THE SIMPLICITY OF CERTAIN GROUPS

ROBERT STEINBERG

The purpose of this note is to give a proof of the simplicity of certain "Lie groups" considered in [2]. The main feature of the present development is the proof of Lemma 2 below: it is superior to the corresponding proof given in [2], because no assumption on the number of elements of the base field is required, and is very much shorter than the one given by Chevalley [1] for the direct analogues, over arbitrary fields, of the simple (complex) Lie groups. Thus it turns out that the groups $E_6^1(q^2)$ with $q \leq 4$, and $D_4^2(q^3)$ with $q \leq 3$, to which the proof in (2) is not applicable, are simple.

Assuming the notations of [1] and [2] to be in effect, we shall prove:

1. THEOREM. If \hat{G} is one of the groups of type G^1 , G^2 or G^3 , defined in [2], and the rank l of the corresponding Lie algebra is at least 3, then \hat{G} is simple.

It will be noticed that the case A_2^1 is excluded by the assumption on l. This is of necessity, since the simplicity of A_2^1 is not universal, but depends on the base field. The same is true of groups of type A_1 .

2. MAIN LEMMA. Let \hat{G} be a group of type G, that is, one of the direct analogues of the ordinary simple Lie groups, or a group of type G^1 , G^2 or G^3 , but assume \hat{G} is not of type A_1 or A_2^1 . Let $\hat{\mathbb{U}}$ be the nilpotent subgroup of \hat{G} corresponding to the positive roots of the underlying Lie algebra. Let H be a normal subgroup of \hat{G} such that |H| > 1. Then $|H \cap \hat{\mathbb{U}}| > 1$.

Proof. Assume first that G is of type G¹. By 7.2 of [2], there is $x = uh\omega(w) \in H$ with $u \in \mathbb{U}^1$, $h \in \mathfrak{H}^1$.

If w = 1, then [2, Lemma 8.5] yields the required conclusion.

If $w \neq 1$, consider first the case in which $w = w_s$ with S a fundamental element of Π^1 . Then there is a fundamental $A \in \Pi^1$ such that B = wA > 0 and $wA \neq A$ (because A_1 and A_2^1 are excluded). Choose $y \in \mathbb{U}_A^1$ so that $y \neq 1$ and $y \notin \mathbb{U}_2$, the subgroup of \mathbb{U} generated by those \mathfrak{X}_r for which $ht \ r \geq 2$. Then we assert that the commutator z = (x, y)is in $H \cap \mathbb{U}^1$ and that $z \neq 1$. In fact, $z = uh\omega(w)y\omega(w)^{-1}h^{-1}u^{-1}y^{-1} = utu^{-1}y^{-1}$ with $t \in \mathbb{U}_B^1$; hence $z \in H \cap \mathbb{U}^1$, and, since \mathbb{U}/\mathbb{U}_2 is Abelian, we have $z \equiv ty^{-1} \not\equiv 1 \mod \mathbb{U}_2$, by 4.3 of [2], whence $z \neq 1$.

Finally, consider the general case in which $w \neq 1$. Choose $R \in \Pi^1$ Received July 31, 1959. so that -wR = S is fundamental in Π^1 , and then $y \in \mathbb{U}_s^1$ so that $y \neq 1$. Again form z = (x, y). In the present case, $\omega(w)y\omega(w)^{-1} \in \mathbb{U}_s^1\mathfrak{H}^1\omega(w_s)\mathbb{U}_s^1$ by 7.3 of [2], so that z is conjugate to an element x_1 of the form $u_1h_1\omega(w_s)$ with $u_1 \in \mathbb{U}^1$, $h_1 \in \mathfrak{H}^1$. Clearly $x_1 \neq 1$ and $x_1 \in H$. Thus the situation is that at the beginning of the preceding paragraph, and Lemma 2 is proved for groups of type G^1 .

Now to get a proof for groups of type other than G^1 , we need only delete all superscripts or replace them all by 2 or all by 3, depending on the group under consideration.

From this point on, we assume that \hat{G} is of type G^1 , but not of type A_l^1 (l even), and the ensuing discussion refers explicitly to this case. For groups of type A_l^1 (l even), G^2 or G^3 , the changes to be made are quite clear: a prototype for these changes is the replacement of (*) below by an appropriate analogue. For groups of type G, the rest of the proof of Theorem 1 is given in [1].

3. LEMMA. If $G^{_1}$ is not of type $A^{_1}_i$ (l even) and H is a normal subgroup of $G^{_1}$ such that |H| > 1, then, for some $R \in \Pi^{_1}$, $|H \cap \mathfrak{U}^{_1}_R| > 1$.

It is convenient to precede the proof of this lemma by some preparatory results.

4. LEMMA. If s, a, s + a and t are roots such that $\overline{a} \neq a$ and $s + a = t + \overline{a}$, then $t = \overline{s}$.

Proof. We have s(a) < 0 and $s(\bar{a}) = (s + a)(\bar{a}) > 0$. Hence $\bar{s} \neq s$, and a simple calculation shows that $t - \bar{s} = s + a - \bar{s} - \bar{a}$ has length 0, since all roots have the same length and the only possible angles are the multiples of $\pi/3$ and $\pi/2$. Hence $t = \bar{s}$.

Let us recall that, for each positive integer m, \mathfrak{U}_m denotes the subgroup of \mathfrak{U} generated by those \mathfrak{X}_r for which $ht \ r \geq m$.

5. LEMMA. Let s be a positive root, a a fundamental root, and S and A the elements of Π^1 which contain them. Assume s(a) < 0, $x \in \mathfrak{U}_s^1$, $y \in \mathfrak{U}_A^1$, and set ht s = n. Then

(a) (x, y) is congruent, mod \mathfrak{U}_{n+2} , to an element of \mathfrak{U}^1 whose representation 4.3 of [2] has all components other than those from \mathfrak{X}_{s+a} and $\mathfrak{X}_{\overline{s}+\overline{a}}$ equal to 1, and

(b) if x is given and $x \neq 1$, then y can be chosen so that the \mathfrak{X}_{s+a} component is not 1.

Proof. Assume first |S| = |A| = 2. Then (s, a) < 0, whence $(s, \bar{a}) \ge 0$, because the contrary assumption yields the false conclusion that $s + \bar{s} + a + \bar{a}$ has length 0. Thus \mathfrak{X}_s and \mathfrak{X}_a commute elementwise with $\mathfrak{X}_{\bar{s}}$ and $\mathfrak{X}_{\bar{a}}$, and 4.1 of [2] yields

1040

$$(*) \qquad (x_s(k)x_{\overline{s}}(\overline{k}), \, x_a(l)x_{\overline{a}}(\overline{l})) = x_{s+a}(N_{sa}kl)x_{\overline{s}+\overline{a}}(N_{sa}\overline{k}\overline{l}) \; .$$

Thus (a) is true. If $k \neq 0$, we can choose l so that $kl + \overline{kl} \neq 0$, and then coalesce the terms on the right of (*) if $\overline{s} + \overline{a} = s + a$. Thus (b) is also true. If |S| = 1 or |A| = 1, we replace (*) in the above argument by an appropriate analogue (see 4.1 and 8.8 of [2]).

Let us recall that a root d is dominant if $d(a) \ge 0$ for each fundamental root a. Since these inequalities define a fundamental region for W, and all roots are congruent under W in the present case, it follows that there is a unique dominant root d. If s is any other root, then (s, a) < 0 for some fundamental root a, and then s + a is also a root. Thus the dominant root d may also be described as the unique root of maximum height; and one has $\overline{d} = d$ and d > s for each root $s \neq d$.

We now turn to the proof of Lemma 3. Among all $x \in H \cap \mathbb{U}^1$ for which $x \neq 1$, choose one which maximizes the minimum $S \in \Pi^1$ for which $x_s \neq 1$ in the representation 4.5 of [2]. If this minimum is R, we show $x = x_R$. Assuming the contrary, one can write $x = x_R x_T \cdots$ with $x_T \neq 1$. Set ht R = n. If $r \in R$, then r is not dominant, since R < T. Thus r(a) < 0 for some fundamental root a, and r + a is a root. If $a \in A \in \Pi^1$, we conclude from Lemma 5 that there is $y \in \mathbb{U}_A^1$ such that (x_R, y) is congruent, mod \mathbb{U}_{n+2} , to an element of \mathbb{U}^1 with the \mathfrak{X}_{r+a} component not 1. Since $z = (x, y) \in H \cap \mathbb{U}_{n+1}$, and > respects heights, we need only show $z \neq 1$ to reach a contradiction. We have $(x, y) = (x_R, y)(x_T, y) \cdots \mod \mathbb{U}_{n+2}$. Here the elements on the right are in \mathbb{U}_{n+1} . By choice of y, the \mathfrak{X}_{r+a} component of (x_R, y) is not 1, and by Lemmas 4 and 5, the \mathfrak{X}_{r+a} component of each of $(x_T, y) \cdots$ is 1. Thus we conclude from 4.3 of [2] and the fact that $\mathbb{U}_{n+1}/\mathbb{U}_{n+2}$ is Abelian that $(x, y) \not\equiv 1 \mod \mathbb{U}_{n+2}$. Therefore $(x, y) \neq 1$, and Lemma 3 is proved.

The proof of Theorem 1 can now be completed, just as in [2].

References

1. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7 (1955), p. 14.

2. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), p. 875.

UNIVERSITY OF CALIFORNIA AT LOS ANGELES