MIXED MODULES OVER VALUATION RINGS

Joseph Rotman

1. Introduction. A p-primary abelian group is a module over the p-adic integers; thus Ulm's theorem can be viewed as a classification of reduced countably generated torsion modules over the p-adic integers, or, more generally, over a complete discrete valuation ring. It is with this point of view that Kaplansky and Mackey [4] generalized Ulm's theorem to cover mixed modules of rank 1. In this paper their result is generalized in various ways, sometimes to modules of finite rank, sometimes to modules over possibly incomplete rings. The structure theorems obtained are applied to solve square-root, cancellation, and direct summand problems.

The main idea is to squeeze as much information as possible from the proof of Ulm's theorem in [4]. In order to understand our procedure, we sketch that proof. Order, once for all, generating sets of the modules T and $T^{\prime}: t_{1}, t_{2}, \cdots ; t_{1}^{\prime}, t_{2}^{\prime}, \cdots$ The plan is to build an isomorphism stepwise up these lists. The crucial point is then, given a height-preserving isomorphism $f: S \rightarrow S^{\prime}, S$ finitely generated, to extend f to a height-preserving isomorphism of $\left\{t_{i}, S\right\}$ and a suitable submodule of T^{\prime} containing S^{\prime}. In order to construct this extension it is necessary to normalize t_{i} in two ways:
(i) assume $p t_{i} \in S$;
(ii) assume that t_{i} has maximal height in the coset $t_{i}+S$. If T is torsion, both of these normalizations are always possible. Now the possibility of extra generality arises precisely at these two points. If T is mixed and (ii) is satisfied, then the proof will go through if T / S is torsion; this is what Kaplansky and Mackey did in their paper. In this paper, we define a class of modules in which (ii) can always be satisfied, and it is this class of modules which we shall consider.
2. Definitions. A discrete valuation ring (DVR) is a principal ideal domain R with a unique prime ideal $(p) . \bigcap_{n=1}^{\infty}\left(p^{n}\right)=(0)$. Hence if $r \in R$ is non-zero, there is a maximal n, depending on r, such that $r \in\left(p^{n}\right)$. Define $|r|=e^{-n}$; define $|0|=0 .| |$ is a norm which satisfies the strong triangle inequality: $\left|r+r^{\prime}\right| \leq \max |r|,\left|r^{\prime}\right|$. This norm induces a metric on R. R is a complete DVR if it is complete in this metric. If R is incomplete, we may form its completion R^{*}, and R^{*} is a complete DVR. The p-adic integers is a complete DVR ; it is also compact as a metric space.

Let Q be the quotient field of R. We define the rank of a module M (often called the 'torsion-free rank') to be the dimension of the Q
vector space $Q \otimes M$. Thus if M is torsion, rank $M=0$. The rank can also be defined as the cardinality of a maximal independent subset of M. Note that every element in an independent subset has infinite order.

The word module will mean unitary module over a DVR. All abelian group-theoretic notions can be found in [2; 3; 5].
3. $K M$ modules. In this section we shall define a certain family of modules and determine some members of this family.

Definition. A semi-KM module is a reduced countably generated module of finite rank.

Definition. A module M has the coset property if the coset $x+S$ has an element of maximal height whenever S is a finitely generated submodule of M.

Definition. A $K M$ module is a semi- $K M$ module with the coset property.

The coset property is the crucial part of the definition of a $K M$ module; for later use, we now give a characterization of this property.

Definition. Let S be a submodule of M; if $x \in M$, let x^{*} denote the image of x in M / S under the natural homomorphism. S is copure if any $x^{*} \in M / S$ has a pre-image x such that $h\left(x^{*}\right)=h(x)$. ($h(x)$ denotes the height of the element x).

Lemma 3.1. S is copure in M if and only if every coset of S has an element of maximal height.

Proof. Induction on $h(x)$ that $h(x)=h\left(x^{*}\right)$ if x has maximal height in $x+S$.

Corollary 3.2. M has the coset property if and only if every finitely generated submodule is copure.

Lemma 3.3. If R is complete, a reduced module M with no elements of infinite height has the coset property.

Proof. Let $S=\left\{y_{1}, \cdots, y_{s}\right\}$. It must be shown that $x+S$ contains an element of maximal height. We may assume that $x \notin S$, otherwise 0 has maximal height in $x+S$. Under this assumption we show by induction on s that $y+S$ contains only finitely many distinct heights.

Let $s=1$. If $h\left(x+a_{n} y\right)=\alpha_{n}$ is strictly increasing, then $h\left(b_{n} y\right)=\alpha_{n}$,
where $b_{n}=a_{n+1}-a_{n}$. Hence $h\left(b_{n+1} y\right)>h\left(b_{n} y\right)$. Let $\left(p^{m(n)}\right)$ be the smallest ideal containing b_{n}. Then $m(n+1)>m(n)$, i.e., $m(n) \rightarrow \infty$, and so $b_{n} \rightarrow 0$. Hence $\left\{a_{n}\right\}$ is a Cauchy sequence and $a_{n} \rightarrow a$, since R is complete. Now $x+a y=x+a_{n} y+\left(a-a_{n}\right) y$. If $h\left(\left(a-a_{n}\right) y\right) \geq \alpha_{n}$ for all n, then $x+a y$ has infinite height and is thus 0 , contradicting $x \notin S$. Therefore we may assume that $h\left(\left(a-a_{n}\right) y\right)=h\left(\left(a-a_{m}\right) y\right)$ for all $m \geq n$. But then $a-a_{n}$ and $a-a_{m}$ are associates, contradicting $a-a_{m} \rightarrow 0$. Hence $\left\{\alpha_{n}\right\}$ cannot be strictly increasing, i.e., there can only be a finite number of heights in the coset.

For the general case, suppose $h\left(x+a_{1}^{n} y_{1}+\cdots+a_{s}^{n} y_{s}\right)=\alpha_{n}$ is strictly increasing. Suppose further that each coordinate sequence $\left\{a_{i}^{n}\right\}$ is Cauchy, and so $a_{i}^{n} \rightarrow a_{i}$ for each i. Then

$$
\begin{aligned}
x+a_{1} y_{1}+\cdots+a_{s} y_{s}= & \left(x+a_{1}^{n} y_{1}+\cdots+a_{s}^{n} y_{s}\right) \\
& +\left(a_{1}-a_{1}^{n}\right) y_{1}+\cdots+\left(a_{s}-a_{s}^{n}\right) y_{s}
\end{aligned}
$$

The height of the first term on the right is α_{n} while the height of the remaining terms gets arbitrarily large. Hence $x+a_{1} y_{1}+\cdots+a_{s} y_{s}$ has infinite height and so must be 0 , contradicting $x \notin S$. Hence $\left\{\alpha_{n}\right\}$ cannot be strictly increasing, i.e., there are only a finite number of heights.

Therefore we may assume $\left\{a_{1}^{n}\right\}$ contains no Cauchy subsequence, and so we may assume further that it consists of incongruent units. Now

$$
h\left(a_{1}^{n+1}\left(x+\Sigma \alpha_{j}^{n} y_{j}\right)-a_{1}^{n}\left(x+\Sigma \alpha_{j}^{n+1} y_{j}\right)\right)=\alpha_{n}=h\left(\left(a_{1}^{n+1}-a_{1}^{n}\right) x+\Sigma b_{k}^{n} y_{k}\right)
$$

where

$$
b_{k}^{n}=a_{1}^{n+1} a_{k}^{n}-a_{1}^{n} a_{k}^{n+1}
$$

and $k \geq 2$. Since $a_{1}^{n+1}-a_{1}^{n}$ is a unit, and since multiplication by a unit does not alter heights, we may assume it is 1 . But there are only $s-1 y$'s occurring, and so the inductive hypothesis applies. Hence there can only be a finite number of heights, and so $\left\{\alpha_{n}\right\}$ cannot be strictly increasing. Thus $x+S$ contains only finitely many distinct heights.

Lemma 3.4. If R is compact and M is a reduced module of rank 2 , then M has the coset property.

Proof. Let S be a finitely generated submodule with $x \notin S$. By the method of [4], it suffices to consider the case when S is generated by two elements of infinite order, y and z. Moreover, we may assume $h\left(x+a_{n} y+b_{n} z\right)=\alpha_{n}$, where $\left\{\alpha_{n}\right\}$ is strictly increasing. Since R is compact, we may assume that $a_{n} \rightarrow a$ and $b_{n} \rightarrow b . \quad x+a y+b z=$ $\left(x+a_{n} y+b_{n} z\right)+\left(\left(a-a_{n}\right) y+\left(b-b_{n}\right) z\right)$. Now the height of the first
term on the right is α_{n}. If the other term has height $\geq \alpha_{n}$ for all n, then $h(x+a y+b z) \geq \alpha_{n}$ for all n and $x+a y+b z$ is the desired element. Hence we may suppose that $h\left(\left(a-a_{n}\right) y+\left(b-b_{n}\right) z\right)=\beta<\alpha_{n}$. This equation must hold for all $m \geq n$. If a sequence $\left\{c_{n}\right\}$ converges to c, there is a subsequence $\left\{c_{n_{i}}\right\}$ such that $c-c_{n_{i}}$ and $c_{n_{i+1}}-c_{n_{i}}$ are associates, In our case, there are units u_{n} and v_{n} such that $\left(a-a_{n}\right) y=$ $u_{n}\left(a_{n+1}-a_{n}\right) y$ and $\left(b-b_{n}\right) z=v_{n}\left(b_{n+1}-b_{n}\right) z$. (We have assumed, for notation, that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are the subsequences). Hence

$$
\begin{aligned}
& \left(a-a_{n}\right) y+\left(b-b_{n}\right) z=u_{n}\left(x+a_{n+1} y+b_{n+1} z\right) \\
& -u_{n}\left(x+a_{n} y+b_{n} z\right)+\left(v_{n}-u_{n}\right)\left(b_{n+1}-b_{n}\right) z
\end{aligned}
$$

Hence $h\left(\left(v_{n}-u_{n}\right)\left(b_{n+1}-b_{n}\right) z\right)=\beta$ for large n. Therefore, $\left(v_{n}-u_{n}\right)\left(b_{n+1}-b_{n}\right)$ are associates, and non-zero since $\beta<\alpha_{n}<\infty$. Hence there must be a maximal power of p dividing any of them, contradicting the fact that $b_{n+1}-b_{n} \rightarrow 0$.

Lemma 3.5. If R is complete and M is reduced of rank 1, then M has the coset property.

Proof. Kaplansky and Mackey [4].

To this point, all modules with the coset property have been modules over a complete DVR. We shall now exhibit modules over a possibly incomplete ring which have the coset property. For this purpose we consider tensor products. All tensor products will be taken over the ring R.

Lemma 3.6. Let R be a DVR with completion R^{*}. Any R-module M can be imbedded as a pure R-submodule in $R^{*} \otimes M$; moreover, the torsion submodule T of M coincides with $R^{*} \otimes T$, which is the torsion submodule of $R^{*} \otimes M$.

Proof. R^{*} is a torsion-free R-module, and R is a pure submodule [3]. Further, if $\delta+R \in R^{*} / R$, there is an $r \in R$ such that $\delta-r=p \delta^{\prime}$, $\delta^{\prime} \in R^{*}$. Therefore $\delta+R=p \delta^{\prime}+R$ and so $p\left(R^{*} / R\right)=R^{*} / R$. Hence R^{*} / R is torsion-free and divisible.

Exactness of the sequence $0 \rightarrow R \rightarrow R^{*} \rightarrow R^{*} / R \rightarrow 0$ induces exactness of $\operatorname{Tor}\left(R^{*} / R, M\right) \rightarrow R \otimes M \rightarrow R^{*} \otimes M \rightarrow\left(R^{*} / R\right) \otimes M \rightarrow 0$. $R \otimes M=M$ and, since R^{*} / R is torsion-free, $\operatorname{Tor}\left(R^{*} / R, M\right)=0$. Thus $x \rightarrow 1 \otimes x$ is an imbedding of M into $R^{*} \otimes M$. But the sequence also implies that $\left(R^{*} \otimes M\right) / M \approx\left(R^{*} / R\right) \otimes M$. Since R^{*} / R is torsion-free and divisible, we have $\left(R^{*} \mid R\right) \otimes M$ torsion-free. Hence M is pure in $R^{*} \otimes M$ and contains the torsion submodule of $R^{*} \otimes M$. We already
know that $x \rightarrow 1 \otimes x$ is a monomorphism; this last remark shows it is an epimorphism when restricted to T. Thus $T \approx R^{*} \otimes T$, which is the torsion submodule of $R^{*} \otimes M$.

Lemma 3.7. If R is a DVR with completion R^{*}, and if M is an R-module of rank 1 with no elements of infinite height, then $R^{*} \otimes M$ has no elements of infinite height.

Proof. Suppose $z=\Sigma \delta_{i} \otimes m_{i} \in R^{*} \otimes M$ has infinite height. By the preceding lemma, z has infinite order. Let $x \in M$ have infinite order. Since rank $M=1$, there is an n such that for all $i, p^{n} m_{i}=r_{i} x, r_{i} \in R$. $p^{n} z=\Sigma \delta_{i} r_{i} \otimes x$. As any element in $R^{*}, \Sigma \delta_{i} r_{i}$ can be expressed as γp^{k}, where γ is a unit. But then $h(z)<h\left(p^{n} z\right)=h\left(\gamma \otimes p^{k} x\right)=h\left(1 \otimes p^{k} x\right)=$ $h\left(p^{k} x\right)$ which is finite. This contradiction completes the proof.

Lemma 3.8. If M is an R-module of rank 1 with no elements of infinite height, then M has the coset property.

Proof. Let S be a finitely generated submodule of M, and let $x \notin S$. Then $R^{*} \otimes S$ is a finitely generated R^{*}-submodule of $R^{*} \otimes M$. We now show $1 \otimes x \notin R^{*} \otimes S$. Consider the following commutative diagram with exact rows:

where the downward maps are $y \rightarrow 1 \otimes y$. Then

$$
\beta(1 \otimes x)=\beta i(x)=j \alpha(x)=j(x+S)
$$

But

$$
\gamma:\left(R^{*} \otimes M\right) /\left(R^{*} \otimes S\right) \longrightarrow R^{*} \otimes(M / S)
$$

defined by

$$
\gamma\left(r^{*} \otimes m+R^{*} \otimes S\right)=\beta\left(r^{*} \otimes m\right)
$$

is an isomorphism. In particular,

$$
\gamma\left(1 \otimes x+R^{*} \otimes S\right)=\beta(1 \otimes x)=j(x+S)
$$

Since $x \notin S, x+S \neq 0$. Since j is a monomorphism, by Lemma 3.6, $j(x+S) \neq 0$. Therefore $1 \otimes x+R^{*} \otimes S \neq 0$, i.e., $1 \otimes x \notin R^{*} \otimes S$. Hence $1 \otimes x+R^{*} \otimes S$ contains only finitely many distinct heights, by Lemma 3.3. Therefore the pure subset $x+S$ of $1 \otimes x+R^{*} \otimes S$ car
contain only finitely many distinct heights, and so it has an element of maximal height.

We now sum up the results of this section in the following theorem.

Theorem 3.9. A semi-KM module is a KM module if any of the following conditions hold:
(i) R is complete and M has no elements of infinite height;
(ii) R is compact and rank $M=2$;
(iii) R is complete and rank $M=1$;
(iv) rank $M=1$ and M has no elements of infinite height.

It is an open question whether these are all the semi-KM modules with the coset property. Later we shall give an example of a module of rank 2 with no elements of infinite height over an incomplete ring which does not have the coset property.
4. The Structure theorem. The main result of this section is the classification of all $K M$ modules.

Definition. A strand is a function from the cartesian product of s copies of R into the ordinals and the symbol ∞, where R is a DVR and s is finite.

Definition Two strands f and $g: R \times \cdots \times R \rightarrow$ ordinals and ∞ are equivalent, denoted $f \equiv g$, in case there is an s by s non-singular matrix A over R and non-negative integers m and n such that $g\left(p^{m+n}\left(r_{1}, \cdots, r_{s}\right)\right)=f\left(p^{n}\left(r_{1}, \cdots, r_{s}\right) A\right)$ for all $r_{i} \in R$. The argument of f is obtained by regarding $\left(r_{1}, \cdots, r_{s}\right)$ as a 1 by s matrix.

It is easy to verify that $f \equiv g$ is an equivalence relation. If M is a reduced module of finite rank s, then any ordered independent set of elements x_{1}, \cdots, x_{s} determines a strand f by $f\left(r_{1}, \cdots, r_{s}\right)=h\left(\Sigma r_{i} x_{i}\right)$. f is the strand determined by the x 's. It is straightforward to see that two strands determined by different ordered maximal independent subsets of M are equivalent in the above sense. Thus M determines an equivalence class of strands, which we denote $S(M)$. Clearly $S(M)$ is an invariant of M.

Lemma 4.1. Let M and M^{\prime} be $K M$ modules. Let S and S^{\prime} be finitely generated submodules of M and M^{\prime} respectively, let f be a height-preserving isomorphism of S onto S^{\prime}, and let $x \in M$ with $p x \in S$. Then f can be extended to a height-preserving isomorphism between $\{x, S\}$ and a suitable submodule of M^{\prime} which contains S^{\prime}.

Proof. Exactly as in [4].

Lemma 4.2. Let M and M^{\prime} be $K M$ modules with $S(M)=S\left(M^{\prime}\right)$. Then there are maximal independent subsets in M and in M^{\prime} which determine the same strand.

Proof. Let y_{1}, \cdots, y_{s} be independent in M with strand f; let $y_{1}^{\prime}, \cdots, y_{s}^{\prime}$ be independent in M^{\prime} with strand g. Since $S(M)=S\left(M^{\prime}\right)$, $f \equiv g$. Hence there are non-negative integers m and n and a nonsingular matrix ($a_{i j}$) over R such that

$$
g\left(p^{m+n}\left(r_{1}, \cdots, r_{s}\right)\right)=f\left(p^{n}\left(r_{1}, \cdots, r_{s}\right)\left(a_{i \jmath}\right)\right),
$$

i.e.,

$$
h\left(p^{m+n} \Sigma r_{i} y_{i}^{\prime}\right)=h\left(p^{n} \Sigma \Sigma r_{i} a_{i} y_{j}\right) .
$$

Set $x_{i}=p^{n} \Sigma a_{i j} y_{j}$ and set $x_{i}^{\prime}=p^{m+n} y_{i}^{\prime}$.

Theorem 4.3. Let M and M^{\prime} be $K M$ modules. M and M^{\prime} are isomorphic if and only if they have the same Ulm invariants and $S(M)=S\left(M^{\prime}\right)$.

Proof. By Lemma 4.2, there are maximal independent subsets x_{1}, \cdots, x_{s} in $M, x_{1}^{\prime}, \cdots, x_{s}^{\prime}$ in M^{\prime} such that $h\left(\Sigma r_{i} x_{i}\right)=h\left(\Sigma r_{i} x_{i}^{\prime}\right)$ for all $r_{i} \in R$. Let S be the submodule of M generated by the x 's and let S^{\prime} be the submodule of M^{\prime} generated by the $x^{\prime \prime}$ s. Define $f: S \rightarrow S^{\prime}$ by $f\left(x_{i}\right)=x_{i}^{\prime}$. Since S and S^{\prime} are free on generators x_{i}, respectively x_{i}^{\prime}, f is a well-defined isomorphism. Moreover, our choice of generators makes f height-preserving. This isomorphism is now extended stepwise to an isomorphism of M and M^{\prime} by Lemma 4.1. To ensure catching all of M and M^{\prime}, we take fixed countable sets of generators for each and alternate between adjoining an element of M and an element of M^{\prime}. Since the elements of M and M^{\prime} have finite order modulo S and S^{\prime} respectively, we can suppose that at each step we are adjoining an element x such that $p x$ lies in the preceding submodule. This is precisely the situation of Lemma 4.1.

Corollary 4.4. Let M and M^{\prime} be isomorphic KM modules. Then any height-preserving isomorphism between finitely generated submodules S and S^{\prime} of M and M^{\prime} respectively (rank $S=\operatorname{rank} M$) can be extended to an isomorphism of M with M^{\prime}.

As first applications of the structure theorem, we now solve a square-root problem and a cancellation problem.

Theorem 4.5. Let M and M^{\prime} be $K M$ modules of rank 1 with $M \oplus M \approx M^{\prime} \oplus M^{\prime} . \quad$ Then $M \approx M^{\prime}$.

Proof. It is a corollary of Ulm's theorem that the above is true when M and M^{\prime} are torsion. Hence the torsion submodules of M and M^{\prime} are isomorphic. Let $x \in M$ have infinite order. Then there is an element $(a, b) \in M^{\prime} \oplus M^{\prime}$ such that $h(r x)=h(r a, r b)$ for all $r \in R$. Since rank $M^{\prime}=1$, there are non-negative integers m and n such that $p^{m} a=$ $p^{n} u b=y$, where u is a unit in R. We assume $m \geq n$. Thus, for large k, we have $h\left(p^{k} x\right)=h\left(\left(p^{k-m} y, p^{k-n} u^{-1} y\right)\right)=h\left(p^{k-m} y\right)$. Hence $S(M)=S\left(M^{\prime}\right)$. Therefore, $M \approx M^{\prime}$ by the structure theorem.

I have been unable to prove the analogous result in the case of higher rank, and I conjecture it is false.

Theorem 4.6. Let M and M^{\prime} be KM modules, and let T be a reduced countably generated torsion module such that $U_{a}(T)$ is finite for all α, where $U_{\alpha}(T)$ is the α th Ulm invariant of T. Then $T \oplus M \approx$ $T \oplus M^{\prime}$ implies $M \approx M^{\prime}$.

Proof.

$$
S(M)=S(T \oplus M)=S\left(T \oplus M^{\prime}\right)=S\left(M^{\prime}\right)
$$

By Ulm's Theorem, we may cancel T to obtain that the torsion submodules of M and M^{\prime} are isomorphic. By the structure theorem, $M \approx M^{\prime}$.
$S(M)$ is a rather cumbersome invariant. We make the following definition in order to rephrase Theorem 4.4.

Definition. Two modules M and M^{\prime} are almost isomorphic if there exist torsion modules T and T^{\prime} such that $T \oplus M \approx T^{\prime} \oplus M^{\prime}$.

Theorem 4.7. Two $K M$ modules M and M^{\prime} are isomorphic if and only if they are almost isomorphic and they have the same Ulm invariants.

Proof. The necessity is obvious. For sufficiency, note that if M and M^{\prime} are almost isomorphic, then $S(M)=S\left(M^{\prime}\right)$. Since M and M^{\prime} have the same Ulm invariants, $M \approx M^{\prime}$ by 4.3.
5. Modules over incomplete rings. At present we have a structure theorem for $K M$ modules, and the only $K M$ modules over incomplete rings that we know are those of rank 1 with no elements of infinite height. In Lemmas 3.6, 3.7, and 3.8, however, we saw that we could obtain information about a module M by examining $R^{*} \otimes M$, which we henceforth denote M^{*}. We now investigate this situation more closely.

Lemma 5.1. The rank of M as an R-module $=$ the rank of M^{*} as an R^{*}-module.

Proof. Rank $M \geq \operatorname{rank} M^{*}$, for if x_{1}, \cdots, x_{s} is a maximal independent subset of M, then $1 \otimes x_{1}, \cdots, 1 \otimes x_{s}$ is a maximal independent subset of M^{*}. For the other inequality, let S be a free submodule of M with rank $S=$ rank M. Since R^{*} is torsion-free, exactness of $0 \rightarrow S \rightarrow M$ implies exactness of $0 \rightarrow S^{*} \rightarrow M^{*}$. Since tensor product commutes with direct sums, rank $M \leq \operatorname{rank} M^{*}$

Lemma 5.2. Let W be an R^{*}-module of finite rank s, with torsion submodule T. Let M and M^{\prime} be R-modules of rank s contained in W satisfying:
(i) $T \subset M \cap M^{\prime}$;
(ii) there is an independent subset x_{1}, \cdots, x_{s} in $M \cap M^{\prime}$;
(iii) if f is the strand determined by the x 's in M, and if g is the strand they determine in M^{\prime}, then $f=g$. Under these conditions, $M=M^{\prime}$.

Proof. Let $x \in M$. Since rank $W=s, p^{k} x=\Sigma c_{i} x_{i}, k \geq 0$, and $c_{i} \in R^{*}$. But each $c_{i} \in R$, lest $\Sigma c_{i} x_{i}, x_{1}, \cdots, x_{s}$ are $s+1$ independent (over R) element in M, contradicting rank $M=s$. Hence $p^{k} x \in M \cap M^{\prime}$. In $M, h\left(\Sigma c_{i} x_{i}\right) \geq k$. By (iii), $h\left(\Sigma c_{i} x_{i}\right) \geq k$ in M^{\prime} Thus there is a $y \in M^{\prime}$ such that $p^{k} y=\Sigma c_{i} x_{i}$. Hence $p^{k}(x-y)=0$, and so $x-y \in T$. Thus $x=y+(x-y) \in M^{\prime}$. The other inclusion is proved similarly.

Lemma 5.3. Let M and M^{\prime} be reduced R-modules; let x_{1}, \cdots, x_{s} be a maximal independent subset in $M, x_{1}^{\prime}, \cdots, x_{s}^{\prime}$ a maximal independent subset of M^{\prime} such that $h\left(\Sigma r_{i} x_{i}\right)=h\left(\Sigma r_{i} x_{i}^{\prime}\right)$ for all $r_{i} \in R$. If $c_{i} \in R^{*}$, then $h\left(\Sigma c_{i} \otimes x_{i}\right)=h\left(\Sigma c_{i} \otimes x_{i}^{\prime}\right)$ if either is finite; also, if one of these heights is infinite, so is the other.

Proof. We shall be done if we can prove $h\left(\Sigma c_{i} \otimes x_{i}\right) \geq k$ implies $h\left(\Sigma c_{i} \otimes x_{i}^{\prime}\right) \geq k$, for any finite k. Choose $r_{i} \in R$ such that $c_{i}-r_{i} \in p^{k} R^{*}$. Then $\Sigma c_{i} \otimes x_{i}=\Sigma\left(c_{i}-r_{i}\right) \otimes x_{i}+\Sigma r_{i} \otimes x_{i}$ Hence $h\left(\Sigma r_{i} \otimes x_{i}\right) \geq k$. By Lemma 3.6, $h\left(\Sigma r_{i} \otimes x_{i}\right)=h\left(\Sigma r_{i} x_{i}\right)=h\left(\Sigma r_{i} x_{i}^{\prime}\right)=h\left(\Sigma r_{i} \otimes x_{i}^{\prime}\right)$. Hence $h\left(\Sigma r_{i} \otimes x_{i}^{\prime}\right) \geq k$. But $\quad \Sigma c_{i} \otimes x_{i}^{\prime}=\Sigma\left(c_{i}-r_{i}\right) \otimes x_{i}^{\prime}+\Sigma r_{i} \otimes x_{i}^{\prime}$. Thus $h\left(\Sigma c_{i} \otimes x_{i}^{\prime}\right) \geq k$.

Definition. Let M be a module with no elements of infinite height. M is taut if length $M=$ length M^{*}; otherwise M is slack.

Note that length ([3, page 26]) may be defined for not necessarily reduced modules. Thus M is taut if and only if the reduced part of M^{*} has no elements of infinite height. It is an open question whether slack modules exist; it is easy, however, to give an example in which M has no elements of infinite height while M^{*} has a proper divisible
submodule. Let M be an indecomposable torsion-free R-module of rank 2 of the type exhibited in [3, page 46]. M is reduced (and so has no elements of infinite height, being torsion-free), but $M^{*} \approx R^{*} \oplus Q^{*}, Q^{*}$ being the quotient field of R^{*}.

Lemma 5.4. Any direct sum of taut modules is taut.
Lemma 5.5. Any module of rank 1 with no elements of infinite height is taut.

Proof. Lemma 3.7.
Definition. A module is completely decomposable if it is the direct sum of modules of rank 1 .

Corollary 5.6. Any completely decomposable module with no elements of infinite height is taut.

Lemma 5.7. Any reduced torsion-free module is taut.
Proof. There is a unique solution to the equation $p y=x$.
Theorem 5.8. Let M and M^{\prime} be taut semi-KM modules. Then M and M^{\prime} are isomorphic if and only if they have the same Ulm invariants and $S(M)=S\left(M^{\prime}\right)$.

Proof. Since M and M^{\prime} have isomorphic torsion submodules, so do M^{*} and $M^{\prime *}$, by 3.6. By 4.2 there are maximal independent subsets x_{1}, \cdots, x_{s} in $M, x_{l}^{\prime}, \cdots, x_{s}^{\prime}$ in M^{\prime} such that $h\left(\Sigma r_{i} x_{i}\right)=h\left(\Sigma r_{i} x_{i}^{\prime}\right)$ for all $r_{i} \in R$. Since both M and M^{\prime} are taut, the reduced parts of M^{*} and $M^{\prime *}$ have no elements of infinite height. By 5.3, $\left\{1 \otimes x_{i}\right\}$ and $\left\{1 \otimes x_{i}^{\prime}\right\}$ determine the same strand. In particular, the divisible parts of M^{*} and $M^{\prime *}$ have the same rank and hence are isomorphic, since they are torsion-free. By $4.3, M^{*} \approx M^{* *}$. By Corollary 4.4, there is an isomorphism $f: M^{*} \rightarrow M^{\prime *}$ such that $f\left(1 \otimes x_{i}\right)=1 \otimes x_{i}^{\prime}$ for all i. But now M^{\prime} and $f(M)$ satisfy the conditions of 5.2 . Hence $M^{\prime}=f(M)$. Thus M and M^{\prime} are isomorphic.

Theorem 5.8 suggests that taut modules have the coset property. We now exhibit a counter-example.

Example 5.9. There exist taut modules which do not have the coset property.

Proof. Let M be an indecomposable torsion-free R-module of rank

2, where R is (necessarily) incomplete. M is taut, by 5.7 . Let S be a pure submodule of rank 1. Since M is reduced, S must be cyclic. Further, $M / S \approx Q$. Thus S cannot be copure. Hence M does not have the coset property, by 3.2.
6. Completely decomposable modules. We begin this section with the study of the simplest completely decomposable modules: those of rank 1. We have already seen that if we assume no elements of infinite height, modules of rank 1 are taut. Using results of the last section, we can now prove a cancellation law.

Theorem 6.1. Let M and M^{\prime} be semi-KM modules of rank 1 with no elements of infinite height. Then $M \approx M^{\prime}$ if and only if $M^{*} \approx M^{* *}$.

Proof. By 3.6. $\quad M^{*} \approx M^{*}$ implies that the torsion submodules of M and M^{\prime} are isomorphic. If x has infinite order in M, x^{\prime} has infinite order in M^{\prime}, then the strands determined by $1 \otimes x$ and $1 \otimes x^{\prime}$ are equivalent. But equivalence for modules of rank 1 is via two nonnegative integers and a one-by-one matrix over R^{*}, i.e., an element of R^{*}. But any element of R^{*} has the form $u p^{k}$ where u is a unit. Since multiplication by a unit does not alter heights, we may assume that the one-by-one matrix lies in R. But then we are calculating equivalence over R. The purity of the imbedding of M into M^{*} yields $S(M)=S\left(M^{\prime}\right)$. Hence $M \approx M^{\prime}$.

If rank $M=1$, then $S(M)$ has a representative $f: R \rightarrow$ ordinals and ∞, where $f(r)=h(r x)$ for some element x of infinite order. But we know that if r and r^{\prime} are associates in R, then $f(r)=f\left(r^{\prime}\right)$. Hence f is completely determined by its values at $p^{k}, k=0,1,2, \ldots$ Thus $S(M)$ can be looked upon as an equivalence class of sequences of ordinals. Indeed, these ordinal sequences are the extra invariant Kaplansky and Mackey discovered in their paper.

Definition. A sequence of ordinals $\left\{\alpha_{n}\right\}$ has a gap at α_{n} if $\alpha_{n+1}>1+\alpha_{n}$.

Lemma (Kaplansky). If $\left\{\alpha_{n}\right\}$ is the Ulm sequence of x ([3, page 57]), and if $\left\{\alpha_{n}\right\}$ has a gap at α_{n}, then the α_{n} th Ulm invariant of $M \neq 0$.

Proof. Since $h\left(p^{n} x\right)=\alpha_{n}$ and $h\left(p^{n+1} x\right)=\alpha_{n+1}>1+\alpha_{n}$, there is a $y \in M$ such that $h\left(p^{n} y\right) \geq \alpha_{n}$ and $p^{n+2} y=p^{n+1} x$. Set $t=p^{n+1} y-p^{n} x$. Then t has order p and height α_{n}. Thus the α_{n} th Ulm invariant of M is non-zero.

Suppose we are given a monotone increasing sequence of non-negative
integers and a torsion module T. Is there a module of rank 1 possessing these as invariants? Kaplansky's lemma provides a link between these two objects, and the following theorem shows it is the only restriction.

Theorem 6.2. Let T be a countaly generated torsion module with no elements of infinite height; let $\left\{\alpha_{n}\right\}$ be a strictly increasing sequence of non-negative integers such that $\left\{\alpha_{n}\right\}$ has a gap at α_{n} implies $U_{\alpha_{n}}(T)$ is non-zero. Then there exists a KM module M of rank 1 whose torsion submodule is isomorphic to T and such that $S(M)$ is the equivalence class of $\left\{\alpha_{n}\right\}$.

Proof. In this proof we often denote p^{k} by $\exp k$. If $\left\{\alpha_{n}\right\}$ has only a finite number of gaps, equivalence allows us to assume that $\alpha_{n}=n$ for all n. Then $M=T \oplus R$ is the desired module. Therefore we may assume $\left\{\alpha_{n}\right\}$ has an infinite number of gaps. Let $\left\{\alpha_{n_{i}}\right\}$ be the subsequence of gaps. The conditions on T imply T is the direct sum of cyclic modules. Further the compatibility condition tells us that T has a cyclic summand C_{i} of order $\left(\exp \left(\alpha_{n_{i}}+1\right)\right)$; let a_{i} be a generator of C_{i}. There is a B such that $T \approx B \oplus \Sigma C_{i}$. We first construct a certain submodule M^{\prime} of ΠC_{i}.

Define $x=\left\{u_{i} a_{i}\right\}$ where $u_{i}=\exp \left(\alpha_{n_{i}}-n_{i}\right) . \quad x$ has infinite order; for $p^{m} x=0 \Longleftrightarrow p^{m} u_{i} a_{i}=0$ for all $i \Longleftrightarrow \exp \left(m+\alpha_{n_{i}}-n_{i}\right) a_{i}=0$ for all $i \Longleftrightarrow m+\alpha_{n_{i}}-n_{i} \geq \alpha_{n_{i}}+1$ for all $i \Longleftrightarrow m \geq n_{i}+1$ for all i. This is impossible since $n_{i} \rightarrow \infty$. We claim that if $p^{k} u_{i} a_{i} \neq 0$, then $p^{k} u_{i} \in\left(\exp \alpha_{k}\right)$. In other words, if $k+\alpha_{n_{i}}-n_{i}<\alpha_{n_{i}}+1$, then $k+\alpha_{n_{i}}-n_{i} \geq \alpha_{k}$. Equivalently, if $n_{i} \geq k$, then $\alpha_{n_{i}}-\alpha_{k} \geq n_{i}-k$. But $\quad \alpha_{n_{i}}-\alpha_{k}=\left(\alpha_{n_{i}}-\alpha_{n_{i}-1}\right)+\cdots+\left(\alpha_{k+1}-\alpha_{k}\right) \geq n_{i}-k$. Thus for each k we may define an element x_{k} with the property that $\left(\exp \alpha_{k}\right) x_{k}=$ $p^{k} x$: set $x_{k}=\left\{u_{i}^{k} a_{i}\right\}$, where $u_{i}^{k}=0$ if $k \geq n_{i}+1$, while $u_{i}^{k}=\exp \left(-\alpha_{k}+\right.$ $k+\alpha_{n_{i}}-n_{i}$) otherwise.

Set $M^{\prime}=$ the submodule of ΠC_{i} generated by the x_{k} 's. Note that $h\left(p^{k} x\right)=\alpha_{k}$ in M^{\prime}. It can be no greater, since the height of an element of ΠC_{i} is the smallest power of p which occurs in one of its coordinates. Hence $h\left(p^{k} x\right)=\alpha_{k}$ in ΠC_{i}, and so can be no larger in the submodule M^{\prime}.

We still must determine the torsion submodule T^{\prime} of M^{\prime}. Given any two x_{k} 's, multiplication of each by a suitable power of p makes their coordinates equal from some point on. Hence any element of finite order in M^{\prime} cannot have an infinite number of non-zero coordinates. But it may be verified that for all i,

$$
a_{i}=\exp \left(\alpha_{n_{i+1}}-\alpha_{n_{i}}-n_{i+1}+n_{i}\right) x_{n_{i+1}}-x_{n_{i}}
$$

Hence $T^{\prime}=\Sigma C_{i}$. Thus $M=M^{\prime} \oplus B$ is the module we seek, where B
is the module we originally found satisfying $T^{\prime} \oplus B \approx T$.
We now prove the existence of minimal modules possessing an element of a given Ulm sequence.

Corollary. Let $\left\{\alpha_{n}\right\}$ be a strictly increasing sequence of nonnegative integers, and let $\left\{\alpha_{n_{i}}\right\}$ be its subsequence of gaps. Let T be the direct sum of cyclic modules C_{i} of order $\left(\exp \left(\alpha_{n_{i}}+1\right)\right)$. Then there exists a KM module 1 with torsion submodule T and which contains an element x such that $h\left(p^{n} x\right)=\alpha_{n}$. Further, M is a direct summand of any KM module M^{\prime} of rank 1 which contains an elements whose Ulm sequence is $\left\{\alpha_{n}\right\}$.

Proof. We need only prove the last statement, since the existence of M with the prescribed invariants follows immediately from Theorem 6.2. Let T^{\prime} be the torsion submodule of M^{\prime}. By Kaplansky's lemma, the $\alpha_{n_{i}}$ th Ulm invariant of T^{\prime} is non-zero. Hence there are cardinals U_{n} such that $U_{n}\left(T^{\prime}\right)=U_{n}+U_{n}(T)$. Let V be the torsion module with Ulm invariants given by U_{n}. By Ulm's theorem, $T^{\prime} \approx V \oplus T$. The $K M$ module $V \oplus M$ has torsion submodule $V \oplus T$ and $S(V \oplus M)=$ $S\left(M^{\prime}\right)$. Hence $V \oplus M$ and M^{\prime} are isomorphic, by the structure theorem.

Thus there is an uncountable number of non-isomorphic $K M$ modules of rank 1 with no elements of infinite height. In particular we have exhibited modules of rank 1 which do not split.

Definition. x_{1}, \cdots, x_{s} is a decomposition set for M if it is a maximal independent subset of M and $h\left(\Sigma r_{i} x_{i}\right)=\min h\left(r_{i} x_{i}\right)$ for all $r_{i} \in R$. A subdecomposition set is a not necessarily maximal independent subset satisfying the above condition on heights.

Definition. A decomposition set has k gaps at level n if k of its elements have Ulm sequences which have a gap at n.

Lemma 6.3. Let $X=x_{1}, \cdots, x_{s}$ be decompostion set with k gaps at level n. Then the the nth Ulm invariant of $M \geq k$.

Proof. If x_{1}, \cdots, x_{s} is a decompostion set for M, so is $r_{1} x_{1}, \cdots, r_{s} x_{s}$ where $r_{i} \neq 0$ for all i. Hence we may assume that $h\left(x_{i}\right)=n$ and $h\left(p x_{i}\right)>n+1$ for $i \leqq k$. Thus there are elements $y_{i}, i \leq k$, such that $h\left(p y_{i}\right) \geq n+1$ and $p^{2} y_{i}=p x_{i}$. Set $t_{i}=p y_{i}-x_{i}$. We now have k elements of order p and of height n. It remains to prove that they are independent over $R /(p)$. Suppose $\sum_{i=1}^{k} r_{i} t_{i}=0$, where r_{i} is either 0 or a unit in R. By the definition of the $t_{i}, \Sigma r_{i}\left(p y_{i}-x_{i}\right)=0$ which implies
that $p \Sigma r_{i} y_{i}=\Sigma r_{i} x_{i}$. Since X is a decomposition set, $h\left(\Sigma r_{i} x_{i}\right)=$ $\min h\left(r_{i} x_{i}\right)=n$ or ∞. But $h\left(p \Sigma r_{i} y_{i}\right) \geq n+1$. Hence $\Sigma r_{i} x_{i}=0$. The independence of the x 's implies that each $r_{i}=0$; hence the t_{i} are independent over $R /(p)$.

Theorem 6.4. Let M be a taut semi-KM module. M is completely decomposable if and only if M contains a decomposition set.

Proof. If M is completely decomposable, the assertion is trivial. Suppose M contains a decomposition set x_{1}, \cdots, x_{s}. Define functions U_{i} : non-negative integers \rightarrow cardinals $\leq \boldsymbol{K}_{0}, i=1,2, \cdots, s$ as follows: $\sum_{i=1}^{s} U_{i}(n)=n$th Ulm invariant of M; if the Ulm sequence of x_{i} has a gap at n, then $U_{i}(n) \neq 0$. By Lemma 6.3, the Ulm invariants of M are sufficiently large to allow this construction. Let T_{i} be the torsion module with Ulm invariants given by U_{i}. By Theorem 6.2 , there exists a $K M$ module of rank $1, M_{i}$, having torsion submodule T_{i} and with $S\left(M_{i}\right)$ the equivalence class of the Ulm sequence of x_{i}. Consider ΣM_{i}. Since Ulm invariants are additive, the first condition in the definition of the U_{i} coupled with Ulm's theorem yields the fact that the torsion submodules of M and of ΣM_{i} are isomorphic. Further, $S(M)=S\left(\Sigma M_{i}\right)$. By Corollary 5.6, ΣM_{i} is a taut semi- $K M$ module. By Theorem 5.8, $M \approx \Sigma M_{i}$.

Lemma 6.5. Let M and M^{\prime} be taut semi-KM modules of rank 1 such that $S(M)=S\left(M^{\prime}\right)$. Then M and M^{\prime} are almost isomorphic.

Proof. Let T and T^{\prime} be the torsion submodules of M and M^{\prime} respectively. Then $M \oplus T^{\prime}$ and $M^{\prime} \oplus T$ are isomorphic, by 5.8.

We now prove a technical lemma which will allow us to obtain our first direct summand theorem.

Lemma 6.6. Let M be a reduced module of finite rank s. Let x_{1}, \cdots, x_{s} be a decomposition set such that each x_{i} has the same Ulm sequence. Suppose also that $x_{i}=w_{i 1} a_{1}+\cdots+w_{i s} a_{s}$, and, for all $i,\left|w_{i 1}\right| \leq\left|w_{11}\right|$. Under these conditions, $y_{i}=w_{i 1} x_{1}-w_{11} x_{i}, i \geq 2$, is a subdecomposition set and each y_{i} is in A, the submodule generated by a_{2}, \cdots, a_{s}.

Proof. Rank $M=s$ while rank $A \leq s-1$. Hence not all the $w_{i_{1}}$ are 0 lest we have s independent elements x_{1}, \cdots, x_{s} lying in A. Thus w_{11} is non-zero.

First we show the y_{i} 's are independent. Suppose $\Sigma r_{i} y_{i}=0$. Then $0=\left(\Sigma r_{i} w_{i 1}\right) x_{1}-\Sigma r_{i} w_{11} x_{i}$ which implies $r_{i} w_{11}=0$ for all $i \geq 2$, since the x 's are independent. Since $w_{11} \neq 0$, we must have $r_{i}=0$ for all $i \geq 2$;
hence the y 's are independent.
Next we show that the y 's satisfy the required condition on their heights.

$$
h\left(\Sigma r_{i} y_{i}\right)=h\left(\Sigma r_{i} w_{i 1} x_{1}-\Sigma r_{i} w_{11} x_{i}\right)=\min h\left(\Sigma r_{i} w_{i 1} x_{1}\right), h\left(r_{i} w_{11} x_{i}\right)
$$

But

$$
\left|\Sigma r_{i} w_{i 1}\right| \leq \max \left|r_{i} w_{i 1}\right|=\max \left|r_{i}\left\|w_{i 1}|\leq \max | r_{i}\right\| w_{11}\right|=\max \left|r_{i} w_{11}\right|
$$

Hence there is an i such that $\left|\Sigma r_{i} w_{i 1}\right| \leq\left|r_{i} w_{11}\right|$. Therefore, $h\left(\Sigma r_{i} w_{i 1} x_{1}\right) \geq$ $h\left(r_{i} w_{11} x_{i}\right)$ for that i. Hence $h\left(\Sigma r_{i} y_{i}\right)=\min h\left(r_{i} w_{11} x_{i}\right)$. On the other hand, $\quad \min h\left(r_{i} y_{i}\right)=\min h\left(r_{i} w_{i 1} x_{1}-r_{i} w_{11} x_{i}\right)=\min h\left(r_{i} w_{i 1} x_{1}\right), h\left(r_{i} w_{11} x_{i}\right)$. But for all $i,\left|r_{i} w_{i 1}\right| \leq\left|r_{i} w_{11}\right|$. Therefore, $h\left(r_{i} w_{i 1} x_{1}\right) \geq h\left(r_{i} w_{11} x_{i}\right)$. Hence $\min h\left(r_{i} y_{i}\right)=\min h\left(r_{i} w_{11} x_{i}\right)$. Hence $h\left(\Sigma r_{i} y_{i}\right)=\min h\left(r_{i} y_{i}\right)$.

Theorem 6.7. Let M be a completely decomposable semi-KM module with no elements of infinite height. Let $M=\Sigma M_{i}$, all the M_{i} isomorphic and of rank 1. If $M=A \oplus B$, then B is completely decomposable. In fact, B is almost isomorphic to a direct sum of copies of M_{i}.

Proof. We first prove that any two elements in M of infinite order have equivalent Ulm sequences. Let $x_{i} \in M_{i}$ have infinite order. Clearly these x 's form a decomposition set. Further, since all the M_{i} are isomorphic, we may assume that all the x_{i} 's have identical Ulm sequences. Let $z \in M$ have infinite order. There is an $m \geq 0$ such that $p^{m} z=\Sigma r_{i} x_{i}$. Suppose $\left|r_{i}\right| \leq\left|r_{1}\right|$. Then $h\left(p^{m+k} z\right)=h\left(p^{k} \Sigma r_{i} x_{i}\right)=h\left(p^{k} r_{1} x_{1}\right)$ for any non-negative k.

Choose a_{1}, \cdots, a_{s-k} independent in $A, a_{s-k+1}, \cdots, a_{s}$ independent in B. We are now in the situation of the lemma. Applying the lemma k times (after each application, we must normalize the y 's obtained so that they have identical Ulm sequences), we obtain $s-k$ independent elements in $\left\{\alpha_{s-k+1}, \cdots, a_{s}\right\} \subset B$ which is a subdecompostion set of M. By the purity of B, and since rank $B=s-k$, these elements constitute a decomposition set for B. By Theorem $6.4, B$ is completely decomposable. Hence $B=\Sigma B_{j}$, and our initial remarks imply that $S\left(B_{j}\right)=S\left(M_{i}\right)$ for all i and j. By Lemma 6.5, B_{j} and M_{i} are almost isomorphic. Hence B is almost isomorphic to a direct sum of copies of M_{i}.

I have been unable to discover the truth of Theorem 6.7 in the event all the M_{i} are not isomorphic to each other.

Corollary 6.8. Let $M=\sum M_{\alpha}$ (α in some index set), each M_{α} a semi-KM module of rank 1 with no elements of infinite height. If all the M_{a} are isomorphic, any direct summand B of M of finite rank is almost isomorphic to a direct sum of copies of M_{α} 's.

Proof. Let $x_{\alpha} \in M_{\alpha}$ have infinite order. Let y_{1}, \cdots, y_{s} be a maximal independent subset of B. There is a finite subset $x_{\alpha_{1}}, \cdots, x_{\alpha_{k}}$ of the x_{α} 's such that $p^{m} y_{i}$ lies in the submodule they generate, for all i. Let B^{\prime} be the submodule of M generated by B and $M_{\alpha_{1}}, \cdots, M_{\alpha_{k}}$. Since B^{\prime} is countably generated and of finite rank, $B^{\prime}=\sum M_{\alpha_{j}}^{\prime}$, where $S\left(M_{a_{j}}^{\prime}\right)=$ [$U x_{\alpha_{1}}$]. (If $x \in M, U x$ is its Ulm sequence and [$U x$] is the equivalence class of $U x)$. Hence all the $S\left(M_{\alpha_{j}}^{\prime}\right)$'s are the same. Since B is a direct summand of M, it is a direct summand of B^{\prime}. By $6.7, B$ is completely decomposable. Since all elements of infinite order have equivalent Ulm sequences, B is almost isomorphic to a direct sum of copies of M_{α}.

We are now in a position to consider uniqueness of a decomposition of a module into the direct sum of modules of rank 1 . The unpredictability of the torsion submodules does not allow one to find pairs of isomorphic summands from two different decompositions. For example, if C is cyclic of order (p) and $M=R \oplus C \oplus C \oplus R$, different associations yield different decompositions of M as a direct sum of modules of rank 1 whose terms are not pairwise isomorphic. However, the two decompositions do have isomorphic refinements.

Theorem 6.9. Let $M=\sum_{i=j}^{n} M_{i}, M_{i}$ a $K M$ module of rank 1, all the M_{i} isomorphic. Any two decompositions of M into summands of rank 1 have isomorphic refinements.

Proof. We saw in the proof of Theorem 6.7 that any two elements in M of infinite order have equivalent Ulm sequences. Hence if $M=$ $\sum_{i=1}^{n} M_{i}^{\prime}$, all the M_{i}^{\prime} of rank 1, then $S\left(M_{i}\right)=S\left(M_{i}^{\prime}\right)$ for all i. By the existence theorem, there are modules N_{i} of rank 1 such that:
(i) $N_{i} \oplus T_{i} \approx M_{i}, N_{i} \oplus T_{i}^{\prime} \approx M_{i}^{\prime}$ for some torsion T_{i}, T_{i}^{\prime};
(ii) if W_{i} is the torsion submodule of N_{i}, then the Ulm invariants of W_{i} are 0's and 1's. Now $\sum W_{i} \oplus \sum T_{i} \approx \sum W_{i} \oplus \sum T_{i}^{\prime}$. By Ulm's Theorem and condition (ii), we may cancel and obtain $\sum T_{i} \approx \sum T_{i}^{\prime}$. Since any two decompositions of a module which is the direct sum of cyclic modules have isomorphic refinements, $\sum T_{i}$ and ΣT_{i}^{\prime} have isomorphic refinements. This completes the proof.

As a corollary, we have another proof of the square root problem, Theorem 4.5.

This paper is part of a dissertation written at the University of Chicago. I wish to thank Professor I. Kaplansky for his guidance.

References

1. H. Cartan and S. Eilenberg, Homological Algebra, Princeton, 1956.
2. L. Fuchs, Abelian Groups, Publishing House of the Hungarian Academy of Sciences, 1958.
3. I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, 1956.
4. I. Kaplansky and G. Mackey, A Generalization of Ulm's theorem, Summa Brasil. Math. 2 (1951), 195-202.
5. A. Kurosh, Theory of Groups, Vol. I. Chelsea, 1955.

University of Illinois

