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Introduction* In this paper, we study two well-known mathematical
ideas that have hitherto been regarded as unconnected. It is our purpose
to show that they are closely related. The first idea is one developed
by Pόlya in his theory of maximal density [3]. The second is the idea
of repeated differentiation introduced by Littlewood in Tauberian argu-
ments [2], [1].

Our account of the Pόlya theory is virtually a direct translation of
certain sections of [3]. To apply his methods to bounded Lebesgue-
measurable functions in general requires only simple changes. Conse-
quently, we state only the results, leaving the proofs to the reader.

Then the idea of Littlewood is developed in a theory of Littlewood
means that compares closely, theorem by theorem, with the theory of
Pόlya means. Thus, Theorems 1.1 and 2.1, Theorems 1.2 and 2.2, etc.,
should be compared. The theory of Littlewood means may be regarded
as the theory of the p-fold application of ΓHospitaΓs rule to a certain
class of indeterminate forms. The order p is not restricted to positive
integral values; indeed, p may be any real number between —1 and +oo.

But the connection between the two theories goes deeper than mere
analogy. Our principle result, Theorem 3.1, asserts that the Pόlya
maximal upper mean, JSf(l), is equal to the Littlewood maximal upper
mean, A(TO)^ a n ( i that the minimal lower means are also equal to each
other. An immediate corollary of this theorem is the celebrated Tauberian
theorem of Littlewood that a bounded and Lebesgue-measurable function
has a Cesaro average if and only if it has an Abel average.

Finally, in §4, we give an intrinsic characterization of the mean
^ ( 1 ) as the infimum of the averages of all Cesaro-averageable functions
/ * with f*(x) > f(x) for all x. This might be compared with the charac-
terization of the outer measure of a set as the infimum of the measures
of all measurable sets that cover it.

1. The Pόlya means. Let f(x) be a given bounded and Lebesgue-
measurable function on (0, oo). For 0 < ξ < 1 define

1 f*= lim sup 1 f(t)dt ,
z-»°o x — ξx Jζx

l(ξ) = lim inf (same) .

The quantities JS^(O) and 1(0) are the ordinary Cesaro lim sup and
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lim inf, respectively, of /. We define jgf (1) = l im M Jδf (|) and Z(l) =
limpid), where the existence of the limits is guaranteed by Theorem
1.3. We call jSf(l) the "maximal Pόlya upper mean" and 1(1) the
"minimal Pόlya lower mean".

THEOREM 1.1. J5f(ξ) and l(ζ) wrc continuous functions of ξ for

THEOREM 1.2. £?(ξ) > £?(ξn) and l(ξ) < l(ξn) for each ξ, 0 < ξ < 1
and n — 1, 2, 3, .

THEOREM 1.3. £f(l) = lim^- £f(ξ) and 1(1) = limM_ l(ξ) exist.

REMARK. It may happen that £f(ξ) and l(ξ) fail to be monotone
functions. Nevertheless, we have the next theorem.

THEOREM 1.4. For all ξ, 0 < ξ < 1, _Sf(1) > ^f(ξ) > ^f(0) and
1(1) < l(ξ) < 1(0).

THEOREM 1.5. If there are numbers ξ0 and ξx with 0 < ξ0 < 1,
0 < ξλ < 1 for which l(ξλ) > Jzf(ξ0), then there is a constant, L, such
that £f(ξ) = l(ξ) = L for all ξ, 0 < ξ < 1.

2 The Littlewood means Let f(x) be a bounded, Lebesgue-
measurable function on (0, oo). The Abel averaging method studies the

behaviour of F(x)/I(x) as x -> 0 +, where F(x) = [°f(t)e-χtdt and I(x) =
foo JO

I erxidt — x~\ We regard F(x)/I(x) as an "indeterminate form co/co"
Jo

at x = 0. The Littlewood means arise by applying ΓHospitaΓs rule p
times to the fraction F(x)/I(x). Thus, we study also the ratios
F{p)(x)IΓp)(x) where

and

(x) = (-)p[~tpe-χtf(t)dt
. Jo

x) = (-y[~tpe-χtdt = (-)pχ-{p+1)Γ(p
Jo

Here, p may be any real number in the range — 1 < p < oo and we put
(-)p — eίπp. When p is a positive integer, F{p)(x) is the pth derivative
of F(x) and Iip)(x) is the pth derivative of I(x). We define

X(p) = lim inf
0 +
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The quantities A(0) a n ( i MO) a r e the ordinary Abel lim sup and Abel
lim inf, respectively, of /. We define A(°°) = lim^oo A(P)> M°°) =
liπip̂ βo X(p), A(—l) = lim^-H. A(P)> a n ( i M~l) = lim^_1+ X(p), where the
existence of the limits is guaranteed by Theorem 2.3. We call A(°°)
the ' 'maximal Littlewood mean" and λ(oo) the ' 'minimal Littlewood
mean."

THEOREM 2.1. A(P)
 and MP)

 a r e continuous functions of p for
~l<P<oo.

Proof. We have

(2.1) A(Q) ~ A(P) = lim sup F{q)(x)/Γq)(x) - lim sup F{p)(x)/I{p)(x)
τ-*0+ x-*0+

< lim sup {Fw{x)II{<ί\x) - F^(x)II(p)(x)}
OJ->0 +

= lim sup [°{uqIΓ(q + 1) - up/Γ(p + l)}f(ulx)e~udu ,

with a similar inequality in the opposite direction. Using now the fact
that \f{ujx)\ is uniformly bounded, standard techniques of estimation
may be applied to the integral in (2.1) to show that limα^p A(Q) = Λ(P)
The case p — — 1 and p = oo follow by definition.

THEOREM 2.2. A(P) is a non-decreasing function of p and X(p) is
a non-increasing function of p.

REMARK. Theorem 2.2 is clearly a stronger kind of statement than
Theorem 1.2. A direct analogue of Theorem 1.2 would state merely
that A(P + 1) > A(P) a n d MP + 1) < MP) It is interesting to note
that there is a special proof of this direct analogue, based on the fact
that F{p+1)(x) and Iipi~1}(x) are the respective derivatives of F(p)(x) and
Γp)(x). We need only put (-)pg(x) = F(p)(x) and (-)ph(x) = Γp)(x) in
the following statement of one form of ΓHospitaΓs rule, after f(x) is
suitably normalized.

UHospitaVs rule. If g(x) and h(x) are differentiable functions of
x f or x > 0 and g{0 + ) = oo and h(0 + ) = oo then

lim sup g(x)lh(x) < lim sup g'(x)lh'(x) .

Proof of Theorem 2.2. The notation of * for Mellin convolution
will simplify our proof considerably. If A(x), B(x), C(x) and D(x) are
suitably restricted functions on 0 < x < oo, we define

(A:



1000 L. A. RUBEL

and see that

A*(B*C) = (A*B)*C, and A*B = B*A .

Further, if C(x) > 0 for all x and ( C * 1)0*0 = 1, where 1(#) = 1 for all
#, then lim sup^oo (C * D)(x) < lim sup.

If we now suppose p < q and let

and

-OJ*+ 1(1 - xy-*-1 for x < 1
p)

for x > 1

then we have
A(ί>) = lim sup (Kp * g)(x)

A(ί) = lim sup (ifα * g)(x)

κp,q > o

In accordance with the preceding remarks, it follows that
and we are done.

THEOREM 2.3. A(°°) = l i m ^ A(P)» M 0 3 ) = limp^«, λ(p), A ( - l ) =

Proof. This is an obvious consequence of the monotonicity of the

bounded functions A ( P ) a n ( i M P )

THEOREM 2.4. For all p, — 1 < p < oo, A(°°) > A ( P ) > A(—l) a n ( i

λ(oo)

Proof. Same as that of Theorem 2.3.

THEOREM 2.5. // ίfeere are numbers p0 and pλ with — 1 < p0 < oo,
— 1 < Pi < oo /or wfeίcfe XiPi) > A(Po)> t^ew ί/^erβ is a constant, L, such
that A(P) = M P ) = L for all p, - 1 < p < oo.

REMARK. AS is shown in the example following the proof of this
theorem, the values p0 = — 1, pλ = —1 must be excluded from the hypo-
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theses. This is in contrast to Theorem 1.5 where the values ξ0 = 0,
ξx — 0 are not only included in the hypotheses, but play the most im-
portant role in the proof. In the example, f(x) — sin logic, λ(—1) =

Λ ( - i ) = o, but Λ(~) = i.

Proof of Theorem 2.5. Suppose px ^ p0. Then λ(p0) ^ MVi) and
hence X(p0) = A(Po). If, on the other hand, pλ < p0, then A(Po) > A(Pi)
and hence λ ^ ) = A(2>i) I* * s therefore enough to show that if there
exists a Po > —1 such that X(p0) = A(Po)> then λ(p) = A ( P ) — constant.

Now the following familiar lemma will be enough to show that if
MPo) = A(Po) = £, say, then λ(p0 + 1) = A(2>0 + 1) = £• β y repeating
this argument, we deduce that λ ( o o ) = A ( o o ) = -ί'. But since, for all
p, λ(oo) < χ(p) < A ( P ) < A(°°)> w e have the desired result.

LEMMA. Let g(x) be a differentiate function for x > 0 and let
g'(x) be a non-decreasing function (or a non-increasing function) there.
If, for some a < 0, L = limx^0+ g(x)lx* exists, then limx_+0+ gf(x)loίxa'~1 also
exists and equals L.

Proof. Fix θ > 0. Then g(x + θx) - g(x) > θxg'(x). But

\imχ-Λ{g(x + θx) - g(x)} = L{(1 + θ)« — 1} .
X-+0 +

Hence lim supx_0+ gt(x)lxoύ~1 < Lθ~λ{(l + θ)a — 1} and we may now let
θ —> 0 to get lim supx^0+ g\x)jxoύ~1 < uL. A similar argument shows that
lim infx_>0+ gf(x)/xoύ~1 > ah and we are done.

EXAMPLE. Let f(t) — sin log t. Now

Γ(v + 1) A ( P ) = I™ sup \ tpe~ι sin (log (tjx))dt
x->0+ Jo

= lim sup \ (cos log x)\ Pe'1 sin log tdt
X^Q+ (. Jo

— (sin log x) 1 tpe~ι cos log tdt \

— \ Pe~ι exp (i log t)dt =

Hence

and similary

Λ(P) =
+ 1 + i)

Γ(p + 1 + t)
Γ(p + 1)
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In particular, since, as p —> — 1, Γ(p + 1) —> oo and Γ(p + 1 + i) -^ Γ(i),
we have λ(—1) = A(—1) = 0. On the other hand, A(^) — 1>
λ(oo) = — 1, by Stirling's formula.

3 The main theorem

THEOREM 3.1. £f(l) = Λ(°°) and 1(1) = λ(oo).
The following Tauberian theorem of Littlewood is an immediate

corollary of this result.

COROLLARY. The bounded Lebesgue-measurable function f is Abel-
averageable, if and only if it is Cesaro-averageable, and then av(f: C) =
av(f: A).

Proof. We must prove that 1(0) = £f(0) if and only if λ(0) = Λ(0).
Suppose λ(0) = A(0). Then λ(oo) = A(«>) (Theorem 2.5). But λ(oo) = 1(1)
and A(°°) = -S^(l) (Theorem 3.1) so 1(1) = jSf (1), and hence 1(0) = JS^(O)

(Theorem 1.5). This is the proof of the hard part of the result. The
other part follows directly from the inequalities

(3.1) 1(0) < λ(0) < A(0) <

that are derived by a familiar integration by parts in the Laplace trans-

form of /; x\f(t)e~xtdt = ^("ίί^Γf(x)dy\te~xtdt.
Jo Jo ( Jo )

Proof of Theorem 3.1. We prove here that
first that j£f (1) > A(°°) An easy roundabout proof would be by way
of Theorem 4.1 in which we construct a bounded measurable function
f*(x),f*(x)>f(x), and cw(/*: C) = JS^(1). But the same sort of in-
tegration by parts that yields inequalities (3.1) tells us that A(°° :/*) —
jSf(l). Since /*(»)>/(»), Λ(~:/*) > Λ(°°), and thus ^(1) > A(~).

It is important to give a direct proof, because, in certain generali-
zations of this theory, the analogue of Theorem 4.1 may be false, but
the analogue of the present theorem is always true.

To prove directly that jSf (1) > A (°°) it is enough to show that
-S^(l) > A(P) f° r each finite positive p. We make normalization
0 ^ f{x) ^ 1. Keeping p fixed, for any ε > 0 we choose R so large that if
0 < A < R-\ then for all x

tpe-tf(tlx)dt < ε[tef(tlx)dt < ε +
Γ»(x) Γ(p + 1) Jo JK ' } ~ ^ Γ(p +

Now, for 0 < ξ < 1, we put σn = Rξn, n = 1, 2, , and choose JV =
N(R, ξ) so that σN < JK"1. Let
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Mn = max tpe~l for σn+1 < t < σn .

We then have

-*f(tlx)dt - Λ Σ Ϊ W tv^f{tlx)dt <NΣ Mn[
n f(t/x)dt .

We may then conclude that

lim sup Γ t^e~tf(tlx)dt < Jίf(ξ)ΣMn(σn - σn+1) .

Since J*f(ξ) < Sf(l) we may write

A(P) < e + -Sf(l) ^ ^ Σ Mn(σn - σn+1) .

Γ(p + 1) 0
tpe-ιdt, then let R —> oo

o

and then ε-> 0 to get A(P) < -Sf(l)
We now prove that A(TO) > -S^(l) 0 u r proof depends on the fact

that when p is large, the function tve~ι has a single and very sharp
maximum. We fix R > 0, then a positive integer iV, and consider, for
p > R\ the dissection of the interval p — Rp1'2 < t < p + i?p1/2 into the
2N subintervals of equal length, λfc < t < λfc+1, where —N<k<N.
For convenience of notation, we put μfc = λΛ+1. We see that λfc =
p + kSp1'2 where 8 — R/N. Finally, we put ξ = X-N/XNf and ξk — \klμk.

We choose 0 < γ < 1 and then (for reasons that appear in the proof
of Lemma 3.1) choose τ so that γ < τ < 1 and 7 < τ"1 — 2N{τ~ι — τ2).
We again make the convenient normalization 0 < f(x) < 1.

Since, for fixed R and N and each k, lim^oc ξk — lim^oo 1 = 1, we
choose p0 so that for p > pQ we have £?(ξh) > τ£?{l) and jSf (|) >

We now choose a sequence of x tending to oo for which

(3.2) ί- \λNX f(t)dt >
λNx — X-Nχjλ

and for which

(3.3) 1—- \Vf(t)dt ^ ±-J^{ξ) < —

LEMMA 3.1. For x in the sequence described above

μkx — Xk

Proof.

f(t)dt= Λ /(ί)dί-Σ

λkx Jλ_Λ rχ m^fcjλ
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Applying 3.2 and 3.3, we have

since

But τ was chosen to make the expression in brackets exceed γ, and
the proof of the lemma is complete.

Continuing with our proof of the theorem, we put y = 1/x for x in

the sequence described above, so that y—>0+ through some set of

values. Now

t>e-«f(t)dt > t"e-tvf(t)dt = Σ Γ + Σ \ = Σi + Σ.
0 Jλ_Nx k = -NJλJcx fc=0 Jλj.3!

In each of the integrals in Σi» *h e variable t of integration lies in the
range where tpe~ty is increasing, so that for —N<k<0

\f(t)dt ,

and applying Lemma 3.1, we have

[vt*e-tyf(t)dt > xp+17J^(l)Xle-λ*(μ, - Xk) .
Jλ f cx

Similarly, for 0 < k < JV, we get

Thus, for p > p0,

We apply Stirling's formula, taking pQ also so large that for p > p0,
Γ(p + 1) < 7-1ppe-p(2πp)1/2. Hence

Λ(P) >

•MYexΏ(-(k

Since
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/ h£ \p /

lim (1 -\—-= exp (—kδv p ) = exp —
2

we let p —-> oo above to get

A(°°) > 72^'(1)-4=| Σ δexpf-

But the expression in brackets is simply an approximating Riemann sum

i n
exp(—x2l2)dx. Letting first N —> oo and then 22—> oo, we have

-^ exp (-x2j2)dx =
2πJ —

Since γ < 1 was arbitrary, we let γ —> 1 to complete our proof.

4 The Cesaro outer and inner means• Let C be the class of
Cesaro-averageable functions, i.e. those for which jδf(0) = 1(0), and
denote the common value by av(f: C). Let C*(/) be the class of all
functions / * e C for which

f*(x) > f(x) for all x

and

/ ( )
0<?/<o

We define

J ^ * - inf αv(/*: C), / * e C*(/)

and call j ^ * the "Cesaro outer mean" of /. The inner mean Z* is
similarly defined.

THEOREM 4.1. j ^ * = J S ^ ( 1 ) and I* = Z(l). Moreover, ίftere ecctsίs
an f*eC*(f) with av(f*: C) = jSf(l) and ί/ierβ ea?ΐsίs an f*eC*(f)
with av(f*; C) = ί(l).

Proo/. That J S ^ * > ^ 7 ( 1 ) is obvious, since, if f*(x)>f(x) then
*) > JS^(l), -S^(l :/*) = αv(/*: C) by Theorem 1.5, and therefore

av(f*: C) > £?(!). We must now construct our minimizing / * e C * ( / ) .
Let {εfc} be a sequence tending to 0, and {λ j a sequence decreasing

to 1. For each \h there is an xk > k such that

— ^ \λk*f(t)dt < &(!
Xkx — x J* Vλ̂
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for all x > xk. We shall define a sequence S19 S2, Ss, ••• of finite geo-
metric progressions, and denote by S = slf s2, s8, the sequence of
numbers we get when we write first all the terms of Sl9 then those of
S2, those of S8, and so on.

Let Si = x±X19 xλX
2

19 , α^λfi, where, if we write the last term as
M2 — ίUjλfi, we choose nλ large enough to make M2 > x2. We also write
M1 = xλ. In general, Sk = M"fcλfc, MΛλL , Λί»λJ*, where Mfc+1 = Mfcλ>,
and % is chosen to make Mk+1 > xte+1.

The important properties of S are

(4.1) Sn-α.

(4.2) is±L > 1

(4.3) L^f ' " + 1 /(t)dί < jgf(l)

as n —> oo. Here {δn} is the sequence whose first nx terms are ε19 whose
next n2 terms are ε2, and so on, so that δn —> 0.

We now define /*(&)• For 0 < x < \x± put f*(x) = f(x) and then
define /*(#) in each of the intervals sw < x < sw+1 by

f sup f(y) for sw < x < sn + j«n
f*(x) = }°<y<~

where we choose μ = μn in the interval 0 < /̂  < sw+1 — sw so that

-Sf(l) - δw < Λ(/i) < ^ f ( l ) + δw ,

where

h(μ) =

To see that such a choice of μ is possible, we first note that if
h(0) > Sf(l) — Sn then we may choose μ = 0, since by (4.3), h(0) <
jSf (1) + δn. But if h(0) < £f(l) - δn, we observe that h(μ) is a con-
tinuous function of μ with

h(sn+1 - sn) = sup/(i/) > JS
0<y<<χ>

and we may therefore choose μ to make h(μ) = J5^(1) — δn.
Our construction of / * is now complete and it remains only to show

f*(t)dt = JS^(1). But it is easily verified that because of
o

(4.1) and (4.2) we need only show that
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Now

±-[nf*(t)dt = - L " Σ \h+'f*(t)dt

- Σ (
8n * =1

' ' ' fcV fc + i *^k/ y

with a similar inequality in the opposite direction. Now sjsn —> 0, and
an easy estimate shows that

Hence av(f*: C) = .5^(1) and we are done.

REMARK. We could similarly define A*> ^ e outer Abel mean, and
λ*, the inner Abel mean, and prove the analogue of Theorem 4.1, namely
that A* = A(°°) and λ^ = λ(co). The proof would use Theorem 4.1,
Theorem 3.1, and its corollary. It would be interesting to find a direct
proof that A* = Λ(°°) without either using these results or essentially
reproving them.
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