ON THE DIRICHLET PROBLEM FOR CERTAIN
HIGHER ORDER PARABOLIC EQUATIONS

R. K. JUBERG

The Dirichlet problem for the particular equation
Diw+ Du =0

(D, = 8/0¢) on the space-time cylinder 0 <2 <1)RRO<tLT) is
treated in this paper. However the procedure is directly applicable to
the equation D¥u + (—1)"D,u = 0 without technical difficulty and, hence,
to any equation simply reducible to this type. It can be applied as
well to problems other than the Dirichlet problem. Recently P. G. Kirmser
[2] made use of it in solving other interesting problems posed for the
equation Diu + Du = 0. There is also an ‘uniqueness theorem’ con-
tained in his paper.

Using the methods of potential theory, as in Gevrey [1] and Tykhonov
[6] for the heat equation and Zeragiya [7] for general second order
equations, the problem is reduced to solving a system of integral equa-
tions. The integral equations and the integration of them are of in-
terest in themselves.

The procedure affords information on the behavior of the solution
along x =0 and «# = 1. In addition, the solution obtained allows an
analysis of its behavior as (x,t) approaches (0,0) or (0,1) as in the
case of the heat equation.

1. Statement of the problem. The problem we pose is to find a
function wu(x, t) such that

i) Du+Du=0, 0<z<1l, 0<tT,;
(iii)) w(0,t) =alt), w@,t)=0F), 0<t<T;
@iv) Du(0,t)y =¢t), Du@d,t)=dt)y, 0<t<T
where, a, b, ¢, and d are arbitrary functions from classes that we shall

presently define. Certain integral operators arise which make it natural
to make the following definitions:

DEFINITION 1. Let S, denote the class of functions defined on (0, T']
such that to each function, f(t), there corresponds a pair of positive
numbers (¢, \) so that
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860 R. K. JUBERG
(1.2) Il = sup{wM} < 4o
67 [t —T|
where ¢ =min(¢,7),e + 1/4 < M < 1.
DEFINITION 2. Let S; denote the class of all functions, g(t), defined
on (0, T'] and satisfying the conditions:
(i) ¢ uniformly (¢ + 1/4) — Holder continuous on any closed sub-

interval of (0, 7], i.e., to each ¢,€(0, T'] there corresponds a constant
c(t,), depending only on %, such that

l9(t) — 9(t.) | < e(ty) | 8, — B, |+
for all ¢, t,elt, TI;
(ii)

Jae-t0(t) + [ To(0) — o)t — y-ods /

(1.3) |g |, = sup {o*
¢, |t —7 |

/ — dr-ig(z) — So [9(z) — g(s))(z — s)~"*ds | }

+ sup i g(t)| < + o
1

where o, A and ¢ are as in Definition 1.

We shall establish existence of solutions to (1.1) for a,beS, and
c,deSs,.

2. Derivation of the integral equations. By the standard Fourier
transform techniques we find the fundamental solution:

2.1) (@ —y,t — 1) =_2L§°° e-teg-tu-ngde 0 <7 <t

—o0

which satisfies

Dk + Dk =0
and
Dik — D.k=0.
In the sequel we will frequently use the following basic estimates
of the fundamental solution and of derivatives of same due to O.
Ladyzhenskaya [3] (see also P. C. Rosenbloom [5]):
2.2y [ Dik(, t) | < e(v) -t eexp [— cy(wt/t)]

1 See appendix.
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where D} = (6/6x)*, ¢, depends on v, and ¢, is an absolute constant.

LEmMMmA 1.

(2.3) p(z) — Sk(x —y, )y = g Dz — 1, t — 0) — DYk(w, t — o)ldo

where
1, 0<ze<1
p(x):l,m=0,w=1
2
0, z<0,z>1.

Proof. Since D,k = Dk,
[ Dz — 4, t — )y = | Dy — ,t — o)dy = Dita — v, t = )[4 = §
0 1]
= Dik(x — 1,t — 0) — Dik(x, t — o) .

Integrating with respect to o from 0 to ¢ — ¢ gives

—g 1 t—e 1
S: (So D, k(x — y, t — a)dy)do = So Dc,<S0 kx —y,t — a)dy)do

= [ ko — v, 9dy — [ ko — v, iy

- SH [Dik(z — 1, t — o) — Dik(z, t — o}do .
That is,

Slk(x — ¥, e)dy — S:k(x — ¥, t)dy
0
- SH[D?,k(x —1,t — 0) — D¥(x, t — o)]do .

Since k(x — y, &) = e k((x — y)/e'*, 1) and k(—2, 1) = k(z, 1),

1 1 dy -z /et
[ 4tz — v, ety = | ke — e, 0 L = {7 e, 1)
0 0

gl —pJelle

Hence
, r<0,x>1

k(z,1)dz, z=1

0

—oo

0
lim | J d S
e‘fﬁlso @ — v, 9dy = rk(z,l)dz, ®=0

g

k(z,)dz, 0<x<1.

Pty
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Now
- — = _1_ ~ —iéz, -t
S_w k(z, 1)dz = S_w<2ﬂ S_we e dS)dz
— 1 ® tzw 1 Sw —t¢z , p—6! — p-w! —
e S_“e (1/_71_ e e d&)dz L 1
and
- 0 1 (= 1
S k(z, 1)dz = X k(z, 1)dz = L S k(z, 1)dz = L .
0 —o 2 J- 2
Thus,
S’ D3k — 1, ¢ — 0) — Dik(x, t — o)ldo
0
= lim SH [Die(w — 1, ¢ — 0) — Dik(x, t — o)ldo
glo Jo
= p(a) — | ko — v, By .
Q.E.D.

In particular, since Dik(0,t — g) =0

% _ S‘ k(1 — g, dy = _S‘ Dik(1, t — o)do
0 0

and

1 1 2

5 - S K(—y, t)dy = § Dik(—1, ¢ — g)do .
However, since k(—y, t) = k(y, t),

Dil(—1,t — 0) = —D%(1,t — a) ,

and
[k — v, iy = { ko, ity ,
(2.4) % - S‘ k(y, )dy = _ng,k(l, t — o)do .

In deriving the integral equations we will need the following limit
relations.

LEMMA 2.

(a) feS,, 1=1,2
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(2.5) lim S‘ (D, t — d)do = —% ()
(2.6) lim S‘ f(O) D — 1, ¢ — o)do = % £(t)
(b) ges,

@.7) lim S 9(@)Dik(z, t — o)do

0<z<1

= —g®k(0, &) —| [9(t) — 9D, ¢ — 0)do

(2.8) lim S'g(o)D;k(m —1,¢t— 0)do
1 0

z
0<z<1

= —o0, ) — | [9&) — 9(@ND.(0, t — 0)do .

Proof. Part (a). We shall prove (2.5) for feS,. The proofs for
the remaining cases are essentially the same.
We write

[ A0 D3k(a, ¢ — o)do
= ) |, Dik(e, t — oo — [[170) — AN Dikz, ¢ — Yo .

From (2.2) and the hypothesis on f

| L) — (@) || DK@, t — 0)| < | flie0NE — 0)-cy(t — G) - @—ala1e—antl®
< (constant)-c7t — o).

Hence, by the dominated convergence theorem:

lim j [£(t) — f(o)]- D¥k(z, t — o)do

- S lim [£(¢) — f(0)] Dif(a, ¢ — 0)dor = 0.
Thus

lim S £(0)- Dk, t — 0)do = f(¢) lim S Dk, ¢ — o)do
x 0 z}0 0
which by (2.3) equals

£@)lim {S” Dik(z — 1, ¢ — o)do + Sok(x —y, t)dy —1}
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- f(t){S:D;k(—L t — o)do + S:k(—y, tydy — 1}
and by (2.4) this equals
1 1
fly =1 = —1s .

Part (b). We shall give the proof of (2.7). As above write
S‘ 9(0)- D¥k(x, t — o)do

= 9. Dik(e, ¢ — 0)do — [ [9®) — 9(@NDikGz, ¢ — )

= g(t)g” Dz, t — o)do — S [9(t) — 9(@)D,k(x, t — o)do

UIt

= g(t)- {ktz, t = )| L8 [ 19®) — 901 Doktt, £ — o)

= —g(®)-k(z, 1) — | [900) — 9(@)-D.Jta, ¢ — o)do
= —g(t)-ka, &) — [ [0(t) — 9()-Dubta, t — o)do

~ | 16®) = 9(0))- Dkw, t — o)de

For given te (0, T'], the first two terms are continuous in z, for all z,
and the interchange of limit and integration in the latter is justified
as above, using the Holder continuity of g. From these remarks, the
proof follows.

Q.E.D.

We seek a solution to our problem in the following form:
u(, t) = S”a(o)pzk(x, t — o)do + S B(0)-Dike(x — 1,t — o)do
0 0
@9+ {"%(0) Ditto, t — 0o + | 80)- Dyl — 1,¢ — 0)do, 0 < 2 < 1
0 0

where a, B€ S, and v,8¢€S,. The fact that u(x,t) satisfies the equa-
tion for 0 <2 <1 follows from (2.2), which justifies interchanging
the order of differentiation and integration, and (2.1). From Lemma 2,
we shall obtain a system of integral equations for the unknown func-
tions «, B, v, and 9.

From (2.5) and (2.6) we obtain, upon taking the limit of (2.9) first
as ¢ | 0, and then as « | 1, the equations

alt) = — —;—a(t) + S:B(o)~D§,k(—1, t — o)do

2.10) t ,
+ So %(0)-D2k(0, t — 0)do + So 8(c)- D2k(—1, ¢ — o)da
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and

bt) = |, al0)- DYk, ¢ — 0)do + 5 A()
(2.11)

+ S:‘V(G)D%k(l, t — o)do + St 3(0)-Dik(0, t — o)do .

The limits obtained from the various terms other than those where

Lemma 2 is applied are by continuity which follows from (2.2).
Since

Dik(—1,t — 0) = —D%(1, t — o)

and
Dk(—1,t — ) = D2k(L, ¢ — o) ,

we can write (2.10) as

alt) = — % a(t) — S: 8(0)-D3e(l, t — )do
(2.10)

+ S Y(0)-D3k(0, ¢ — a)do + S 8(0)- Dik(1, t — o)do .
From (2.1)
Dulz, t) = —S: (o) Dk, t — o)do — S:B(G)-D;k(x —~1,t— o)do
—S: %(0)-Dik(x, t — o)do — S: 8(0)- D¥e(x — 1, ¢ — 0)do .

Using (2.7) and (2.8) we obtain upon taking the limit of this relation
as £ | 0 and then as x | 1, the equations

o(t) = a(t)-k(0, ¢) + S: [a(t) — a(6)1Dk(0, t — o)do

®12 - S 8(0)-D.k(1, t — o)do + -;_ nt) + S 5(0)-Dik(1, ¢t — o)do
and

d(t) = —S:a(o).p,ka, t — o)do + B(t)-k(0, t)
(2.13) + {'180) - BOWDKO, ¢ — 9)do

_ S‘ (o) Dk(1, t — o)do — _;_ 5(t) .

Adding and subtracting (2.10)" and (2.11) gives
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a(t) £ b(t) = — % [a(t) F B()] + S: [a(o) F B(o)]-Dik(1, t — o)do
+ S: [v(o) + 8(0))D2k(0,t — o)do + S: [v(0) & 8(0)|D2k(1, t — o)do .
Similarly, adding and subtracting (2.12) and (2.13) gives
o(t) £ d(t) = [a(t) = B(E)IK(O, ?)

+ | tta®) = 601 - (@) = BOVDKO, t — 9)do
¥ S: [(0) + B(@)]-Dok(l, t — ¢)do T S [%(0) T 8(@)IDY(l, ¢ — 0)do
+ % [7(8) F 5()] .

Setting

B(t) = v(t) + 8()  A(t) = c(t) — d(?)
¥(t) = a(t) — BE)  B() = a(t) + b(?)
f@)=v@) —38@)  C@) = c(®) + d()
9(t) = a(t) + ()  D() = a(t) — b(t)

we obtain the following pairs of equations

éqs(t) + S #(0)-Dik(L, t — 0)do + (kO t)

+ |\ ® = #(@)1D(0, t — 0)do
2.14) + S:«p(o)-D,lc(l, t — g)do = A(t)

[,#0)- D3k, t — a)do + | #(0)- Dik(t,t — 0)do — Zy®)

+ S:«p(ayDi‘,k(l, t — o)do = B(t)

and
25t = | f0)- D3k, ¢ — 9)da + 9910, 0
+ o) — 9(0)1- D0, t — 0)do
2.15) _ S 9(0)-D,k(1, t — o)da = C(t)

g: £(0)-D2k(0, ¢t — o)do — S: £(0)-Dik(1, t — 0)do — —;—g(t)
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t
—ggwypw@t—oma=pm.
0

3. Solution of the integral equations. To facilitate the solution of
the integral equations, we define for suitable functions f and ¢

_ 1 ¢ )34
XY (LA = b | FOE = o) o
and
.2) (T)t) = ol 46700 + [ 106) — 9@t — o) do |

T, is the operator which is commonly called I'* (see M. Riesz [4]). How-
ever, it is not immediately clear that T, is I~"* because of the singulari-
ties allowed at the origin in the classes of functions under consideration.
The following example will illustrate the effect of the singularity at the
origin. Let

h(t) = ¢+ 0<8<% (hes).

Then

(T.h)(t) = P_(éfl_(%.t_a/m ,

a function to which T, (or I'*) cannot be applied. Using the methods
employed by M. Riesz in the theory of Riemann-Liouville integrals, we
shall show that on the classes under consideration T, is actually I-'4

THEOREM 1. If fe S, then T.f is uniformly (¢ + 1/4)— Holder con-
tinuous on any closed subinterval of (0, T'] where the ¢ is that associated
with feS2.

Proof. Let t,te[3, T],8 > 0. Assume without loss of generality
T < t. Form the difference '

4=T (711-) [(T.F)(®) — (T.F)()]

= [0 — oy a0 [ 710 — 9)1ds

Adding and subtracting f(¢) in the integrands gives

2 This Theorem is essentially contained in Hardy, G. H. and Littlewood, J. E., “Some
properties of fractional integrals’, Math. Zeit., Vol 27, (1928), pp. 565-606.
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4= f(t)-S: (t — 0)-do

+ [ 170 = 501 — oo — 50 ¢ — oo

[£(0) — 9(0]-(¢ — o) ¥do = AfE)(E" — =)
+ | 1@ = 701-1¢ = 0y — = — 0y do

+

f0) = SOt — o =1, + I, + I,

say.
Regarding I,, write it as

I, = S:’z [f(o) — fDOI(E — o) — (r — 0)*¥|da
+ S:m [£(0) — FDI- [t — 0) ™ — (. — ) do = Ty, + J,, .
Using the mean-value theorem

[ f(o) = fO) |- [(x — o)™ — (t — 0)™"]
= |f0) = f(®)|3/4[(r — o) + 0t — D)7+ (t —7),0< 6 <L 1.

Since t — 0,7 — 0 > §/2 for J,,
1£(0) = £&) 1-[(£ = 0)™¥ — (¢ — 0)"] < N(t—0)"+| £ ,-8/4-(8/2) "+ (t—7)
< 8/4-T-(2/8)/*| f,»0M(t — 7) = (constant)-o—+(t — 7) .
Thus,
a1 = || 150 = s01-1¢ = 07 — € — o)1
< |10 = 1O 11 = ) — (¢ — 0"do
< (constant)- (t — r)S:’z o-*da = (constant)- (¢t — ) .
Now
Tl 171, 07 = o)1 = o) — ¢ — o)y do

< @27 f b Ss/ t—o)y-l(r — o)™ — (t — 0)ldo
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< (2/3)A-|fl1'g (t — o)t — 0)*" — (t — 0)"do .
0

Set 7 — 6 = (t — g)s. Then

t—o= ,
— 8
z' O__S(t—’l')’
1—s
and
t—71
do = — ds
1 —s)y
Hence

|Jp | < (constant) (£ — T)”“"-Sm 1 — s)™ 2. (s7%* — 1)ds
0

1
< (constant) (¢ — < )”HE'S (1 — ) (1l — s -s7'ds
0
< (constant)-(t — 7)¢+¢;
the latter integral existing for & < 3/4 since

(1 - s)—5/4—s.(1 _ 83/4).8—3/4
=571 —8) (1 + s+ &)(L + &)L+ 81
Now
|| < St | f(0) — f@)|-(t — 0)**do < Ifll'gz oMt — o) I'do

< (28] f e St (t — 0)*¥*do = (constant) (t — 7)=*V/*.

This completes the proof.
Q.E.D.

THEOREM 2. feS,
(i) T.T,= I, where I, is the identity transformation on S,.
(i) T.feS,.
Proof.

-1
I'(1/4)-I'(—1/4)

+ S: I:S:f(o)(t — g) ¥do — S:f(a)(r — 0)‘3/“d0} (t — T)‘ﬁ“dr}

() (T(THI) = a0 oyt — oy1do
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We proceed as in the theory of Riemann-Liouville integrals.
Define

F() = % [[[]: foxt = oyda — { sto)e — oo ¢ — op—de

which exists and is analytic for Rep > —1/4 — e by Theorem 1. Now
restrict ¢ so that Rep > 0. Then

Fp) = ?(—)S fo)t — oo (¢ — cyde

1
)
t*

= S f(o)-(t — 0)dg — I“(ly) g (S Flo) T — 0')—3/4d0->

S (S Jf(o)(z — o) 3/“d0>(t — T)* U7t

x (t — ) dr .

Interchanging the order of integration in the second term and setting
T — 0 = (t — ¢)-s in the inner integral gives

ry )S flo)-(t — o)**da- (S s — )"_lds>
F—(% [ 7@)-t — oy—vda .

Adding and subtracting f(f) in the integrand of this latter integral gives

I'(1/4) psrg L4 @) (" e
1“('—1_1/41)& 70)+(t = oy-do = FEBIOL S (t — o)—S'dg
i | ) = 716 — oo
I'(1/4) SR I'(1/4) _ PRy
= S O |, [7@) — 71+t — oy
This latter term has a zero at £ = —1/4 since the integral defines a fune-

tion analytic for Rey > —1/4 — ¢ and (I"(¢ + 1/4))' is an entire function
with a zero at p = —1/4.

From the identity theorem from ‘function theory’
1 — 3/4 _ —a/4 et _
TG S U flo)t — o) *'do — S fo)x — o) do*}(t ) dr = F(p)

—3/4 _M‘ _ I
= Farp O — oo — ECRL T 40) — s - opao
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I'(1/4)

— S \E o Flet1/4
e+ 5 T

for Repr > —1/4—c. Therefore we find that

1

Ir'(— 1/4)5 U J(O)t — 0)'do — Srf (o)(z — a)‘s’*do](t — )it

t 1/4
T T@ED
4g

=~ riq L @- = ovdo - ram- s

[ 7@t = 97rdo — rajy- o)

Thus,

[TT.f))(t) = —1

I'1/4)-1'(—1/4) {4t—1/4.§0f(g).(t — o) da

—4t” ”‘S f(0)-(t — 0)'do — F(1/4)°F(1/4)f(t)} = f(® .
(ii) All that remains to be shown is that
sup " (T O | < + oo .

Adding and subtracting f(¢) in the integrand we have

(T = f(0):(t — 0)"'da

1"(1/4) S

= Lo 10) = o1t — oy do +

ram b S0- (¢ = oo

P(1/4)
Thus,

4

T () |

A-1/4, A—1/4, Lfh . PN )
P (L)) < 0 | e = oy

— fA-1/4, [f CEoAtdte, ' “Ao(1 — Q)e—3/4 4 A,
= o Lo Sos (1= sy ds - et S0

< (constant) T¢| £, +F(i/4)!|: Alfl(tt) J;,(? '](T ) + F(1/4) M AT)|
< (constant)- T%| f|, + 1"(%/4) TMAT)| < + oo

Q.E.D.

THEOREM 3. g € S,
(i) T\T,= I, where I, is the tdentity transformation on S,.
(i) T.9 € S,
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Proof. Part (i) is proven exactly as part (i) of Theorem 2 and part
(ii) follows directly from the definitions of S, and T..

Q.E.D.
Consider the following system of equations made up from the terms
with singular kernels in (2.14).

240 + 40RO, ) + | O — +(@)]- Dok, ¢ — o)do = £t
(3.3)
|| #(0)- D3k(0, ¢ — ) — Ly(t) = gt

where fe S, and geS,. Now

D0, t — o) = ___1_S°° §2°6'e4“"’)d§
27 J-w
= -2-—7:( o)~ 3/45 pree d?] _ ———(t 0-)—3/4S: 7726"’4d7]
= —L oy [Tememag = L84 ¢ — gy
4yr(t g) QE e~tdE = t — o).
Similarly,
D k0, — o) = f_(§/_4)_'(t — g)~h
4
and

0.0 = TU o

Then using the fact that I"(3/4)-I'(1/4) = nesen/d = /2%

S:¢(0)'D§k(0, t —o)do = _Ir@ef 4)S #(0)+(t — 0)'da
(3.4)

_I'e/4)-ra/) =
e (Tu)(®) 5 1/E(Tﬁl))(l‘/)

Similarly,

(35) +0)-k(0, 1) + [ [40) = (@1-DkO, t — 0)do = L (Tp)t) .

Thus from (3.4) and (3.5) we can write (3.3) as

3 This is just the system of integrals equations one obtains for the problem on the
half-space (0 < x < )X (0, T).
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1
¢t =7f
2
(3.3 2 1/2
2_‘/2 1¢ \lf = g .

Using Theorems 2 and 3, we can solve this system of equations by
formally applying T, and T,. Applying (1/1/2)T, to the second equa-
tion and adding to the first gives

1 1
4TT1¢+ ¢ f+‘/ 2J -

Since T,T, = I,, we find that
_ 1 _qof1 1
#=4(f + 2= Tg) = 8(57 + 5 =T0) -
Similarly, we find that
_ _g(_1 1

Thus the solution of (3.3) is given by

#=8(37 + 5,5 T0)
2
(3.6) 1/2 )
= @V_Tf+2 9) .
Defining
1 1
=1 —T.
1 2 2
" 2 2
1 o _1
2y2 27!

where M is an operator on the product S, ® S, we can write (3.3)" as
(3.3)" Mo =F

where

and (3.6) as
(3.6) @ = 8MF .
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Thus,
(3.7) M =8M.
Define for suitable functions:
S0 = | 70)- D31, ¢ = )i
3.8) (Uf)(t) = So £(0)-D.k(1, t — o)do
(Vo)t) = | @)Dk, ¢ — a)do .

In terms of the above defined operators and T,, and T, we can
write the general system (2.14) as:

¢+S¢+2 s Tab + U = A

3.9) V2
—5os T+ V= 24+ Sp=B
or as,
(3.9 MO + No = FeS,®5,
where
(3.10) N= (S U) F= (A) .
vV S B

From (2.2) it follows that all of the kernels in the operators in N are
bounded (in fact, they are C= functions).
Write (3.9) as

(3.9)" (I + NM)Mo = F

I (Il 0
0 I
is the identity transformation on S;® S, This is certainly meaningful
since NM™ is well-defined and likewise (I + NM—Y)M.

where

LEMMA. All of the kernels tn the operators in NM™' are bounded
and differentiable.
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Proof.
SO wat
NM—* =8
1 1
=T —=1,

vV S 227 2
1 1 1
=8 — == UT, +—=ST,— U

]2 212 2V2 2
1 1
Ly sm VT, — =S
2 22 21/2 2

We shall carry out the proof for ST,. The proofs of the remaining
ones follows exactly the same lines.

For feS,:
[S(T2)1®)
O e o o
=, ‘{r(—l/@[‘“ 17(@) + | 170 = @) — 0ydo || D3k, ¢ — cyaz
4 o 3 _
mg 1. f(7)-D3k(1, t — T)dT
1

e 1/4)5 (S Lf () = f(o))-(= — 0)'5"d0> Dik(1, t — 7)d7 .

We proceed as in the proof of Theorem 2. Let

e = I‘tu)g <S [#®) = flo)]-( = g)“_ld"> Dik(1, t — 7)dz .
This defines an analytic function for Rey > —1/4. Now restrict # 50
that Rep > 0.
Then
F(y) = ) )S f(@)- <go (r — g)ﬂ—1d0>.Dzk(1, t — D)dr
l"tu)s (S Sflo)(z — 0)#—1d0'> Dik(1, t — 7)dr
= L1 Dk, ¢ = e
[':(l#)s <§ f(o)-(t — g)u-—1do'> Dik(1,t — 7)dT .

Interchanging the order of integration in the second term gives

F(#) S f(o )(XZ (t — o1 Dik(1, ¢ — z')d‘r)dtr
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Integrating the inner integral by parts n gives

7;711755 f(a)((—l)"S: (t — a1 DRDY(L, ¢ — z‘)dr)da ,

which is analytic for Rey > —mn.
Thus from the identity theorem we have that

1 t T et . B
F(ﬂ) So(go [f(f) o f(O')]*(Z' - 0) d0> ka(ly t T)dT
- _ 1 ¢ o T8 _
= =—ro Sof(f) . DYk(1, t — T)dz
(_1)7»4—1 ' . ‘ — g\etn—-1, Dn)3 _ _
+ mg" f(o) <L (t — o) DtDjk(1,t T)df) do, Rep > —1/4.

Taking the limit as p¢ | —1/4, we get

T L U = £ — o) da) Dyt ¢ — )iz

— 4 ¢ —1/47)3 .
=~ S F(2) T D3K(L, t — 7)dT

- ﬁgf “’)'(S: (c — 0)"~"-DID3k(L, t — 7)dz )do .

Hence

ST = 7 500 ([) e = oot DeDikat, ¢ — ey )io

From (2.2)

St (r — O')n*‘r’“'D?D%k(l, t— T)d‘L’l < (Constant).gt (t — o)odr
= (Constant)«(t — a)" 4.

Clearly the kernel is continuous and differentiable for 0 <o <t. In
fact, we could conclude that it is infinitely often differentiable.

Q.E.D.

The above Lemma shows that I + NM™ is essentially a perturbation

of the identity. That is, the problem is reduced to solving a system of

Volterra type integral equations with bounded and differentiable kernels.

APPENDIX: Derivation of Estimate (2.2). This appendix is included
at the suggestion of the referee in order to make this paper essentially
self contained.
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From (2.1)
Dike(, £) = (277:)‘1S°; (—i2)" exp (—izw — #8)dz, ¢>0.
Making the change of variable zt'* = y gives

(1)  Dik(z,t) = (—i)”(2ﬂ)‘1t‘“+"”“r y" exp (—iywt™ — y)dy .

The integral in (1) considered as an integral in the complex plane
is easily seen to be equal to

(2) | @+ ior expl—iay + io) — (v + ic)ldy

where ¢ is any real number and a = (xt=%)'3,
Denoting the integral (2) by I we find upon expanding that

—_ 3n __ b Z 7{' A \—J
I = (exp[a’c — ¢*]) Jr%(.?)(w)
X r y’ exp [— i(a’y + 4¥’c — 4yc’) — (y* — 6y’c?)]dy .
Using the inequality 6y’c* < 9Ry* + Rc¢* with R > 9 it follows that
11 < Gexplate + (R — D) 3 (3) 1o ] 1y exp -yt — 9Rldy .

Setting

@) =max {[” |y pexp -1 — 9R-1dy)
we obtain the inequality
[ I| < Am)A + |c|)"expla’e + (R — 1)¢'] .
Now choose ¢ = — (R — 1)7"%a, 0 < £t < 1. Then
ac+ (B — 1t = — p(1l — 2R — 1) "a* < 0
and
|11 < Am)[L + (R — 1) |a [ exp[— (1 — fFYR — 1)) .
Setting
B(n) = {max} [ + (R — 172" exp [—27 (1 — p)(R — 1)"%
~and replacing a by (xt7/*)"* we get the inequality

(3) | T| < A(n)B(n) exp [—27(1 — ) (R — 1)) .
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Estimate (2.2) is obtained from (1), (2), and (3) with
C, = 2n)'A(n)B(n) and C, = 27'p(1 — )R — 1),
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