ON THE LINE SEGMENTS OF A CONVEX SURFACE IN E_{3}

Trevor J. McMinn

1. Introduction. For integral $n \geqq 2$ let C be a bounded open convex subset of Euclidean n-space E_{n}, and let C^{\prime} be the boundary (surface) of C. Let B_{n} be the closed unit ball in E_{n}, that is, the set of points x in E_{n} with $\|x\| \leqq 1$, and let $S_{(n-1)}$ be the boundary of B_{n}, that is, the set of points x in E_{n} with $\|x\|=1$. Let D be the set of directions of straight line segments lying in C^{\prime}, specifically, the set of points $(a-b) /\|a-b\|$, where a and b are distinct points of a line segment lying in C^{\prime}. Thus D is contained in $S_{(n-1)}$.
V. L. Klee [2] has stated that D is an F_{σ} set and has raised two questions: Is D of first category in $S_{(n-1)}$? Is D of ($n-1$)-dimensional measure zero? Both of these questions are herein answered affirmatively for the case $n=3$. The method employed unfortunately does not generalize to $n>3$. (For $n=2$ the case is trivial, for then D is countable. The case is also trivial if C is of dimension less than n, for then the $(n-2)$-dimensional measure of D cannot be greater than the ($n-2$)-dimensional measure of $S_{(n-2)}$ which is finite. The restriction to bounded sets is only a matter of convenience, for any answers to the questions posed are easily made to serve the unbounded case.)

In one sense though, for the case $n=3$, we show somewhat more, namely, that D is contained in the union of the ranges of a countable family of Lipschitz functions each on B_{1} to S_{2}. By virtue of the Lipschitz nature of these functions, they possess total differentials (Lebesgue measure) almost everywhere [4; straight forward generalizations of Definition 1, V. 2.2, and Lemmas 1 and 2, V. 2.3, to cover the case of a Lipschitz function on a domain contained in E_{1} to E_{3}] and their ranges are compact and have finite one dimensional measure [1]. The affirmative answers to Klee's questions for this case immediately follow from these last two properties.
2. Preliminaries. We assume henceforth that $n=3$.

Let a flat side of C^{\prime} be a two dimensional intersection of C^{\prime} with a plane supporting C^{\prime}. It is easy to check that the set of flat sides is countable. (Check, for instance, that relative to C^{\prime}, the interior of each flat side is non-vacuous and, that no two such interiors intersect.) Thus the set of directions of line segments lying in flat sides is the union of a countable family of great circles lying on S_{2} and can certainly be represented as the union of the ranges of an appropriately
chosen countable family of Lipschitz functions on B_{1} to S_{2}.
We go on to show that the set of directions of line segments not lying in flat sides can be similarly represented.

Let \mathscr{L} be the set of closed line segments each of which is the middle third line segment contained in a maximal line segment of C^{\prime} not lying in a flat side. Clearly \mathscr{L} is disjointed, for if any two members intersected they would be forced by the convexity of C to lie in a flat side determined by the plane containing the two line segments.

Now choose a point a in C and let 2δ be the distance from a to C^{\prime}. Let \mathscr{K} be the family of open right circular cylinders of radius δ extending infinitely in two directions whose axis is a line radiating out from a infinitely in two directions. Thus each member of \mathscr{K} intersects C^{\prime} in a set open relative to C^{\prime} and having two components. Let \mathscr{M} be the set of all these components corresponding to all cylinders of \mathscr{K}.

Since \mathscr{M} forms an open covering of the compact space C^{\prime} we can reduce it to a finite subcovering \mathscr{M}^{\prime}.

Now let \mathscr{P} be the family of planes each of which intersects C and perpendicularly intersects a coordinate axis in a point with rational coordinates. Let \mathscr{Q} be the family of pairs of distinct parallel members of \mathscr{P}.

Clearly every member of \mathscr{L} intersects at least one member of \mathscr{M}^{\prime} and every such intersection intersects both planes of at least one pair in \mathscr{Q}.

Since \mathscr{M}^{\prime} is finite and \mathscr{Q} is countable, we will have achieved our aim when we have shown that corresponding to each member m of \mathscr{A}^{\prime} and each pair $\left(P_{1}, P_{2}\right)$ of planes in Q both intersecting m there exist two Lipschitz functions each on B_{1} to S_{2} whose ranges together contain the set of directions of the members of \mathscr{L} each of which intersects both $m \cap P_{1}$ and $m \cap P_{2}$. With m, P_{1}, and P_{2} fixed and letting \mathscr{L}^{\prime} be the set of members of \mathscr{L} each intersecting both $m \cap P_{1}$ and $m \cap P_{2}$, we proceed to secure the required functions.
3. The Lipschitz direction functions. Let f be the set of all pairs (x, y) such that $x \in \lambda \cap P_{1}$ and $y \in \lambda \cap P_{2}$ for some $\lambda \in \mathscr{L}^{\prime}$. Let A be the domain of f. Since \mathscr{L}^{\prime} is disjointed and since $\lambda \cap P_{1}$ and $\lambda \cap P_{2}$ are singletons we infer that f is a function. The key to the construction of the required functions lies in the

Lemma. f is Lipschitz.
Momentarily leaving aside its proof, we first show how it is used to obtain these functions.

Drawing upon the lemma, we apply a method due to McShane [3; or 4, V. 2.4, Lemma 1] to get a Lipschitz extension f^{*} of f on the
closure of $P_{1} \cap m$, that is, a Lipschitz function f^{*} on the closure of $P_{1} \cap m$ to P_{2} that agrees with f on A.

We next let h be a function that assigns to each member x of the closure of $P_{1} \cap m$ one of the directions of the line connecting x to $f^{*}(x)$, specifically for x in the closure of $P_{1} \cap m$ we let

$$
h(x)=\frac{f^{*}(x)-x}{\left\|f^{*}(x)-x\right\|}
$$

Upon checking that the difference of two Lipschitz functions is Lipschitz and that the ratio of a Lipschitz function whose values are bounded away from the origin (in our case bounded by the distance between P_{1} and P_{2}) with its norm is Lipschitz, we infer that h is Lipschitz. It is easy to construct a Lipschitz homeomorphism g on B_{1} onto the closure of $P_{1} \cap m$. So finally upon defining functions k and k^{\prime} on B_{1} to S_{2} to be such that for x in B_{1}

$$
k(x)=h(g(x)), \quad k^{\prime}(x)=-k(x),
$$

and noting that the composition of Lipschitz functions is Lipschitz, we conclude that k and k^{\prime} are Lipschitz and furthermore that their ranges together contain the set of directions of members of \mathscr{L}^{\prime}. These are the functions we seek.

We now turn our attention to the lemma and close our discussion with its proof.
4. Proof of the Lemma. We show that f is Lipschitz by showing that it can be represented as the composition of Lipschitz functions. To do this let us project m perpendicularly onto a plane perpendicular to the axis of the cylinder in $\mathscr{\mathscr { C }}$ associated with m. Let m^{\prime} be the projected set and let p be the projecting function. Thus p is on m onto m^{\prime}. From the convexity of C and the nature of the cylinder determining m we readily check that p is a Lipschitz homeomorphism on m onto m^{\prime} whose inverse is also Lipschitz. For x^{\prime} in $p(A)$ let $f^{\prime}\left(x^{\prime}\right)=p\left(f\left(p^{-1}\left(x^{\prime}\right)\right)\right)$. For x in A clearly $f(x)=p^{-1}\left(f^{\prime}(p(x))\right)$. We have only to show that f^{\prime} is Lipschitz.

Let λ_{1} and λ_{2} be two members of \mathscr{L}^{\prime}. Let $x_{1} \in \lambda_{1} \cap P_{1}$ and $x_{2} \in \lambda_{2} \cap P_{1}$. Let l_{1} and l_{2} be maximal line segments contained in C^{\prime} containing respectively λ_{1} and λ_{2}. Let l_{1}^{\prime} and l_{2}^{\prime} be the respective perpendicular projections of l_{1} and l_{2} onto the plane of m^{\prime}. Clearly l_{1} and l_{2} fail to intersect or intersect only in an end point of both l_{1} and l_{2}. Consequently the same is true of l_{1}^{\prime} any l_{2}^{\prime}. If l_{1}^{\prime} and l_{2}^{\prime} are parallel or, when extended, intersect on the side of P_{2} opposite from P_{1}, then clearly

$$
\begin{equation*}
\left\|p\left(f\left(x_{1}\right)\right)-p\left(f\left(x_{2}\right)\right)\right\| \leqq\left\|p\left(x_{1}\right)-p\left(x_{2}\right)\right\| \tag{1}
\end{equation*}
$$

If, on the other hand, $l_{1}{ }^{\prime}$ and l_{2}^{\prime}, when extended, intersect in a point b, on the same side of P_{2} that P_{1} lies on, then either an end point of l_{1}^{\prime} lies at b or between b and P_{1}, or an end point of l_{2}^{\prime} lies at b or between b and P_{1}. We may assume the first of these two main disjunctions without loss of generality. Now since the line segment connecting $p\left(x_{1}\right)$ with $p\left(f\left(x_{1}\right)\right)$ is contained in the middle third segment of $l_{1}{ }^{\prime}$, we have

$$
\left\|p\left(f\left(x_{1}\right)\right)-p\left(x_{1}\right)\right\| \leqq\left\|p\left(x_{1}\right)-b\right\|
$$

and hence
(2) $\quad\left\|p\left(f\left(x_{1}\right)\right)-b\right\|=\left\|p\left(f\left(x_{1}\right)\right)-p\left(x_{1}\right)\right\|+\left\|p\left(x_{1}\right)-b\right\| \leqq 2\left\|p\left(x_{1}\right)-b\right\|$.

As P_{1} and P_{2} are parallel, we may use a property of similar triangles to get

$$
\begin{equation*}
\frac{\left\|p\left(f\left(x_{1}\right)\right)-p\left(f\left(x_{2}\right)\right)\right\|}{\left\|p\left(x_{1}\right)-p\left(x_{2}\right)\right\|}=\frac{\left\|p\left(f\left(x_{1}\right)\right)-b\right\|}{\left\|p\left(x_{1}\right)-b\right\|} . \tag{3}
\end{equation*}
$$

Combining (2) and (3) we get

$$
\begin{equation*}
\left\|p\left(f\left(x_{1}\right)\right)-p\left(f\left(x_{2}\right)\right)\right\| \leqq 2\left\|p\left(x_{1}\right)-\left(x_{2}\right)\right\| . \tag{4}
\end{equation*}
$$

Since equations (1) and (4) show that for any x_{1}^{\prime} and x_{2}^{\prime} in the domain of f^{\prime}

$$
\left\|f^{\prime}\left(x_{1}^{\prime}\right)-f^{\prime}\left(x_{2}^{\prime}\right)\right\| \leqq 2\left\|x_{1}^{\prime}-x_{2}^{\prime}\right\|,
$$

and hence that f^{\prime} is Lipschitz, our proof is complete.

References

1. H. Federer, Surface Area II, Trans. Amer. Math. Soc., 55 (1944), 438-449.
2. V. L. Klee, Research problem No. 5, Bull. Amer. Math. Soc., 63 (1957), p. 419.
3. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc., 40 (1934), 836-842.
4. T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Berlin, (1955), pp. 322-325 and pp. 334-342.
