AN ELEMENTARY PROOF OF THE PRIME NUMBER THEOREM WITH REMAINDER TERM

Robert Breusch

Introduction. In this paper, the prime number theorem in the form $\psi(x) \equiv \sum_{p^{m} \leqq x} \log p=x+o\left(x \cdot \log ^{-1 / 6+\varepsilon} x\right)$, for every $\varepsilon>0$, is established via a proof that in the well-known formula

$$
\begin{equation*}
\rho(x) \equiv \sum_{p^{m} \leqq x} \frac{\log p}{p^{m}}=\log x+O(1) \equiv \log x+a_{x} \tag{1}
\end{equation*}
$$

$a_{x}=-A_{0}+o\left(\log ^{-1 / 6+\varepsilon} x\right) . \quad\left(A_{0}\right.$ is Euler's constant.)
Throughout the paper, p and q stand for prime numbers, k, m, n, t, and others are positive integers, and x, y, and z are positive real numbers.

Some well-known formulas, used in the proof, are
(2) $\sum_{n \leqq x} \frac{\log ^{k} n}{n}=\frac{1}{k+1} \cdot \log ^{k+1} x+A_{k}+O\left(\frac{\log ^{k} x}{x}\right)$, for $k=0,1, \cdots$
(2') $\quad \sum_{y<n \leqq z} \frac{1}{n} \cdot \log ^{k}(n / y)=\frac{1}{k+1} \cdot \log ^{k+1}(z / y)+O\left(\frac{1}{y} \cdot \log ^{k k}(z / y)\right)$, for $k=0,1, \cdots$
(3) $\sum_{n \leqq x} \log ^{k}(x / n)=O(x)$, for $k=1,2, \cdots$
(4) $\quad \sum_{p^{m} \leq x} \log p \cdot \log ^{k}\left(x / p^{m}\right)=O(x)$, for $k=0,1, \cdots$
(5) $\sum_{n \leq x} \mu(n) / n=O(1)(\mu(n)$ is Moebius' function.)

Two other formulas, used prominently, are
(6) $\quad \sigma(x) \equiv \sum_{p^{m} \leqq x} \frac{\log p}{p^{m}} \cdot \log \left(x / p^{m}\right)=\frac{1}{2} \cdot \log ^{2} x-A_{0} \cdot \log x+g_{x}\left(g_{x}=O(1)\right)$
(7) $\quad \tau(x) \equiv \sum_{p^{m} \leqq x} \frac{\log p}{p^{m}} \cdot \log ^{2}\left(x / p^{m}\right)=\frac{1}{3} \cdot \log ^{3} x-A_{0} \cdot \log ^{2} x$

$$
+\left(2 \cdot A_{0}^{2}+4 \cdot A_{1}\right) \log x+O(1)
$$

With the help of (1), (2), and (4), (6) can be proved easily :

$$
\begin{aligned}
\sigma(x) & =\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot\left(\sum_{n \leq x / p^{m}} 1 / n-A_{0}+O\left(p^{m} / x\right)\right), \quad \text { or, with } k=n \cdot p^{m} \\
\sigma(x) & =\sum_{k \leq x} \frac{1}{k} \cdot \sum_{p^{m} / k} \log p-A_{0} \cdot \log x+O(1) \\
& =\sum_{k \leq x} \frac{\log k}{k}-A_{0} \log x+O(1)=\frac{1}{2} \cdot \log ^{2} x-A_{0} \log x+O(1)
\end{aligned}
$$

Received December 31, 1958.

Also, again with $k=n \cdot p^{m}$,

$$
\begin{aligned}
& \sum_{k \leq x} \frac{\log k}{k} \cdot \log \frac{x}{k} \\
= & \sum_{k \leq x} \frac{1}{k} \cdot \log \frac{x}{k} \cdot \sum_{p^{m} / k} \log p=\sum_{p^{m} \leq x} \log p \cdot \sum_{n \leq x / p^{m}} \frac{1}{n \cdot p^{m}} \cdot \log \left(\frac{x}{n \cdot p^{m}}\right) \\
= & \sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot\left\{\log \left(\frac{x}{p^{m}}\right) \cdot \sum_{n \leq x / p^{m}} \frac{1}{n}-\sum_{n \leq x / p^{m}} \frac{\log n}{n}\right\} \\
= & \sum_{p^{m} \geq x} \frac{\log p}{p^{m}} \cdot\left\{\log ^{2}\left(x / p^{m}\right)+A_{0} \log \left(x / p^{m}\right)-\frac{1}{2} \log ^{2}\left(x / p^{m}\right)-A_{1}\right\}+O(1) \\
= & \frac{1}{2} \cdot \tau(x)+A_{0} \cdot \sigma(x)-A_{1} \cdot \rho(x)+O(1) .
\end{aligned}
$$

(7) follows now by (1), (2), and (6).

The proof now proceeds in the following steps: in part I, certain asymptotic formulas for a_{n} (see (1)) and g_{n} (see (6)) are derived; they suggest that " on the average," a_{n} is $-A_{0}$, and g_{n} is $A_{0}^{2}+2 A_{1}$. In part II, formulas for a_{n} and g_{n} are derived which are of the type of Selberg's asymptotic formula for $\psi(x)$; part III contains the final proof.

Part I

First, the following five formulas will be derived; K_{1}, K_{2}, \cdots, are constants, independent of x.

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n} \cdot a_{n}=-A_{0} \log x+g_{x}+K_{2}+O\left(\frac{\log x}{x}\right) \tag{8}
\end{equation*}
$$

(9) $\sum_{n \leq x} \frac{1}{n} \cdot a_{x / n}=-A_{0} \log x+K_{3}+O\left(\frac{\log x}{x}\right)$
(10) $\sum_{p \leqq x} \frac{\log p}{p^{m}} \cdot a_{p^{m}}=-A_{0} \log x+g_{x}+\frac{1}{2} a_{x}^{2}+K_{4}+O\left(\frac{\log x}{x}\right)$

$$
\begin{align*}
& \sum_{n \leq x} \frac{1}{n} \cdot g_{n}=\left(A_{0}^{2}+2 \cdot A_{1}\right) \cdot \log x+O(1) \tag{11}\\
& \sum_{n \leqq x} \frac{1}{n} \cdot g_{x / n}=\left(A_{0}^{2}+2 \cdot A_{1}\right) \cdot \log x+K_{5}+O\left(\frac{\log ^{2} x}{x}\right) . \tag{12}
\end{align*}
$$

Proofs.

$$
\begin{aligned}
\sigma(x) & =\sum_{n \leqq x} \log \frac{x}{n}(\rho(n)-\rho(n-1))=\sum_{n \leqq x} \rho(n) \cdot \log \frac{n+1}{n}+O\left(\frac{\log x}{x}\right) \\
& =\sum_{n \leqq x} \frac{\rho(n)}{n}+K_{1}+O\left(\frac{\log x}{x}\right) \\
& =\sum_{n \leqq x} \frac{\log n}{x}+\sum_{n \leqq x} \frac{1}{n} a_{n}+K_{1}+O\left(\frac{\log x}{x}\right) .
\end{aligned}
$$

(8) follows now from (6) and (2).

Also

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{n} \cdot a_{x / n} & =\sum_{n \leq x} \frac{1}{n} \cdot\left(\sum_{p^{n} \leq x / n} \frac{\log p}{p^{m}}-\log \frac{x}{n}\right) \\
& =\sum_{k \leq x} \frac{1}{k} \sum_{p^{m / k}} \log p-\sum_{n \leqq x} \frac{1}{n} \log \frac{x}{n} \quad\left(k=n \cdot p^{m}\right) \\
& =\sum_{k \leq x} \frac{\log k}{k}-\sum_{n \leqq x} \frac{1}{n} \log \frac{x}{n} . \quad \text { which proves (9) by (2). }
\end{aligned}
$$

And

$$
\begin{gathered}
\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot a_{p^{m}}=\sum_{p^{m} \leq x} \frac{\log p}{p^{m}}\left(\sum_{q^{\prime} \leq p^{m}} \frac{\log q}{q^{h}}-\log \left(p^{m}\right)\right) \\
=\frac{1}{2}\left(\sum_{p^{m} \leq x} \frac{\log p}{p^{m}}\right)^{2}+\frac{1}{2} \sum_{p^{m} \leqq x} \frac{\log ^{2} p}{p^{2 m}}-\log x \cdot \sum_{p^{m} \leq x} \frac{\log p}{p^{m}}+\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \log \frac{x}{p^{m}} .
\end{gathered}
$$

Thus, by (1), (2) and (6),

$$
\begin{aligned}
\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot a_{p^{m}}= & \frac{1}{2}\left(\log x+a_{x}\right)^{2}+K_{4}+O\left(\frac{\log x}{x}\right)-\log x \cdot\left(\log x+a_{x}\right) \\
& +\frac{1}{2} \log ^{2} x-A_{0} \log x+g_{x}, \quad \text { which proves }(10)
\end{aligned}
$$

In the next proof, use is made of the easily established fact that

$$
\begin{aligned}
& \quad \rho(n) \cdot \log \frac{n+1}{n}=\sigma(n+1)-\sigma(n) \\
& \tau(x)=\sum_{n \leqq x} \log ^{2}\left(\frac{x}{n}\right)(\rho(n)-\rho(n-1)) \\
&=\sum_{n \leqq x} \rho(n)\left(\log ^{2}\left(\frac{x}{n}\right)-\log ^{2}\left(\frac{x}{n+1}\right)\right)+O(1) \\
&=\sum_{n \leqq x} \rho(n) \log \frac{n+1}{n} \cdot \log \frac{x^{2}}{n(n+1)}+O(1) \\
&=\sum_{n \leqq x}(\sigma(n+1)-\sigma(n)) \cdot \log \frac{x^{2}}{n(n+1)}+O(1) \\
&=\sum_{n \leqq x} \sigma(n) \cdot \log \frac{n+1}{n-1}+O(1)=\sum_{n \leqq x} \sigma(n) \cdot \frac{2}{n}+O(1) \\
&=\sum_{n \leqq x} \frac{\log ^{2} n}{n}-2 \cdot A_{0} \cdot \sum_{n \leqq x} \frac{\log n}{n}+2 \cdot \sum_{n \leqq x} \frac{1}{n} \cdot g_{n}+O(1) \quad(b y \quad(6))
\end{aligned}
$$

This proves (11), with the help of (2) and (7).
Finally

$$
\begin{array}{r}
\sum_{n \leq x} \frac{1}{n} \cdot g_{x / n}=\sum_{n \leqq x} \frac{1}{n} \cdot\left(\sum_{p^{m} \leqq x / n} \frac{\log p}{p^{m}} \cdot \log \frac{x}{n \cdot p^{m}}-\frac{1}{2} \log ^{2}\left(\frac{x}{n}\right)+A_{0} \log \frac{x}{n}\right) \\
\text { or, with } k=n \cdot p^{m}
\end{array}
$$

$$
\begin{aligned}
& \sum_{n \leq x} \frac{1}{n} \cdot g_{x / n} \\
= & \sum_{k \leq x} \frac{1}{k} \cdot \log \frac{x}{k} \cdot \sum_{p^{m} / k} \log p-\frac{1}{2} \cdot \sum_{n \leq x} \frac{1}{n} \cdot \log ^{2}\left(\frac{x}{n}\right)+A_{0} \sum_{n \leq x} \frac{1}{n} \cdot \log \frac{x}{n} \\
= & \sum_{k \leq x} \frac{1}{k} \cdot \log \frac{x}{k} \cdot \log k-\frac{1}{2} \cdot \sum_{n \leq x} \frac{1}{n} \cdot \log ^{2}\left(\frac{x}{n}\right)+A_{0} \sum_{n \leq x} \frac{1}{n} \cdot \log \frac{x}{n} .
\end{aligned}
$$

(12) now follows by (2).

Formulas (8) through (12) suggest setting

$$
\begin{equation*}
b_{x} \equiv a_{x}+A_{0}, \quad h_{x} \equiv g_{x}-\left(A_{0}^{2}+2 A_{1}\right) \tag{13}
\end{equation*}
$$

In terms of b_{x} and h_{x}, the five formulas read

$$
\begin{gather*}
\sum_{n \leqq x} \frac{1}{n} \cdot b_{n}=h_{x}+K_{6}+O\left(\frac{\log x}{x}\right) \\
\sum_{n \leq x} \frac{1}{n} \cdot b_{x / n}=K_{7}+O\left(\frac{\log x}{x}\right)
\end{gather*}
$$

$$
\begin{align*}
\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot b_{p^{m}}= & A_{0} \cdot\left(-A_{0}+b_{x}\right)+A_{0}^{2}+2 \cdot A_{1}+h_{x}+K_{4} \\
& +\frac{1}{2} \cdot\left(-A_{0}+b_{x}\right)^{2}+O\left(\frac{\log x}{x}\right) \\
= & h_{x}+\frac{1}{2} \cdot b_{x}^{2}+K_{8}+O\left(\frac{\log x}{x}\right)
\end{align*}
$$

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n} \cdot h_{n}=O(1) \tag{11'}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n} \cdot h_{x / n}=K_{9}+O\left(\frac{\log ^{2} x}{x}\right) \tag{12'}
\end{equation*}
$$

Next, it will be shown that

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n} \cdot b_{n}^{2}=\sum_{n \leq x} \frac{1}{n} \cdot b_{x / n}^{2}+O(1), \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x} \frac{1}{n} \cdot b_{n} \cdot b_{x / n}=\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot h_{x / p^{m}}+O(1) . \tag{15}
\end{equation*}
$$

For a proof of (14), we know, by (10^{\prime}), that

$$
\frac{1}{n} \cdot b_{n}^{2}=\frac{2}{n} \cdot \sum_{p^{m} \leqq n} \frac{\log p}{p^{m}} \cdot b_{p^{m}}-\frac{2}{n} \cdot h_{n}-\frac{2}{n} \cdot K_{8}+O\left(\frac{\log n}{n^{2}}\right),
$$

and

$$
\frac{1}{n} \cdot b_{x / n}^{2}=\frac{2}{n} \cdot \sum_{p^{m} \leq x / n} \frac{\log p}{p^{m}} \cdot b_{p^{m}}-\frac{2}{n} \cdot h_{x / n}-\frac{2}{n} \cdot K_{8}+O\left(\frac{1}{x} \cdot \log \frac{x}{n}\right) .
$$

Thus, by (3), (11') and (12'),

$$
\begin{array}{r}
\sum_{n \leq x} \frac{1}{n} \cdot\left(b_{n}^{2}-b_{x / n}^{2}\right)=2 \cdot \sum_{n \leq x} \frac{1}{n}\left(\sum_{p^{m} \leq n} \frac{\log p}{p^{m}} \cdot b_{p^{m}}-\sum_{p^{m} \leq x / n} \frac{\log p}{p^{m}} \cdot b_{p^{m}}\right)+O(1) \\
=2 \cdot \sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot b_{p^{m}}\left(\sum_{p^{m} \leq n \leq x} \frac{1}{n}-\sum_{n \leq x / p^{m}} \frac{1}{n}\right)+O(1) \\
=2 \cdot \sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot b_{p^{m}} \cdot\left(\log \left(x / p^{m}\right)+O\left(1 / p^{m}\right)-\log \left(x / p^{m}\right)\right. \\
\left.-A_{0}-O\left(p^{m} / x\right)\right)+O(1)
\end{array}
$$

$=O(1)$, by (10^{\prime}) and (4). This proves (14).
Also

$$
\begin{aligned}
\sum_{n \leq x} \frac{1}{n} \cdot b_{n} \cdot b_{x / n} & =\sum_{n \leq x} \frac{1}{n} \cdot b_{n} \cdot\left(\sum_{p^{m} \leq x / n} \frac{\log p}{p^{m}}-\log \frac{x}{n}+A_{0}\right) \\
& =\sum_{n \leq x} \frac{1}{n} \cdot b_{n} \cdot\left(\sum_{p^{m} \leq x / n} \frac{\log p}{p^{m}}-\sum_{t \leq x / n} \frac{1}{t}+2 \cdot A_{0}+O\left(\frac{n}{x}\right)\right) \\
& =\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \sum_{n \leq x / p^{m}} \frac{1}{n} b_{n}-\sum_{t \leq x} \frac{1}{t} \sum_{n \leq x / t} \frac{1}{n} b_{n}+O(1), \quad \text { by (8') } \\
& =\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot h_{x / p^{n}}+K_{6} \log x-\sum_{t \leq x} \frac{1}{t} h_{x / t}-K_{6} \log x+O(1) \\
& \quad \text { (by (8'), (1) and (4)) } \\
& =\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot h_{x / p^{m}}+O(1), \quad \text { by (12'). }
\end{aligned}
$$

From (14) and (15) it follows that

$$
\sum_{n \leq x} \frac{1}{n} \cdot\left(b_{n} \pm b_{x / n}\right)^{2}=2 \cdot \sum_{n \leq x} \frac{1}{n} \cdot b_{n}^{2} \pm 2 \cdot \sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot h_{x / p^{m}}+O(1)
$$

and therefore

$$
\begin{equation*}
\sum_{n \leqq x} \frac{1}{n} \cdot b_{n}^{2} \geqq\left|\sum_{p^{m} \leqq x} \frac{\log p}{p^{m}} \cdot h_{x / p^{m}}\right|+O(1) . \tag{16}
\end{equation*}
$$

Part II

In the following, we shall employ the inversion formula

$$
G(x)=\sum_{n \leq x} g\left(\frac{x}{n}\right) \quad \text { for all } x>0 \Rightarrow g(x)=\sum_{n \leq x} \mu(n) \cdot G\left(\frac{x}{n}\right),
$$

as well as

$$
\begin{equation*}
\sum_{n \leq x} \frac{\mu(n)}{n} \log \frac{x}{n}=O(1) . \tag{17}
\end{equation*}
$$

For a proof of (17), we make use of the fact that $\sum_{n \leqq x} x / n=$ $x \cdot \log x+A_{0} x+O(1)$; thus, by the inversion formula,

$$
x=\sum_{n \leq x} \mu(n) \cdot \frac{x}{n} \log \frac{x}{n}+A_{0} \cdot \sum_{n \leq x} \mu(n) \cdot \frac{x}{n}+O(x) .
$$

(17) follows now by (5).

If $f(x)$ is defined for $x>0$, then

$$
\begin{aligned}
& \sum_{n \leq x}\left\{\frac{x}{n} \cdot \log \frac{x}{n} \cdot f\left(\frac{x}{n}\right)+\frac{x}{n} \cdot \sum_{p^{m} \leq x / n} \frac{\log p}{p^{m}} \cdot f\left(\frac{x}{n \cdot p^{m}}\right)\right\} \\
& \quad=\sum_{n \leq x} \frac{x}{n} \cdot \log \frac{x}{n} \cdot f\left(\frac{x}{n}\right)+\sum_{k \leq x} \frac{x}{k} \cdot f\left(\frac{x}{k}\right) \cdot \sum_{p^{m} / k} \log p \quad\left(k=n \cdot p^{m}\right) \\
& \quad=\sum_{n \leq x} \frac{x}{n} \cdot \log \frac{x}{n} \cdot f\left(\frac{x}{n}\right)+\sum_{k \leq x} \frac{x}{k} \cdot f\left(\frac{x}{k}\right) \cdot \log k=x \cdot \log x \cdot \sum_{n \leq x} \frac{1}{n} \cdot f\left(\frac{x}{n}\right) .
\end{aligned}
$$

Thus, if we set

$$
F(x) \equiv x \cdot \log x \cdot \sum_{n \leq x} \frac{1}{n} \cdot f\left(\frac{x}{n}\right),
$$

then, by the inversion formula,

$$
x \cdot \log x \cdot f(x)+x \cdot \sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot f\left(x / p^{m}\right)=\sum_{n \leq x} \mu(n) \cdot F\left(\frac{x}{n}\right) .^{1}
$$

In particular, if

$$
\sum_{n \leq x} \frac{1}{n} \cdot f\left(\frac{x}{n}\right)=K+O\left(\frac{\log ^{k} x}{x}\right)
$$

then

$$
\sum_{n \leq x} \mu(n) \cdot F\left(\frac{x}{n}\right)=K \cdot \sum_{n \leq x} \mu(n) \cdot \frac{x}{n} \cdot \log \left(\frac{x}{n}\right)+O\left(\sum_{n \leqq x} \log ^{k+1}\left(\frac{x}{n}\right)\right)=O(x),
$$

by (17) and (3), and thus

$$
\begin{align*}
f(x) \cdot \log x+\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot f\left(x / p^{m}\right) & =O(1), \tag{18}\\
\text { if } & \sum_{n \leq x} \frac{1}{n} \cdot f\left(\frac{x}{n}\right)=K+O\left(\frac{\log ^{k} x}{x}\right) .
\end{align*}
$$

(Selberg's asymptotic formula for $\psi(x)$ corresponds to $f(x) \equiv \psi(x) / x-1$.) By (9^{\prime}) and (12^{\prime}), $f(x) \equiv b_{x}$ and $f(x) \equiv h_{x}$ both satisfy the condition of (18), and thus

$$
\begin{align*}
& b_{x} \cdot \log x+\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot b_{x / p^{m}}=O(1) \tag{19}\\
& h_{x} \cdot \log x+\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot h_{x / p^{m}}=O(1) . \tag{20}
\end{align*}
$$

[^0]From (16) and (20) it follows that

$$
\begin{equation*}
\sum_{n \leqq x} \frac{1}{n} \cdot b_{n}^{2} \geqq\left|h_{x}\right| \cdot \log x+O(1) \tag{21}
\end{equation*}
$$

If we add to (19)

$$
\left(\log x-A_{0}\right) \cdot \log x+\sum_{p^{m} \leq x} \frac{\log p}{p^{m}} \cdot\left(\log \left(x / p^{m}\right)-A_{0}\right)
$$

which by (1) and (6) is equal to $3 / 2 \cdot \log ^{2} x-3 \cdot A_{0} \cdot \log x+O(1)$, we obtain

$$
\rho(x) \cdot \log x+\sum_{p^{m} \leqq x} \frac{\log p}{p^{m}} \cdot \rho\left(x / p^{m}\right)=\frac{3}{2} \cdot \log ^{2} x-3 \cdot A_{0} \cdot \log x+O(1)
$$

If $0<c<1$, and $c \cdot x<y<x$, then it follows from the last equation that

$$
\begin{aligned}
\rho(x) \cdot \log x-\rho(y) \cdot \log y & \leqq \frac{3}{2} \cdot\left(\log ^{2} x-\log ^{2} y\right)+O(1) \\
& =\frac{3}{2} \cdot \log \frac{x}{y} \cdot(\log x+\log y)+O(1)
\end{aligned}
$$

$\log x \cdot(\rho(x)-\rho(y))+\log \frac{x}{y} \cdot \rho(y) \leqq \frac{3}{2} \cdot \log \frac{x}{y} \cdot(\log x+\log y)+O(1)$,
or, since $\rho(y)=\log y+O(1)$,

$$
\begin{aligned}
\log x \cdot(\rho(x)-\rho(y)) & \leqq \log \frac{x}{y} \cdot\left(\frac{3}{2} \cdot \log x+\frac{1}{2} \cdot \log y\right)+O(1) \\
& <2 \cdot \log \frac{x}{y} \cdot \log x+O(1)
\end{aligned}
$$

Thus

$$
\rho(x)-\rho(y)<2 \cdot \log \frac{x}{y}+O\left(\frac{1}{\log x}\right)
$$

and, since $\rho(x)=\log x-A_{0}+b_{x}$, it follows that $b_{x}-b_{y}<\log x / y+$ $O(1 / \log x)$. Also obviously $b_{x}-b_{y} \geqq-\log x / y$, because $\rho(x)$ is nondecreasing. Thus we obtain

$$
\begin{equation*}
\left|b_{x}-b_{y}\right| \leqq \log \frac{x}{y}+O\left(\frac{1}{\log x}\right) \text { if } c \cdot x<y<x, 0<c<1 \tag{22}
\end{equation*}
$$

Part III

Let $B \geqq 1$ be an upper bound of $\left|b_{n}\right|$.
Since $b_{n}-b_{n-1}$ is either $-\log [n /(n-1)]$, or $\log p / n-\log [n /(n-1)]$, it cannot happen that $b_{n}=b_{n-1}=0$.

Let the integers $r_{1}, r_{2}, \cdots, r_{t}, \cdots$ be the indices n for which the b_{n} change signs. Precisely :

$$
\left\{\begin{array}{l}
r_{1}=1 ; n=r_{t} \text { if } b_{n} \cdot b_{n+1} \leqq 0, \text { and } b_{n+1} \neq 0 ; \tag{23}\\
\text { if } \quad r_{t}<v \leqq w<r_{t+1} \text { then } b_{v} \cdot b_{w}>0 ; \text { and } \\
\left|b_{r_{t}}\right|<\left(\log r_{t}\right) / r_{t} \text { for } t>1
\end{array}\right.
$$

Let $\left\{s_{k}\right\}$ be a sequence of integers, determined as follows: every r_{t} is an s_{k}; if $\log \left(r_{t+1} / r_{t}\right)<7 \cdot B$, and $r_{t}=s_{k}$, then $r_{t+1}=s_{k+1}$; if $\log \left(r_{t+1} / r_{t}\right) \geqq 7 \cdot B$, enough integers s_{k+v} are inserted between $r_{t}=s_{k}$ and $r_{t+1}=s_{k+m}$ such that $3 \cdot B \leqq \log \left(s_{k+v+1} / s_{k+v}\right)<7 \cdot B$, for $v=0,1, \cdots$, $m-1$. If there is a last $r_{t_{0}}=s_{k_{0}}$, a sequence $\left\{s_{k_{0}+v}\right\}$ is formed such that $3 \cdot B \leqq \log \left(s_{k_{0}+v+1} / s_{k+v}\right)<7 \cdot B$. Thus the s_{k} form a sequence with the following properties:

$$
\left\{\begin{array}{l}
s_{1}=1 ; \log \left(s_{k+1} / s_{k}\right)<7 \cdot B ; \text { for } k>1, \text { either } \tag{24}\\
\log \left(s_{k+1} / s_{k}\right) \geqq 3 \cdot B \text { or }\left|b_{s_{k}}\right| \text { and }\left|b_{s_{k_{k+1}}}\right| \text { are both } \\
\text { less than } \frac{\log s_{k}}{s_{k}} ; b_{v} \cdot b_{w}>0 \text { for } s_{k}<v \leqq w<s_{k+1}
\end{array}\right.
$$

Assume now that $\alpha(0<\alpha<1 / 2)$ is such that

$$
\begin{equation*}
\text { not } h_{x}=O\left(\log ^{-\alpha} x\right) \tag{25}
\end{equation*}
$$

Then $\left|h_{x}\right| \cdot \log ^{\alpha} x$ is unbounded. Let x be large, and such that $\left|h_{x}\right| \cdot \log ^{\alpha} x \geqq\left|h_{y}\right| \cdot \log ^{\alpha} y$ for all $y \leqq x$. Let c and d be positive integers such that

$$
\begin{equation*}
s_{c-1}<\log x \leqq s_{c}, \quad \text { and } \quad s_{a} \leqq x<s_{d+1} \tag{26}
\end{equation*}
$$

It will be shown that

$$
\frac{1}{2} \cdot(1-\alpha-o(1)) \cdot S(x) \leqq\left|h_{x}\right| \cdot \log x \leqq \frac{1}{3} \cdot(1+o(1)) \cdot S(x)
$$

where

$$
\begin{equation*}
S(x) \equiv \sum_{k=c+1}^{a}\left|h_{s_{k}}-h_{s_{k-1}}\right| \cdot \log \left(s_{k} / s_{k-1}\right) \tag{27}
\end{equation*}
$$

From this it will follow that $\alpha \geqq 1 / 3$.
Clearly

$$
\begin{aligned}
& \left|h_{x}\right| \cdot \log x=\left|h_{x}\right| \cdot \log ^{\alpha} x \cdot\left\{\log ^{1-\alpha} x-\log ^{1-\alpha} s_{a}+\sum_{k=2}^{a}\left(\log ^{1-\alpha} s_{k}-\log ^{1-\alpha} s_{k-1}\right)\right\} \\
& \quad \geqq \frac{1}{2} \cdot \sum_{k=c+1}^{a}\left(\left|h_{s_{k}}\right| \cdot \log ^{\alpha} s_{k}+\left|h_{s_{k-1}}\right| \cdot \log ^{\alpha} s_{k-1}\right) \cdot\left(\log ^{1-\alpha} s_{k}-\log ^{1-\alpha} s_{k-1}\right) \\
& \quad \geqq \frac{1}{2} \cdot \sum_{k=c+1}^{a}\left|h_{s_{k}}-h_{s_{k-1}}\right| \cdot \log ^{\alpha} s_{k-1} \cdot\left(\log ^{1-\alpha} s_{k}-\log ^{1-\alpha} s_{k-1}\right)
\end{aligned}
$$

If $y<z$, it is easily shown by the mean value theorem that

$$
y^{\alpha} \cdot\left(z^{1-\alpha}-y^{1-\alpha}\right)>(1-\alpha) \cdot \frac{y}{z} \cdot(z-y)>\left(1-\alpha-\frac{z-y}{z}\right)(z-y)
$$

With $y=\log s_{k-1}, z=\log s_{k}$, and from the fact that $s_{k}>\log x$, $\log \left(s_{k} / s_{k-1}\right)<7 \cdot B$, it follows by (27) that

$$
\begin{equation*}
\left|h_{x}\right| \cdot \log x>\frac{1}{2} \cdot\left(1-\alpha-\frac{7 \cdot B}{\log \log x}\right) \cdot S(x) . \tag{28}
\end{equation*}
$$

For the next estimate, we need the following lemma.
Lemma. Let v and w be positive integers such that
(1) $\log \frac{w}{v}=O(1)$;
(2) $b_{n}>0$ for $v \leqq n \leqq w ;$
(3) $b_{v}<\frac{\log v}{v}$

Then

$$
\sum_{v \leqq n \leqq w} \frac{1}{n} \cdot b_{n}^{2} \leqq \frac{2}{3} \cdot \log \frac{w}{v} \cdot \sum_{v \leqq n \leqq w} \frac{1}{n} b_{n}+O\left(\frac{\log (w / v)}{\log v}\right) .
$$

Proof. If $b_{n} \leqq 1 / 3 \cdot \log w / v$ for every n in $[v, w]$, the lemma is obviously correct. Otherwise, let n_{1} be such that

$$
b_{n_{1}} \geqq \frac{1}{3} \cdot \log \frac{w}{v}, \quad b_{n}<\frac{1}{3} \cdot \log \frac{w}{v} \quad \text { for } \quad v \leqq n<n_{1}
$$

If $\log \left(n_{1} / v\right)>1 / 3 \log (w / v)$, let $z\left(v \leqq z<n_{1}\right)$ be such that $\log \left(n_{1} / z\right)=$ $1 / 3 \log (w / v)$; otherwise, let $z=v$. Thus by (22), in every case, $\log \left(n_{1} / z\right)=1 / 3 \log (w / v)+O(1 / \log v)$. Clearly $b_{n}-2 / 3 \cdot \log w / v<0 \quad$ for $v \leqq n \leqq z$. Thus

$$
\begin{gathered}
T \equiv \sum_{v \leqq n \leqq w} \frac{1}{n} \cdot b_{n}^{2}-\frac{2}{3} \cdot \log \frac{w}{v} \cdot \sum_{v \leqq n \leqq w} \frac{1}{n} \cdot b_{n} \\
\leqq \sum_{z \leqq n \leqq w} \frac{1}{n} \cdot b_{n}^{2}-\frac{2}{3} \cdot \log \frac{w}{v} \cdot \sum_{z \leqq n \leqq w} \frac{1}{n} \cdot b_{n}, \\
T \leqq \sum_{z \leqq n \leqq w} \frac{1}{n} \cdot\left(b_{n}-\frac{1}{3} \cdot \log \frac{w}{v}\right)^{2}-\frac{1}{9} \cdot \log ^{2}(w / v) \cdot \log (w / z)+O\left(\frac{\log (w / v)}{v}\right) .
\end{gathered}
$$

By (22),

$$
\begin{aligned}
& \left|b_{n}-\frac{1}{3} \log (w / v)\right|=\left|b_{n}-b_{n_{1}}\right|+O\left(\frac{\log v}{v}\right) \\
\leqq & \left|\log \left(n_{1} / n\right)\right|+O\left(\frac{1}{\log v}\right)=\left|\log \left(n_{1} / z\right)-\log (n / z)\right|+O\left(\frac{1}{\log v}\right),
\end{aligned}
$$

and thus

$$
\left|b_{n}-\frac{1}{3} \cdot \log \frac{w}{v}\right| \leqq\left|\log \frac{n}{z}-\frac{1}{3} \log \frac{w}{v}\right|+O\left(\frac{1}{\log v}\right)
$$

Thus

$$
\begin{aligned}
T \leqq & \sum_{z \leqq n \leqq w} \frac{1}{n} \cdot\left(\log \frac{n}{z}-\frac{1}{3} \cdot \log \frac{w}{v}\right)^{2} \\
& -\frac{1}{9} \cdot \log ^{2}(w / v) \cdot \log (w / z)+O\left(\frac{\log (w / v)}{\log v}\right) \\
= & \sum_{z \leqq n \leqq w} \frac{1}{n} \cdot \log ^{2}(n / z)-\frac{2}{3} \cdot \log \frac{w}{v} \cdot \sum_{z \leqq n \leqq w} \frac{1}{n} \cdot \log \frac{n}{z}+O\left(\frac{\log (w / v)}{\log v}\right) \\
= & \frac{1}{3} \cdot \log ^{3}(w / z)-\frac{2}{3} \cdot \log ^{2}(w / v) \cdot \frac{1}{2} \cdot \log ^{2}(w / z)+O\left(\frac{\log (w / v)}{\log v}\right),
\end{aligned}
$$

by $\left(2^{\prime}\right)$, and thus $T \leqq O(\log (w / v) / \log v)$. This completes the proof of the lemma.

Corollary 1. If condition (3) is replaced by $b_{w}<\log w / w$, the conclusion still holds; if $b_{n}<0$ in $v \leqq n \leqq w$, the conclusion holds if b_{n} is replaced by $\left|b_{n}\right|$.

Corollary 2. If instead of (3) it is known that $b_{v}<\log v / v$ and $b_{w}<\log w / w$ then

$$
\sum_{v \leqq n \leqq w} \frac{1}{n} \cdot b_{n}^{2} \leqq \frac{1}{3} \cdot \log \frac{w}{v} \cdot \sum_{v \leqq n \leqq w} \frac{1}{n} \cdot\left|b_{n}\right|+O\left(\frac{\log (w / v)}{\log v}\right)
$$

For a proof, we split $[v, w]$ into two intervals by a division point at $(v \cdot w)^{1 / 2}$, and apply the lemma separately to each subinterval.

Corollary 3.

$$
\begin{equation*}
\sum_{s_{k-1}<n \leqq s_{k}} \frac{1}{n} \cdot b_{n}^{2} \leqq \frac{1}{3} \cdot \log \left(s_{k} / s_{k-1}\right) \cdot \sum_{s_{k-1}<n \leqq s_{k}} \frac{1}{n} \cdot\left|b_{n}\right|+O\left(\frac{\log \left(s_{k} / s_{k-1}\right)}{\log s_{k}}\right) . \tag{29}
\end{equation*}
$$

Proof. If $\log \left(s_{k} / s_{k-1}\right)<3 \cdot B$, this follows from (24) and Corollary 2 ; if $\log \left(s_{k} / s_{k-1}\right) \geqq 3 B$, it is obvious, since $\left|b_{n}\right| \leqq B$.

By (26), $\sum_{n \leqq s_{c}} 1 / n \cdot b_{n}^{2}=O(\log \log x)$, and $\sum_{s^{\alpha}<n \leq x} 1 / n \cdot b_{n}^{2}=O(1)$; also $\sum_{k=c+1}^{d} \frac{\log \left(s_{k} / s_{k-1}\right)}{\log s_{k}} \leqq \sum_{k=c+1}^{a} \log \left(\frac{\log s_{k}}{\log s_{k-1}}\right) \leqq \log \log x$.
It follows from (29) that

$$
\sum_{n \leqq x} \frac{1}{n} \cdot b_{n}^{2} \leqq \frac{1}{3} \cdot \sum_{k=c+1}^{a} \log \left(s_{k} / s_{k-1}\right) \cdot \sum_{s_{k-1}<n \leqq s_{k}} \frac{1}{n} \cdot\left|b_{n}\right|+O(\log \log x) .
$$

By (8') $\sum_{s_{k-1}<n \leqq s_{k}} 1 / n \cdot\left|b_{n}\right|=\left|h_{s_{k}}-h_{s_{k-1}}\right|+O\left(\log s_{k} / s_{k}\right)$, and thus, by (21) and (27),

$$
\begin{equation*}
\left|h_{x}\right| \cdot \log x \leqq \frac{1}{3} \cdot S(x)+O(\log \log x) \tag{30}
\end{equation*}
$$

It follows from (28) and (30) that

$$
\left[\frac{1}{3}-\frac{1}{2} \cdot\left(1-\alpha-\frac{7 \cdot B}{\log \log x}\right)\right] \cdot S(x) \geqq O(\log \log x)
$$

and since by (25) and (30) $S(x) \geqq K \cdot \log ^{1 / 2} x$, this implies that $\alpha \geqq 1 / 3$. Thus $h_{x}=o\left(\log ^{-1 / 3+\varepsilon} x\right)$, for every $\varepsilon>0$, and therefore, by (8^{\prime}),

$$
\begin{equation*}
\sum_{s_{k-1}<n \leqq s_{k}} \frac{1}{n} \cdot\left|b_{n}\right|=o\left(\log ^{-1 / 3+\varepsilon} s_{k}\right) \tag{31}
\end{equation*}
$$

In order to find a bound for $\left|b_{x}\right|$, we consider now a particular interval $I_{k}=\left(s_{k-1}, s_{k}\right]$; let us assume that $b_{n}>0$ in I_{k}. Let $n_{2} \in I_{k}$ be such that $b_{n_{2}} \geqq b_{n}$ for every $n \in I_{k}$. Let $n_{1}\left(s_{k-1} \leqq n_{1}<n_{2}\right)$ be such that

$$
b_{n_{1}} \leqq \frac{1}{2} \cdot b_{n_{2}}<b_{n_{1}+1} .
$$

Then

$$
\sum_{n \in I_{k}} \frac{1}{n} \cdot b_{n}>\sum_{n=n_{1}+1}^{n_{2}} \frac{1}{n} \cdot b_{n}>\frac{1}{2} \cdot b_{n_{2}} \cdot \log \left(n_{2} / n_{1}\right)-O\left(1 / s_{k}\right) .
$$

But by (22),

$$
\log \left(n_{2} / n_{1}\right) \geqq b_{n_{2}}-b_{n_{1}}-O\left(\frac{1}{\log s_{k}}\right) \geqq \frac{1}{2} \cdot b_{n_{2}}-O\left(\frac{1}{\log s_{k}}\right)
$$

Thus

$$
\sum_{n \in I_{k}} \frac{1}{n} \cdot b_{n}>\frac{1}{4} \cdot b_{n_{2}}^{2}-O\left(\frac{1}{\log s_{k}}\right)
$$

It follows from (31) that $b_{n_{2}}^{2}=o\left(\log ^{-1 / 3+\varepsilon} n_{2}\right)$, and thus

$$
\begin{equation*}
b_{x}=o\left(\log ^{-1 / 6+\varepsilon} x\right) \tag{32}
\end{equation*}
$$

Finally,

$$
\begin{aligned}
\psi(x) & =\sum_{n \leq x} n \cdot(\rho(n)-\rho(n-1))=[x] \cdot \rho([x])-\sum_{n \leqq x-1} \rho(n) \\
& =x \cdot\left(\log x-A_{0}+b_{x}\right)-\sum_{n \leq x}\left(\log n-A_{0}+b_{n}\right)+O(\log x) \\
& =x \cdot \log x-A_{0} \cdot x+b_{x} \cdot x-x \cdot \log x+x+A_{0} \cdot x-\sum_{n \leqq x} b_{n}+O(\log x) \\
& =x+o\left(x \cdot \log ^{-1 / 6+\varepsilon} x\right)+o\left(\sum_{n \leq x} \log ^{-1 / 6+\varepsilon} n\right), \quad \text { by }(32) .
\end{aligned}
$$

The last sum is easily seen to be $o\left(x \cdot \log ^{-1 / 6+\varepsilon} x\right)$, and thus

$$
\begin{equation*}
\psi(x)=x+o\left(x \cdot \log ^{-1 / 6+\varepsilon} x\right) \tag{33}
\end{equation*}
$$

[^0]: ${ }^{1}$ Compare K. Iseki and T. Tatuzawa, "On Selberg's elementary proof of the prime number theorem." Proc. Jap. Acad. 27, 340-342 (1951).

