ON GROUPS OF EXPONENT FOUR WITH GENERATORS OF ORDER TWO

C. R. B. Wright

1. If x, y, \cdots are elements of a group G, we define the commutator (x, y) of x and y by $(x, y)=x^{-1} y^{-1} x y$. More generally, we define $e x-$ tended commutators inductively by $(x, \cdots, y, z)=((x, \cdots, y), z)$. In this paper we shall also be concerned with higher commutators of type $\left(\left(a_{1}, \cdots, a_{s}\right),\left(b_{1}, \cdots, b_{t}\right), \cdots,\left(c_{1}, \cdots, c_{r}\right)\right)$ which we denote by $\left(a_{1}, \cdots, a_{s}\right.$; $\left.b_{1}, \cdots, b_{t} ; \cdots ; c_{1}, \cdots, c_{r}\right)$. If we let G_{i} be the subgroup of G which is generated by all extended commutators of length i, (i.e., with i entries), then G_{i} is a characteristic subgroup of G, and the series $G=G_{1} \supset G_{2} \supset \cdots$ is called the lower central series of $G .{ }^{1}$

Let $G(n)(n=1,2, \cdots)$ be the freest group of exponent 4 on n generators of order 2. That is, $G(n)$ is a group in which the fourth power of every element is the identity, $1, G(n)$ is generated by n elements of order 2 , and if H is any other group with these properties, then H is a homomorphic image of $G(n)$.

We prove $G(n)_{n+2}=1$. For this purpose it may be assumed, since $G(n)$ is finite ${ }^{2}$ and hence nilpotent, that $G(n)_{n+3}=1$. Moreover, it will be enough to show $\left(x_{1}, \cdots, x_{n+2}\right)=1$ for all choices of x_{1}, \cdots, x_{n+2} from among the generators of $G(n)$.
2. Lemma 2.1. If x, y, \cdots, z are elements of order 2 in a group of exponent 4 , then $(x, y)^{2}=1,(x, y, \cdots, z)^{2}=1$, and $(x, y, x)=1$.

Proof. Since $(x, y)=x y x y=(x y)^{2},(x, y)^{2}=1$. By induction, $(x, y, \cdots$, $z)^{2}=1$, while $(y, x)=y x y x=x(x, y) x=(x, y)(x, y, x)$, so that $(x, y, x)=$ $(y, x)^{2}=1$.

The relation $(x, y, \cdots, z)^{2}=1$ will be the justification for future substitutions and will be used without specific mention.

Theorem 2.1. $G(2)_{3}=1$.
Proof. By Lemma 2.1, if the generators of $G(2)$ are a and b, then $(a, b, a)=(b, a, a)=(a, b, b)=(b, a, b)=1$.
3. Lemma 3.1. If a, b and c are elements of order 2 in a group G of exponent 4, then

[^0]\[

$$
\begin{equation*}
(a, b, c) \equiv(b, c, a)(c, a, b) \bmod G_{5} \tag{1}
\end{equation*}
$$

\]

$$
(a, b ; c, a)=(a, c ; b, a) \equiv(a, c, b, a) \bmod G_{5}
$$

$$
\begin{equation*}
(a, b, c, a) \equiv(b, c, a, b)(c, a, b, c) \bmod G_{5} \tag{3}
\end{equation*}
$$

Proof. We may assume that a, b and c generate G. Now

$$
a b c a b c=a b a(a, c) b(b, c)=(a, b)(a, c)(a, c, b)(b, c) .
$$

Thus, modulo $G_{5},(a b c)^{2}=(a, b)(a, c)(b, c)(a, c, b)$. Hence
$1 \equiv[(a, b)(a, c)(b, c)]^{2} \bmod G_{5}$, so that, modulo G_{5}, $1=(a, b)(a, c)(b, c)(a, b)(a, c)(b, c)=(a, b)(a, c)(a, b)(a, b ; b, c)(a, c)(a, c ; b, c)$,

$$
\begin{equation*}
1 \equiv(a, b ; a, c)(a, b ; b, c)(a, c ; b, c) \bmod G_{5} \tag{4}
\end{equation*}
$$

But also

$$
\begin{aligned}
a b c & =c a(a, c) b(b, c) \\
& =b c(c, b) a(a, b)(a, c)(a, c, b)(b, c) \\
& =a b(b, a) c(c, a)(c, b)(c, b, a)(a, b)(a, c)(a, c, b)(b, c),
\end{aligned}
$$

so that $1=(b, a)(b, a, c)(c, a)(c, b)(c, b, a)(a, b)(a, c)(a, c, b)(b, c)$, and hence, modulo G_{5},

$$
\begin{aligned}
1 & =(b, a)(c, a)(c, b)(a, b)(a, c)(b, c)(b, a, c)(c, b, a)(a, c, b) \\
& =[(a, b)(a, c)(b, c)]^{2}(a, b, c)(b, c, a)(c, a, b) .
\end{aligned}
$$

Thus (1) is proved. Replacing b by (a, b) in (1) gives $(a, b, c, a)(c, a ; a, b) \equiv$ $1 \bmod G_{5}$ or (2). And (2) and (4) together give (3).

Lemma 3.2. If x_{1}, \cdots, x_{k} and a are elements of order 2 in a group G of exponent 4 , then $\left(x_{1}, \cdots, x_{k}, a\right) \equiv X \bmod G_{k+2}$, where X is a product of commutators of form $\left(a, y_{1}, \cdots, y_{k}\right)$ with y_{1}, \cdots, y_{k} from among x_{1}, \cdots, x_{k}.

Corollary. If $x_{1}, \cdots, x_{k}, z_{1}, \cdots, z_{s}$ and a are elements of order 2 in a group G of exponent 4, then

$$
\left(x_{1}, \cdots, x_{k}, a, z_{1}, \cdots, z_{s}\right) \equiv X \bmod G_{k+s+2}
$$

where X is a product of commutators of form $\left(a, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{s}\right)$ with y_{1}, \cdots, y_{k} from among x_{1}, \cdots, x_{k}.

Proof of Lemma 3.2. Certainly the lemma and corollary are true if $k=1$. Assume for induction that both are true for $k=n-1 \geq 1$.

Now by (1), modulo $G_{n+2},\left(x_{1}, \cdots, x_{n-1}, x_{n}, a\right)=\left(x_{1}, \cdots, x_{n-1}, a, x_{n}\right)\left(x_{1}, \cdots\right.$, $\left.x_{n-1} ; a, x_{n}\right)$. But by the inductive assumption $\left(x_{1}, \cdots, x_{n-1}, a, x_{n}\right)$ is a product of terms $\left(a, y_{1}, \cdots, y_{n-1}, x_{n}\right)$, and ($x_{1}, \cdots, x_{n-1} ; a, x_{n}$) is a product of terms $\left(a, x_{n}, y_{1}, \cdots, y_{n-1}\right)$. The lemma and its immediate corollary follow by induction.

Theorem 3.1. $G(3)_{5}=1$.
Proof. Let a, b and c be the generators of $G(3)$. Consider any commutator $C=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ in arguments a, b and c. We show $C=1$. There is no loss of generality in taking $x_{5}=a$. If a does not appear again in C, then by Theorem $2.1, C=\left(1, x_{5}\right)=1$. If a appears again, then by Lemma 3.2 and the assumption that $G(3)_{6}=1$, we may suppose $C=\left(a, x_{2}, x_{3}, x_{4}, a\right)$. By Lemma 2.1, if a appears a third time, then $C=1$. Thus we may take $C=(a, b, c, b, a)$. Now $(a, b, c, b, a)=$ $(b, c, a, b, a)(c, a, b, b, a)=(b, c, a, b, a)$ by (1). Replacing c by (b, c) in (3) gives $(a, b ; b, c, ; a)=(b ; b, c ; a ; b)=1$, while replacing c by (b, c) in (2) gives $(a, b ; b, c ; a)=(b, c, a, b, a)$. Hence, $C=(a, b, c, b, a)=(b, c, a, b, a)=$ $(a, b ;, b, c ; a)=1$, and the theorem is proved.

Corollary 1. If a, b and c are elements of order 2 in a group of exponent 4, then

$$
\begin{align*}
(a, b, c) & =(b, c, a)(c, a, b) \\
(a, b ; c, a) & =(a, b, c, a) \\
(a, b, c, a) & =(b, c, a, b)(c, a, b, c)
\end{align*}
$$

Proof. These follow from Lemma 3.1.
Corollary 2. If $x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{s}, z_{1}, \cdots, z_{t}(s \geq 2)$ are elements of order 2 in a group G of exponent 4, then

$$
\left(x_{1}, \cdots, x_{k} ; y_{1}, \cdots, y_{s} ; z_{1} ; \cdots ; z_{t}\right) \equiv A B \bmod G_{k+s+t+1}
$$

where

$$
\begin{aligned}
& A=\left(x_{1}, \cdots, x_{k} ; y_{1}, \cdots, y_{s-1} ; y_{s} ; z_{1} ; \cdots ; z_{t}\right) \\
& B=\left(x_{1}, \cdots, x_{k}, y_{s} ; y_{1}, \cdots, y_{s-1} ; z_{1} ; \cdots ; z_{t}\right) .
\end{aligned}
$$

Proof. This follows from (1').
The following corollary lists some relations for future use.
Corollary 3. If a, b, c, d and f are elements of order 2 in a group G of exponent 4, then

$$
\begin{align*}
(a, b, c, d, c) & \equiv(a, b, d, c, d) \bmod G_{6} \tag{5}\\
(b, c, a ; d, f, a) & \equiv 1 \bmod G_{7} \tag{6}\\
(a, f ; b, d, c) & \equiv(a, f, c ; b, d)(a, f ; b, d ; c) \tag{7}\\
(b, f, d ; a, c)(d, f, b ; a, c) & \equiv(b, d, f ; a, c) \bmod G_{8} \tag{8}
\end{align*}
$$

Proof. By (3'), with a replaced by (a, b) and b replaced by d, $(a, b, d, c ; a, b)=(d, c ; a, b ; d)(c ; a, b ; d ; c)=(a, b ; d, c ; d)(a, b, c, d, c)$, so that, since $(a, b ; d, c ; d)=(a, b, d, c, d),(5)$ is true. By $\left(2^{\prime}\right)$ and (3^{\prime}) with b replaced by (b, c) and c replaced by $(d, f),(b, c, a ; d, f, a)=(a ; b, c ; d, f ; a)=$ $(b, c ; d, f ; a ; b, c)(d, f ; b, c ; a ; d, f)$, so that (6) is true. Finally, (7) and (8) are obvious from (1^{\prime}).
4. Lemma 4.1. If a, b, c and d are elements of order 2 in a group G of exponent 4 , then

$$
\begin{equation*}
(a, b ; c, d) \equiv(a, c ; b, d)(a, d ; b, c) \bmod G_{5} \tag{9}
\end{equation*}
$$

Proof. First, working modulo G_{5} and collecting as we did in the proof of Lemma 3.1 we obtain $(a b c d)^{2}=T_{2} T_{3} T_{4}$ where

$$
\begin{aligned}
& T_{2}=(a, b)(a, c)(b, c)(a, d)(b, d)(c, d) \\
& T_{3}=(a, c, b)(a, d, c)(a, d, b)(b, d, c) \\
& T_{4}=(a, d, b, c) .
\end{aligned}
$$

Note that modulo G_{5}, T_{2}, T_{3} and T_{4} commute, and $T_{3}^{2}=T_{4}^{2}=1$. Hence, modulo $G_{5}, 1=(a b c d)^{4}=T_{2}^{2}$. Collecting the (a, d) 's in T_{2}^{2} we obtain $1 \equiv X A B C Y \bmod G_{5}$, where

$$
\begin{aligned}
& X=[(a, b)(a, c)(b, c)]^{2} \\
& A=(b, c ; b, d)(b, c ; c, d)(b, d ; c, d) \\
& B=(a, c ; a, d)(a, c ; c, d)(a, d ; c, d) \\
& C=(a, b ; a, d)(a, b ; b, d)(a, d ; b, d) \\
& Y=(a, b ; c, d)(a, c ; b, d)(a, d ; b, c) .
\end{aligned}
$$

Now modulo $G_{5}, X=1$, while $A=B=C=1$ by (2') and (3'). Hence, $1 \equiv(a, b ; c, d)(a, c ; b, d)(a, d ; b, c) \bmod G_{5}$, which is (9).

Corollary 1. If x_{1}, \cdots, x_{k} and a are elements of order 2 in a group G of exponent 4, then for $i=2, \cdots, k$,

$$
\left(x_{1}, a, x_{2}, a, \cdots, x_{i}, \cdots, x_{k}\right) \equiv\left(x_{1}, x_{2}, \cdots, a, x_{i}, a, \cdots, x_{k}\right) \bmod G_{k+3}
$$

Hence, if two of x_{1}, \cdots, x_{k}, a are equal, $\left(x_{1}, a, x_{2}, a, \cdots, x_{k}\right) \equiv 1 \bmod G_{k+3}$.

Proof. Let a, b, c and d be elements of order 2 in G. Then modulo G_{6},

$$
\begin{aligned}
(b, a, c, a, d) & =(b, a ;, c, a ; d) \\
& =(b, a, d ; c, a)(c, a, d ; b, a) \\
& =(b, a, c ; d, a)(c, a, b ; d, a) \\
& =(b, c, a ; d, a) \\
& =(b, c, a, d, a) .
\end{aligned}
$$

The first statement follows. Now the second statement is clearly true if a appears a third time, since then $\left(x_{1}, a, x_{2}, a, \cdots, a, \cdots, x_{k}\right)=$ $\left(x_{1}, x_{2}, \cdots, a, a, a, \cdots, x_{k}\right)=1$. If some x_{i} appears twice, then modulo $G_{k+3}\left(x_{1}, a, x_{2}, a, \cdots, x_{i}, \cdots, x_{k}\right)=\left(x_{1}, \cdots, a, x_{i}, a, \cdots, x_{k}\right)=\left(x_{1}, x_{2}, \cdots\right.$, $\left.x_{i}, a, x_{i}, \cdots, x_{k}\right)=\left(x_{1}, x_{i} x_{2}, x_{i}, \cdots, a, \cdots, x_{k}\right)$ (the second step following from (5)), and we are back to the case of three appearances of a. Thus the corollary is proved.

Corollary 2. If a, b, c, d and f are elements of order 2 in a group G of exponent 4, then

$$
\begin{align*}
& 1 \equiv(a, f, b ; c, d)(a, f, c ; b, d)(a, f, d ; b, c) \bmod G_{6} \tag{10}\\
& (a, c ; d, f ; b)(a, d ; c, f ; b) \equiv(c, d ; a, f ; b) \bmod G_{6} \tag{11}
\end{align*}
$$

Proof. These follow from (9).
Theorem 4.1. $\quad G(4)_{6}=1$.
Proof. Let the generators of $G(4)$ be a, b, c and d and consider any commutator $C=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$ in a, b, c and d. It will be sufficient to prove $C=1$ under the assumption that $G(4)_{7}=1$. As in the proof of Theorem 3.1, we may suppose that $C=\left(a, x_{2}, x_{3}, x_{4}, x_{5}, a\right)$. Moreover, if x_{2}, x_{3}, x_{4} or x_{5} is a, then by Theorem 2.1 or Corollary 1 of Lemma 4.1, $C=1$. It will thus be sufficient to prove $(a, b, c, b, d, a)=1,(a, b, c, d, b ; a)=$ 1 , and $(a, c, b, d, b, a)=1$. Now by Corollary 1 of Lemma 4.1, $(a, b, c, b, d, a)=(a, c, b, d, b, a)=1$, while by $\left(1^{\prime}\right), \quad(a, b, c ; b, d, a)=$ $(a, c, b ; b, d ; a)(b, c, a ; b, d ; a)$, so that by (6) $(a, b, c ; b, d ; a)=1$. Thus $(a, b, c, d, b, a)=(a, b, c, b, d, a)(a, b, c ; b, d ; a)=1$, and the theorem is proved.
5. The main result, that $G(n)_{n+2}=1$, has now been proved for $n=2,3$ and 4 . In this section we derive an identity analogous to (1) and (9) for five generators. This identity enables us to prove, in §6, that $G(n)_{n+2}=1$ for $n \geq 5$.

Lemma 5.1. If a, b, c, d and f are elements of order 2 in a group G of exponent 4, then

$$
\begin{equation*}
(a, b ; c, d ; f) \equiv(c, b ; f, d ; a)(f, b ; a, d ; c) \bmod G_{6} \tag{12}
\end{equation*}
$$

Corollary. If $\left(x_{1}, \cdots, x_{k}\right),\left(y_{1}, \cdots, y_{j}\right),\left(z_{1}, \cdots, z_{m}\right), a$ and $b(k, j, m \geq$ 1) are elements of order 2 in a group G of exponent 4, then

$$
\begin{equation*}
\left(x_{1}, \cdots, x_{k}, a ; y_{1}, \cdots, y_{j}, b ; z_{1}, \cdots, z_{m}\right) \equiv C_{1} C_{2} \bmod G_{k+j+m+3} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& C_{1}=\left(y_{1}, \cdots, y_{j} ; z_{1}, \cdots, z_{m} ; x_{1}, \cdots, x_{k}, b ; a\right) \\
& C_{2}=\left(x_{1}, \cdots, x_{k} ; z_{1}, \cdots, z_{m} ; y_{1}, \cdots, y_{j}, a ; b\right) .
\end{aligned}
$$

Proof of Lemma 5.1. First, working modulo G_{5}, we collect f 's in the expression $(a b c d f)^{2}$ to get $(a b c d f)^{2}=(a b c d) a(a, f) b(b, f) c(c, f) d(d, f)$. Then collecting b, c and d in that order we obtain $(a b c d f)^{2}=(a b c d)^{2} S_{2} S_{3} S_{4}$ where

$$
\begin{aligned}
& S_{2}=(a, f)(b, f)(c, f)(d, f) \\
& S_{3}=(a, f, d)(a, f, c)(a, f, b)(b, f, d)(b, f, c)(c, f, d) \\
& S_{4}=(a, f, c, d)(a, f, b, d)(a, f, b, c)(b, f, c, d)
\end{aligned}
$$

But as in the proof of Lemma 4.1, $(a b c d)^{2} \equiv T_{2} T_{3} T_{4} \bmod G_{5}$, where

$$
\begin{aligned}
& T_{2}=(a, b)(a, c)(a, d)(b, d)(c, d) \\
& T_{3}=(a, c, b)(a, d, c)(a, d, b)(b, d, c) \\
& T_{4}=(a, d, b, c)
\end{aligned}
$$

Thus, modulo $G_{5},(a b c d f)^{2}=T_{2} T_{3} T_{4} S_{2} S_{3} S_{4}$. But then, modulo G_{6},

$$
\begin{aligned}
1=(a b c d f)^{4} & =T_{2} T_{3} T_{4} S_{2} S_{3} T_{2} T_{3} T_{4} S_{2} S_{3} \\
& =T_{2} T_{3} T_{4} T_{2} S_{2}\left(S_{2}, T_{2}\right) S_{3}\left(S_{3}, T_{2}\right) T_{3} T_{4} S_{2} S_{3} \\
& =\left(T_{2} T_{3} T_{4}\right)^{2} S_{2}\left(S_{2}, T_{3}\right)\left(S_{2}, T_{2}\right) S_{3}\left(S_{3}, T_{2}\right) S_{2} S_{3} \\
& =S_{2}\left(S_{2}, T_{3}\right)\left(S_{2}, T_{2}\right) S_{3}\left(S_{3}, T_{2}\right) S_{2} S_{3} \\
& =S_{2}^{2}\left(S_{2}, T_{3}\right)\left(S_{2}, T_{2}\right) S_{3}\left(S_{3}, S_{2}\right)\left(S_{3}, T_{2}\right) S_{3} \\
& =S_{2}^{2}\left(S_{2}, T_{3}\right)\left(S_{2}, T_{2}\right) S_{3}^{2}\left(S_{3}, S_{2}\right)\left(S_{3}, T_{2}\right) .
\end{aligned}
$$

But modulo $G_{6}, S_{3}^{2}=1$, while S_{2}^{2} is a product of commutators of weight 4. Thus the last relation may be rewritten as $1 \equiv A \bmod G_{6}$ where A is a product of commutators in a, b, c, d and f of weight 4 or 5 ; hence the factors of A commute modulo G_{6}. Let A_{a}^{\prime} be the product of all factors of A which do not contain a as argument, and let A_{a} be the product of the remaining factors of A. Then $1 \equiv A_{a}^{\prime} A_{a} \bmod G_{6}$, so that, setting $a=1,1 \equiv A_{a}^{\prime} \bmod G_{6}$, and hence $1 \equiv A_{a} \bmod G_{6}$. Continuing this argument we finally arrive at $1 \equiv A_{\text {abcaf }} \bmod G_{6}$, where $A_{a b c a f}$ is the product of all factors of A which contain each of a, b, c, d and f. But what are
these factors? Clearly S_{2}^{2} and $\left(S_{2}, T_{2}\right)$ do not contain any such factors; and since each factor of S_{2} and S_{3} contains $f,\left(S_{3}, S_{2}\right)$ cannot contain any such factors. We are left with $\left(S_{2}, T_{3}\right)$ and $\left(S_{3}, T_{2}\right)$. The product of the desired factors of $\left(S_{2}, T_{3}\right)$ is clearly

$$
(a, f ; b, d, c)(b, f ; a, d, c)(c, f ; a, d, b)(d, f ; a, c, b),
$$

while the product of the desired factors of $\left(S_{3}, T_{2}\right)$ is $(a, f, d ; b, c)(a, f, c ; b, d)(a, f, b ; c, d)(b, f, d ; a, c)(b, f, c ; a, d)(c, f, d ; a, b)$.

Hence, modulo G_{6},

$$
\begin{aligned}
1=(a, f ; b, d, c) & (b, f ; a, d, c)(c, f ; a, d, b)(d, f ; a, c, b) \\
& \cdot(a, f, d ; b, c)(a, f, c ; b, d)(a, f, b ; c, d) \\
& \cdot(b, f, d ; a, c)(b, f, c ; a, d)(c, f, d ; a, b) .
\end{aligned}
$$

so that by (10)

$$
\begin{aligned}
& 1=(a, f ; b, d, c)(b, f ; a, d, c)(c, f ; a, d, b)(d, f ; a, c, b) \\
& \cdot(b, f, d ; a, c)(b, f, c ; a, d)(c, f, d ; a, b) .
\end{aligned}
$$

Using (7) on the first four factors gives, modulo G_{6},

$$
\begin{aligned}
& 1=(a, f, c ; b, d)(a, f ; b, d ; c)(b, f, c ; a, d)(b, f ; a, d ; c) \\
& \cdot(c, f, b ; a, d)(c, f ; a, d ; b)(d, f, b ; a, c)(d, f ; a, c ; b) \\
& \cdot(b, f, d ; a, c)(b, f, c ; a, d)(c, f, d ; a, b) \\
&=(a, f, c ; b, d)(a, f ; b, d ; c)(b, f ; a, d ; c)(c, f, b ; a, d)(c, f ; a, d ; b) \\
& \cdot(d, f, b ; a, c)(d, f ; a, c ; b)(b, f, d ; a, c)(c, f, d ; a, b) \\
&=(a, f, c ; b, d)(a, f ; b, d ; c)(b, f ; a, d ; c)(c, f, b ; a, d) \\
& \cdot(c, f ; a, d ; b)(d, f ; a, c ; b)(b, d, f ; a, c)(c, f, d ; a, b),
\end{aligned}
$$

where the last step follows from (8). Now applying (11) twice gives

$$
\begin{gathered}
1=(a, f, c ; b, d)(a, b ; d, f ; c)(c, f, b ; a, d)(a, f ; c, d ; b) \\
\cdot(b, d, f ; a, c)(c, f, d ; a, b)
\end{gathered}
$$

so that by (10)

$$
1=(a, f, c ; b, d)(a, b ; d, f ; c)(a, f ; c, d ; b)(b, d, f ; a, c)(c, f, a ; b, d)
$$

and hence by (8)

$$
1=(a, b ; d, f ; c)(a, f ; c, d ; b)(b, d, f ; a, c)(a, c, f ; b, d) .
$$

Thus, by (7)

$$
1 \equiv(a, b ; d, f ; c)(a, f ; c, d ; b)(a, c ; b, d ; f) \bmod G_{6}
$$

so that interchanging a with b and c with f we get

$$
1 \equiv(a, b ; c, d ; f)(c, b ; f, d ; a)(f, b ; a, d ; c) \bmod G_{6}
$$

which is (12). Thus the lemma is proved.
The corollary follows immediately.
6. Having proved the crucial relation (12), we are now in a position to prove the main theorem.

Theorem 6.1. Let $G(n),(n=1,2, \cdots)$ be the freest group of exponent 4 generated by n elements of order 2 . Then $G(n)_{n+2}=1$.

Proof. The proof is by induction on n. We have the result for $n=1,2,3$ and 4. Assuming the result true for n we now prove it for $n+1$. As before, we may assume $G(n+1)_{n+4}=1$. Consider a commutator $C=\left(y_{1}, y_{2}, \cdots, y_{n+3}\right)$ in the generators x_{1}, \cdots, x_{n}, a and b of $G(n+1)$. As before, we may restrict attention to the case $C=\left(a, y_{2}, \cdots\right.$, $\left.y_{n+2}, a\right)$. There are two possibilities to consider-Case 1: a appears again; Case 2: b appears twice. In either case we may assume that every x_{i} appears once, since otherwise, by the inductive assumption, $C=1$.

Case 1. The proof in this case is by induction on the position of the middle a. Clearly (a, y_{2}, a, \cdots, a) $=1$. Assume that for some $i \geq 3$, $\left(a, y_{2}, \cdots, y_{i-1}, a, \cdots, a\right)=1$. Then

$$
\begin{aligned}
& \left(a, y_{2}, \cdots, y_{i}, a, y_{i+1}, \cdots, y_{n+2}, a\right) \\
& \quad=\left(a, y_{2}, \cdots, y_{i-1} ; y_{i}, a ; y_{i+1} ; \cdots ; y_{n+2} ; a\right) \\
& \quad=\left(a, y_{2}, \cdots, y_{i-1} ; y_{i}, a ; a, y_{n+2}, \cdots, y_{i+1}\right)
\end{aligned}
$$

where the last step follows from $G(n)_{n+2}=1$. But by (13),

$$
\left(a, y_{2}, \cdots, y_{i-1} ; y_{i}, a ; a, y_{n+2}, \cdots, y_{i+1}\right)=C_{1} C_{2}
$$

where

$$
\begin{aligned}
& C_{1}=\left(a, y_{2}, \cdots, y_{i-2}, y_{i} ; a, y_{n+2}, \cdots, y_{i+1}, a ; y_{i-1}\right) \\
& C_{2}=\left(a, y_{2}, \cdots, y_{i-2} ; a, y_{n+2}, \cdots, y_{i+1} ; y_{i-1}, a ; y_{i}\right) .
\end{aligned}
$$

Since y_{i} and y_{i-1} appear only once, by the assumption that $G(n)_{n+2}=1$ we have $C_{1}=C_{2}=1$. Hence, by induction, $C=1$ if a appears three times.

Case 2. In this case also the proof is by induction, this time on the distance between the b 's. Let

$$
C=\left(a, z_{1}, \cdots, z_{i}, b, z_{i+1}, \cdots, z_{j}, b, z_{j+1}, \cdots, z_{n-1}, a\right),
$$

where $0 \leq i<j \leq n-1$ (that is, there might be no entries between
the a 's and the b 's). If $j-i=1$, then clearly $C=1$. Assume that $C=1$ for $j-i=k \geq 1$. Then as in Case 1,

$$
\begin{aligned}
& \left(a, z_{1}, \cdots, z_{i}, b, z_{i+1}, \cdots, z_{i+k+1}, b, z_{i+k+2}, \cdots, z_{n-1}, a\right) \\
& \quad=\left(a, z_{1}, \cdots, z_{i}, b, z_{i+1}, \cdots, z_{i+k} ; z_{i+k+1}, b ; a, z_{n-1}, \cdots, z_{i+k+2}\right) \\
& \quad=C_{1} C_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& C_{1}=\left(a, \cdots, b, \cdots, z_{i+k-1}, z_{i+k+1} ; a, z_{n-1}, \cdots, z_{i+k+2}, b ; z_{i+k}\right)=1 \\
& C_{2}=\left(a, \cdots, b, \cdots, z_{i+k-1} ; a, z_{n-1}, \cdots, z_{i+k+2} ; z_{i+k}, b ; z_{i+k+1}\right)=1
\end{aligned}
$$

Thus $C=1$ for $j-i=k+1$, so that by induction $C=1$ if b appears twice.

Since $C=1$ in both cases, we conclude that $G(n+1)_{n+3}=1$, so that by induction $G(n)_{n+2}=1$ for $n=1,2, \cdots$.
7. The author conjectures that the class of $G(n)$ is precisely $n+1$ for $n>2$. As supporting evidence, he has constructed $G(n) / G(n)^{\prime \prime}$ and shown that its class is exactly n. Moreover, for $n=3$ and $n=4$, $G(n)^{\prime \prime}$ is fairly large, and $G(n)_{n+1} \neq 1$.

Bibliography

1. M. Hall, Jr., The Theory of Groups, the Macmillan Co., 1959.
2. I. N. Sanov, Solution of Burnside's problem for exponent 4, Leningrad State Univ. Ann. 10, (1940), 166-170.

University of Wisconsin
California Institute of Technology

[^0]: Received October 26, 1959. Presented to the Society on September 3, 1959. This work was supported by a National Science Foundation predoctoral fellowship.
 ${ }^{1}$ For properties of commutators and the lower central series see Hall, [1], Ch. 10.
 ${ }^{2}$ See Sanov, [2], or Hall, [1], pp. 324-325.

