y)
be two solutions of (1) on R. Let ux{x, y), vx(x9 y) and u2(x9 y), v2(x, y)
be the functions associated with them as in the proof of (*). Let
a = \zx — z2\, β = \uλ — u2\, γ = 1^ — v2\. It will be verified that, as
x (or y) —> 0, then, except for sets of measure zero,

(41) a(x, y), β{x, y), y(x, y) -> 0 .

Consider the case x —> 0. The assertions (41) concerning a and γ are
clear. In order to verify assertion (41) for the function β> it will
first be shown that if z = z(x, y) is any solution of (1) (say, z = zx or
2 = z2) and if w(α?, y) v(x, y) are its associated functions, then

(42) lim u(x, y) = jθ(j/), as x —> 0, exists uniformly in 2/

To see this, let xJf where j = 1, 2, 3, be a sequence of x values
such that lim x3 = 0 and lim ^(a^, /̂) = (̂̂ z) exists uniformly as j —> oo.
Putting x = Xj in (26) and letting j" —> oo, it is seen that

(43) p{y) = σ x (+ 0) + (V(0, t, τ(ί),
Jo

We note that />(?/) is continuous. Furthermore, p(y) does not depend
on the sequence xlf x2, . Suppose that another sequence leads to a
different limit p(y) φ p(y). By substituting ~p for p in (43), and sub-
tracting, we get

(44) \p(y) - p(y)\ <:
Jo

- /(0, ί, τ(ί), p(t), τy(t))ldt.

Since /, p, p are continuous and ρ(0) = jo(0) = σ x (+ 0), the integrand of

(44) can be made small by making y small. Hence

(45) \p(y) - p(y)\ly -> 0, as y - 0 .

By relation (5),

\P(v) - P(V)\IV ^ y-1 \vφf t)\p(t) - p(t)\dt/t,
Jo

Using (45) as before, this leads to a contradiction. Hence p == p.
Therefore every sequence, for which the limit in (42) exists, leads to
the same limit. Hence (42) holds.

If limUiix, y) — pλ(y) a n d \\mv,2{x, y) = p2(y)9 a s x—>0, w e c a n r e -
peat the above argument and obtain px == />2. This completes the verifi-
cation of (41).
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We now verify assumptions (32) and (33) of Lemma 2. Consider,
for example, the assertion

(46) β(x, y)\y -> 0 as y -> 0 .

By putting u = ulf u2 in (26) and subtracting we get

(47) β(x, y) S Γ \f(x, t, zλ(x, t), iφ, ί), vx(x9 «))
Jo

— f(x, t, z2(x, ί), u2(x, ί), v2(x, t))\dt .

Now the integrand of (47) can be made small, by making y small, and
using (41). This proves (46). The other limits in (32) and (33) are
verified similarly. The other assumptions of Lemma 2 are quite straight-
forward. Therefore a == β = γ == 0. This proves "uniqueness".

(ii). Existence and successive approximations in (**). Let zQ(x, y),
zλ{xy y), , be the successive approximations defined by (4). Correspond-
ing to zn(x, y) it is possible to introduce, as in the proof of (*), functions
un(x, y), vn(x, y) defined on sets R19 R2 (independent of n) and satisfying
u0 = σx(x), ô = τv(y), (28n), (29,) and (30w). Let Zmn, Umn, Vmn be defined
as in the existence proof (*) above. It will be verified that, given ε,
there exists a δ(ε) and an N(ε), such that

(48) Zmn{x, y), Umn(x, y), Vmn(x, y) < ε

for x < δ(ε) and for all m, n > N(e). A similar statement will be seen
to hold when x is replaced by y. The assertion (48) concerning Zmn

and Vmn is clear. In order to verify (48) for the function Umn it will
first be shown that

(49) lim un(x, y) = hn(y), as x —> 0, exists uniformly in y and n .

It is easily verified, by induction, that hn(y) exists uniformly in y for
fixed n, where

(50n) hn(y) = σx(+ 0) + (7(0, ί, τ(t), hn-M> τv(t))dt .
Jo

To see the uniformity in n, define

(51n) zn(x, y) = zn(x, y) - σ(x) - τ(y) + zo; un{yy y) = ujy, y) - σx(y);

vn{x, y) = vn(x, y) - τυ(y)

(52) g(x, y, z, p, q) = f(x, y,z + σ(x) + τ(y) - z0, p + σx(x)9 q + τy(y)) .

For ΰn we define hn corresponding to h. Clearly g satisfies a condition

analogous to (5), ϋo(x, y) = ho(y) = 0, and

ί y _ _ _

g ( x , t , z n - x { x f ί ) , u n ^ ( x f t), v n - λ { x , t ) ) d t f n ^ l
o

( 5 4 n ) h n ( y ) = f ' f l f ί O , ί , 0 , K - & ) , O)dt9 n ^ l .
Jo
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To prove (49) it suffices to verify that

(55) lim nn{x, y) = hn(y), as x —> 0, exists uniformly in y and n.

By subtracting (54J from (53J, it is seen that

(56) \ϋn(x, y) - hn{y)\ ^ Γ ί\9i ~ 9*\ + Ift -
Jo

where & = g(x, t, zn-λ(x, t), ΰn^(x,1), Vn-^x, t)), g2 = g(0, t, 0, ^^(a;, t), 0)

and gr3 = g(Q, t, 0, hn^(t)y 0). We note that, given ε > 0, there exists a

δ(ε) such that \gλ — g2\ < ε if x < δ for all # and w. Hence, noting (5),

(57n) |δn(a?, y) - hn(z)\ ^ \V {ε + t-1 ca(0, t ) ^ , , - ^ , t) - Λn-^lldt .
Jo

By continuity, because of (6*), c2(0, ί) < 1 for small ί > 0. Hence there
exists a number 0, 0 < 0 < 1, such that

Pc2(0, ί)dί S θy for 0 < y S b .
Jo

A simple induction shows that

(58) \un(x, y) - hn(y)\ ^ (1 - ^n) ε W(l - 0) ^ 6 ε /(I - 0) .

This proves (55). Hence (49) is established.
Next we note that hn(y), n = 0,1,2, , are the successive approxi-

mations for the initial value problem

(59) dwjdt = F(t, w), w{0) = σx(+ 0) ,

where F(t, w) = /(0, t, τ(t), w, τy(t)) is bounded, measurable and continu-
ous in w (for almost all fixed ί). By (5),

(60) |F(ί, w) - F(t, w)\^\w -w\lt .

Note that the existence of τy(+ 0) implies that F(t, w) —> F(0, w) =
/(0, 0, τ(0), w, τy(+ 0)) as t -> + 0. The proof of the main theorem in
[8] shows that these successive approximations converge uniformly, (60)
being Nagumo's uniqueness condition (cf. [5], p. 97). Hence

(61) lim hn(y) = h(y), exists uniformly in y as n —> oo.

Now (61) and (49) together give (48) for Umn(x,y). Hence (48) is
established.

By an argument similar to that used in verifying (46) it is seen
that, given ε > 0, there exists δ(ε) such that

(xy)-1 Zmn{xy y) < ε for xy < δ(ε) and for m,n> N(e)

(52) x'1 Umn(x, y) < ε for x < δ(ε) and for m, n > N(ε)

V~ι Vmn(x, y) < ε for y < δ(ε) and for m,n> N(e) .

Now defining ak, βk, γfc as in (31), we note that we can substitute
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them for Zmn, UmnJ Vmn, respectively, in (62) changing m,n> N(ε) to
k > JV(ε). Proceeding as in the analogous section of the proof of theorem
(*), we conclude that α, β, γ, satisfy (34), (35) and (36), also (32) and
(33). Therefore, by Lemma 2, the successive approximations converge
uniformly to a solution of (1).

7. Counter-examples, (a). Let a = b = 1 , 1 + ε = δ2, ε > 0, δ > 1.
Let f(x, y, z, p, q) be independent of p, q and defined by

(0 if (x, y) e R, z ^ 0 ,

f(XfVf z, P>Q) = j(l + ε)φy if (x,y) e R,0 <z < {xyf ,

((1 + eXxy)'-1 if (x, y) e R, (xyf ^ z .

Then f(x, y, z, p, q) is continuous and satifies (5) for cλ{x, y) = 1 + ε,
(and c2 = c3 = 0). Let σ(x) = r(j/) Ξ 0. Then (1) has an infinity of solu-
tions, namely, z = c(ίπ/)δ> where 0 < c < 1.

(b). Let a = 6 = 1, J2° = {(a?, i/): 0 < a?, 2/ ^ 1}, 1 + ε = δ2, ε > 0,
δ > 0 and

f(%,y,z,p,q) =

Ό if x = 0,2/ = 0 ,

if (a , y) e R°,z<0,

if (a?, y) e Λ°, 0 g ^ ^

if (a?, y) e R\ (xy)8 < z .

Then f(x, y> z, p, q) satisfies the same relation (5) as in example (a).
However, in (4), z2n = 0, z2n+1 = (xy)8/8\ so that successive approxima-
tions (4) do not converge.

(xy)8-1 - (1 +

, - ε{xyf-1
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