THE SIMPLICITY OF CERTAIN GROUPS

Robert Steinberg

The purpose of this note is to give a proof of the simplicity of certain "Lie groups" considered in [2]. The main feature of the present development is the proof of Lemma 2 below: it is superior to the corresponding proof given in [2], because no assumption on the number of elements of the base field is required, and is very much shorter than the one given by Chevalley [1] for the direct analogues, over arbitrary fields, of the simple (complex) Lie groups. Thus it turns out that the groups $E_{6}^{1}\left(q^{2}\right)$ with $q \leqq 4$, and $D_{4}^{2}\left(q^{3}\right)$ with $q \leqq 3$, to which the proof in (2) is not applicable, are simple.

Assuming the notations of [1] and [2] to be in effect, we shall prove:

1. TheOrem. If \hat{G} is one of the groups of type G^{1}, G^{2} or G^{3}, defined in [2], and the rank l of the corresponding Lie algebra is at least 3, then \hat{G} is simple.

It will be noticed that the case A_{2}^{1} is excluded by the assumption on l. This is of necessity, since the simplicity of A_{2}^{1} is not universal, but depends on the base field. The same is true of groups of type A_{1}.
2. Main Lemma. Let \hat{G} be a group of type G, that is, one of the direct analogues of the ordinary simple Lie groups, or a group of type G^{1}, G^{2} or G^{3}, but assume \hat{G} is not of type A_{1} or A_{2}^{1}. Let $\hat{\mathfrak{U}}$ be the nilpotent subgroup of \hat{G} corresponding to the positive roots of the underlying Lie algebra. Let H be a normal subgroup of \hat{G} such that $|H|>1$. Then $|H \cap \hat{\mathfrak{u}}|>1$.

Proof. Assume first that G is of type G^{1}. By 7.2 of [2], there is $x=u h \omega(w) \in H$ with $u \in \mathfrak{U}^{1}, h \in \mathfrak{W}^{1}$.

If $w=1$, then [2, Lemma 8.5] yields the required conclusion.
If $w \neq 1$, consider first the case in which $w=w_{s}$ with S a fundamental element of Π^{1}. Then there is a fundamental $A \in \Pi^{1}$ such that $B=w A>0$ and $w A \neq A$ (because A_{1} and A_{2}^{1} are excluded). Choose $y \in \mathfrak{U}_{A}^{1}$ so that $y \neq 1$ and $y \notin \mathfrak{U}_{2}$, the subgroup of \mathfrak{U} generated by those \mathfrak{X}_{r} for which $h t r \geqq 2$. Then we assert that the commutator $z=(x, y)$ is in $H \cap \mathfrak{U}^{1}$ and that $z \neq 1$. In fact, $z=u h \omega(w) y \omega(w)^{-1} h^{-1} u^{-1} y^{-1}=u t u^{-1} y^{-1}$ with $t \in \mathfrak{U}_{B}^{1}$; hence $z \in H \cap \mathfrak{U}^{1}$, and, since $\mathfrak{U} / \mathfrak{U}_{2}$ is Abelian, we have $z \equiv$ $t y^{-1} \not \equiv 1 \bmod \mathfrak{U}_{2}$, by 4.3 of [2], whence $z \neq 1$.

Finally, consider the general case in which $w \neq 1$. Choose $R \in \Pi^{1}$

[^0]so that $-w R=S$ is fundamental in Π^{1}, and then $y \in \mathfrak{U}_{s}^{1}$ so that $y \neq 1$. Again form $z=(x, y)$. In the present case, $\omega(w) y \omega(w)^{-1} \in \mathfrak{u}_{s}^{1} \cdot \mathfrak{2}^{1} \omega\left(w_{s}\right) \mathfrak{u}_{s}^{1}$ by 7.3 of [2], so that z is conjugate to an element x_{1} of the form $u_{1} h_{1} \omega\left(w_{s}\right)$ with $u_{1} \in \mathfrak{U}^{1}, h_{1} \in \mathfrak{S}^{1}$. Clearly $x_{1} \neq 1$ and $x_{1} \in H$. Thus the situation is that at the beginning of the preceding paragraph, and Lemma 2 is proved for groups of type G^{1}.

Now to get a proof for groups of type other than G^{1}, we need only delete all superscripts or replace them all by 2 or all by 3 , depending on the group under consideration.

From this point on, we assume that \hat{G} is of type G^{1}, but not of type A_{l}^{1} (l even), and the ensuing discussion refers explicitely to this case. For groups of type $A_{l}^{1}\left(l\right.$ even), G^{2} or G^{3}, the changes to be made are quite clear: a prototype for these changes is the replacement of $\left({ }^{*}\right)$ below by an appropriate analogue. For groups of type G, the rest of the proof of Theorem 1 is given in [1].
3. Lemma. If G^{1} is not of type A_{l}^{1} (l even) and H is a normal subgroup of G^{1} such that $|H|>1$, then, for some $R \in \Pi^{1},\left|H \cap \mathfrak{U}_{R}^{1}\right|>1$.

It is convenient to precede the proof of this lemma by some preparatory results.
4. Lemma. If $s, a, s+a$ and t are roots such that $\bar{a} \neq a$ and $s+a=t+\bar{a}$, then $t=\bar{s}$.

Proof. We have $s(\alpha)<0$ and $s(\bar{a})=(s+a)(\bar{a})>0$. Hence $\bar{s} \neq s$, and a simple calculation shows that $t-\bar{s}=s+a-\bar{s}-\bar{a}$ has length 0 , since all roots have the same length and the only possible angles are the multiples of $\pi / 3$ and $\pi / 2$. Hence $t=\bar{s}$.

Let us recall that, for each positive integer m, \mathfrak{u}_{m} denotes the subgroup of \mathfrak{U} generated by those \mathfrak{X}_{r} for which ht $r \geqq m$.
5. Lemma. Let s be a positive root, a a fundamental root, and S and A the elements of Π^{1} which contain them. Assume $s(a)<0$, $x \in \mathfrak{U}_{s}^{1}, y \in \mathfrak{U}_{A}^{1}$, and set ht $s=n$. Then
(a) (x, y) is congruent, mod \mathfrak{U}_{n+2}, to an element of \mathfrak{U}^{1} whose representation 4.3 of [2] has all components other than those from \mathfrak{X}_{s+a} and $\mathfrak{X}_{\bar{s}+\bar{a}}$ equal to 1 , and
(b) if x is given and $x \neq 1$, then y can be chosen so that the \mathfrak{X}_{s+a} component is not 1.

Proof. Assume first $|S|=|A|=2$. Then $(s, a)<0$, whence $(s, \bar{a}) \geqq 0$, because the contrary assumption yields the false conclusion that $s+\bar{s}+a+\bar{a}$ has length 0 . Thus \mathfrak{X}_{s} and \mathfrak{X}_{a} commute elementwise with $\mathfrak{X}_{\bar{s}}$ and $\mathfrak{X}_{\bar{u}}$, and 4.1 of [2] yields

$$
\begin{equation*}
\left(x_{s}(k) x_{\bar{s}}(\bar{k}), x_{a}(l) x_{\bar{a}}(\bar{l})\right)=x_{s+a}\left(N_{s a} k l\right) x_{\bar{s}+\bar{a}}\left(N_{s a} \bar{k} \bar{l}\right) . \tag{*}
\end{equation*}
$$

Thus (a) is true. If $k \neq 0$, we can choose l so that $k l+\bar{k} \bar{l} \neq 0$, and then coalesce the terms on the right of $\left(^{*}\right)$ if $\bar{s}+\bar{a}=s+\alpha$. Thus (b) is also true. If $|S|=1$ or $|A|=1$, we replace $\left(^{*}\right)$ in the above argument by an appropriate analogue (see 4.1 and 8.8 of [2]).

Let us recall that a root d is dominant if $d(a) \geqq 0$ for each fundamental root a. Since these inequalities define a fundamental region for W, and all roots are congruent under W in the present case, it follows that there is a unique dominant root d. If s is any other root, then $(s, a)<0$ for some fundamental root a, and then $s+a$ is also a root. Thus the dominant root d may also be described as the unique root of maximum height; and one has $\bar{d}=d$ and $d>s$ for each root $s \neq d$.

We now turn to the proof of Lemma 3. Among all $x \in H \cap \mathfrak{U}^{1}$ for which $x \neq 1$, choose one which maximizes the minimum $S \in \Pi^{1}$ for which $x_{s} \neq 1$ in the representation 4.5 of [2]. If this minimum is R, we show $x=x_{R}$. Assuming the contrary, one can write $x=x_{R} x_{T} \cdots$ with $x_{T} \neq 1$. Set ht $R=n$. If $r \in R$, then r is not dominant, since $R<T$. Thus $r(a)<0$ for some fundamental root a, and $r+a$ is a root. If $a \in A \in \Pi^{1}$, we conclude from Lemma 5 that there is $y \in \mathfrak{U}_{A}^{1}$ such that $\left(x_{R}, y\right)$ is congruent, $\bmod \mathfrak{U}_{n+2}$, to an element of \mathfrak{U}^{1} with the \mathfrak{X}_{r+a} component not 1 . Since $z=(x, y) \in H \cap \mathfrak{u}_{n+1}$, and $>$ respects heights, we need only show $z \neq 1$ to reach a contradiction. We have $(x, y)=\left(x_{R}, y\right)\left(x_{T}, y\right) \cdots \bmod \mathfrak{u}_{n+2}$. Here the elements on the right are in \mathfrak{U}_{n+1}. By choice of y, the \mathfrak{X}_{r+a} component of $\left(x_{R}, y\right)$ is not 1 , and by Lemmas 4 and 5 , the \mathfrak{X}_{r+a} component of each of $\left(x_{T}, y\right) \cdots$ is 1 . Thus we conclude from 4.3 of [2] and the fact that $\mathfrak{u}_{n+1} / \mathfrak{u}_{n+2}$ is Abelian that $(x, y) \not \equiv 1 \bmod \mathfrak{u}_{n+2}$. Therefore $(x, y) \neq 1$, and Lemma 3 is proved.

The proof of Theorem 1 can now be completed, just as in [2].

References

1. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. (2) 7 (1955), p. 14.
2. R. Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), p. 875.

[^0]: Received July 31, 1959.

