A CHARACTERISTIC SUBGROUP OF A p-GROUP

Charles Hobby

If x, y are elements and H, K subsets of the p-group G, we shall denote by $[x, y]$ the element $y^{-p} x^{-p}(x y)^{p}$ of G, and by $[H, K]$ the subgroup of G generated by the set of all $[h, k]$ for h in H and k in K. We call a p-group $G p$-abelian if $(x y)^{p}=x^{p} y^{p}$ for all elements x, y of G. If we let $\theta(G)=[G, G]$ then $\theta(G)$ is a characteristic subgroup of G and $G \mid \theta(G)$ is p-abelian. In fact, $\theta(G)$ is the minimal normal subgroup N of G for which G / N is p-abelian. It is clear that $\theta(G)$ is contained in the derived group of G, and $G \mid \theta(G)$ is regular in the sense of P. Hall [3]

Theorem 1 lists some elementary properties of p-abelian groups. These properties are used to obtain a characterization of p-groups G (for $p \geq 3$) in which the subgroup generated by the p th powers of elements of G coincides with the Frattini subgroup of G (Theorems 2 and 3). A group G is said to be metacyclic if there exists a cyclic normal subgroup N with G / N cyclic. Theorem 4 states that a p-group G, for $p>2$, is metacyclic if and only if $G \mid \theta(G)$ is metacyclic. Theorems on metacyclic p-groups due to Blackburn and Huppert are obtained as corollaries of Theorems 3 and 4.

The following notation is used: G is a p-group; $G^{(n)}$ is the nth derived group of $G ; G_{n}$ is the nth element in the descending central series of $G ; P(G)$ is the subgroup of G generated by the set of all x^{p} for x belonging to $G ; \Phi(G)$ is the Frattini subgroup of $G ;\langle x, y, \cdots\rangle$ is the subgroup generated by the elements $x, y, \cdots ; Z(G)$ is the center of $G ;(h, k)=h^{-1} k^{-1} h k$; if H, K are subsets of G, then (H, K) is the subgroup generated by the set of all (h, k) for $h \in H$ and $k \in K$.

Theorem 1. If G is p-abelian, then

$$
\begin{gather*}
P\left(G^{(1)}\right)=P(G)^{(1)}, \tag{1.1}\\
P(G) \subseteq Z(G), \tag{1.2}\\
\Phi\left(G^{(1)}\right)=\Phi(G)^{(1)}=G^{(2)} . \tag{1.3}
\end{gather*}
$$

Proof of (1.1). $\quad \theta(G)=\langle 1\rangle$ implies that $\left(x y x^{-1} y^{-1}\right)^{p}=x^{p} y^{p} x^{-p} y^{-p}$ for all x, y in G. (1.1) follows immediately.

Proof of (1.2). Let x be an arbitrary element of G, and suppose the order of x is p^{n}. Let $u=x^{1+p+\cdots+p^{n-1}}$. Then, for any y in G,

[^0]$$
u y^{p} u^{-1}=\left(u y u^{-1}\right)^{p}=u^{p} y^{p} u^{-p}
$$
where the last equality follows from $\theta(G)=\langle 1\rangle$. Therefore $u^{1-p} y^{p} u^{p-1}=$ y^{p}. But $u^{1-p}=x^{1-p^{n}}=x$, hence $x y^{p} x^{-1}=y^{p}$, and (1.2) follows.

Proof of (1.3). It is easy to see that $\Phi(G)=P(G) G^{(1)}$, hence $\Phi(G)^{(1)} \supseteq$ $P(G)^{(1)} G^{(2)}$. Thus, by (1.1), $\Phi(G)^{(1)} \supseteq P\left(G^{(1)}\right) G^{(2)}=\Phi\left(G^{(1)}\right) \supseteq G^{(2)}$. It remains to show that $G^{(2)} \supseteq \Phi(G)^{(1)}$. But if x, y belong to $\Phi(G)$, we can write $x=x^{\prime} u, y=y^{\prime} v$ for x^{\prime}, y^{\prime} in $P(G)$ and u, v in $G^{(1)}$ (since $\Phi(G)=$ $\left.P(G) G^{(1)}\right)$. By (1.2), x^{\prime} and y^{\prime} belong to $Z(G)$, hence $x y x^{-1} y^{-1}=u v u^{-1} v^{-1}$ is an element of $G^{(2)}$. Thus $\Phi(G)^{(1)} \subseteq G^{(2)}$, and the proof is complete.

Corollary 1.1. $\quad P\left(G^{(1)}\right) \subseteq \theta(G)$.

Proof. It suffices to show that $\theta(G)=\langle 1\rangle$ implies $P\left(G^{(1)}\right)=\langle 1\rangle$. But, if $\theta(G)=\langle 1\rangle$, it follows from (1.1) and (1.2) that $P\left(G^{(1)}\right)=P(G)^{(1)}$ and $P(G) \subseteq Z(G)$. Thus $P\left(G^{(1)}\right)=\langle 1\rangle$.

Remark 1. P. Hall [3] has shown that

$$
(x y)^{p}=x^{p} y^{p} c d
$$

whenever x, y belong to a p-group G, where c is a product of p th powers of elements of $\langle x, y\rangle^{(1)}$ and d is a product of elements contained in the p th element of the descending central series of $\langle x, y\rangle$. We have, as an immediate consequence, $\theta(G) \subseteq P\left(G^{(1)}\right) G_{p}$.

We shall now investigate p-groups G for which $P(G)=\Phi(G)$. The following lemma will be useful.

Lemma 1. Suppose $p \neq 2$. If $P(G)=\Phi(G)$ and $P\left(G^{(1)}\right)=\langle 1\rangle$, then $G_{3}=\langle 1\rangle$.

Proof. If $x, y \in G$, then

$$
\begin{aligned}
\left(y^{p}, x\right) & =y^{-p}\left(x^{-1} y^{p} x\right)=y^{-p}\left(x^{-1} y x\right)^{p} \\
& =y^{-p}\{y(y, x)\}^{p} \\
& =(y, x)^{p}[y,(y, x)]=[y,(y, x)]
\end{aligned}
$$

where the last equality follows from $P\left(G^{(1)}\right)=\langle 1\rangle$. Therefore $G_{3} \subseteq$ $(G, P(G)) \subseteq\left[G, G^{(1)}\right] \subseteq[G, P(G)]$. We complete the proof by showing that $[G, P(G)] \subseteq G_{4}$.

We first observe that $\left(x, y^{p}\right) \in G_{3}$, hence

$$
\left(x y^{p}\right)^{p}=x^{p} y^{p^{2}}\left(x, y^{p}\right)^{(p-1) / 2} z
$$

for some $z \in G_{4}$. Since $p \neq 2$ and $P\left(G^{(1)}\right)=\langle 1\rangle$, we have $\left[x, y^{p}\right] \in G_{4}$ for
every $x, y \in G$. It follows that $[G, P(G)] \subseteq G_{4}$.
Theorem 2. If $P(G)=\Phi(G)$, then $P\left(G^{(k)}\right)=\Phi\left(G^{(k)}\right)$ for $k=1,2, \cdots$.
Proof. Suppose G is a group of minimal order for which $P(G)=$ $\Phi(G)$ but $P\left(G^{(k)}\right) \neq \Phi\left(G^{(k)}\right)$ for some $k \geq 1$. If $P\left(G^{(1)}\right)=\Phi\left(G^{(1)}\right)$, then we must have $P\left(G^{(k)}\right)=\Phi\left(G^{(k)}\right)$ for all $k \geq 1$ since the order of $G^{(1)}$ is less than the order of G. Thus $P\left(G^{(1)}\right) \neq \Phi\left(G^{(1)}\right)$. We assert that $P\left(G^{(1)}\right)$ must be $\langle 1\rangle$. For, if $P\left(G^{(1)}\right) \neq\langle 1\rangle$, we let $H=G / P\left(G^{(1)}\right)$. Then it is easy to see that $P(H)=\Phi(H)$. Thus, since H has smaller order than $G, P\left(H^{(1)}\right)=\Phi\left(H^{(1)}\right)$. Also, $P\left(H^{(1)}\right)=\langle 1\rangle$. Therefore

$$
\langle 1\rangle=\Phi\left(H^{(1)}\right)=\Phi\left(G^{(1)} / P\left(G^{(1)}\right)\right)=\Phi\left(G^{(1)}\right) P\left(G^{(1)}\right) / P\left(G^{(1)}\right) .
$$

That is, $P\left(G^{(1)}\right) \supseteq \Phi\left(G^{(1)}\right)$, and hence $P\left(G^{(1)}\right)=\Phi\left(G^{(1)}\right)$, which contradicts our assumption.

If $p=2$ it follows from $P\left(G^{(1)}\right)=\langle 1\rangle$ that $G^{(1)}$ is abelian. If $p \neq$ 2 , then by Lemma $1, G_{3}=\langle 1\rangle$ and $G^{(1)}$ is again abelian. Therefore $P\left(G^{(1)}\right)=\Phi\left(G^{(1)}\right)$, contrary to our choice of G.

Corollary 2.1. If $p \neq 2$ and $P(G)=\Phi(G)$, then $P\left(G^{(1)}\right)=\Phi\left(G^{(1)}\right)=$ $\theta(G) \supseteq G_{3}$.

Proof. By Corollary 1.1, $P\left(G^{(1)}\right) \subseteq \theta(G)$. By Lemma 1, $G_{3} \subseteq P\left(G^{(1)}\right)$. Therefore $P\left(G^{(1)}\right) G_{p}=P\left(G^{(1)}\right)$ since $p \neq 2$. It follows from Remark 1 that $P\left(G^{(1)}\right)=\theta(G)$. By Theorem 2, $P\left(G^{(1)}\right)=\phi\left(G^{(1)}\right)$, and the proof is complete.

Corollary 2.2. Let $p \neq 2$ and $P(G)=\Phi(G)$. Then $P\left(G^{(1)}\right) \subseteq G^{(2)}$ implies $G_{3}=\langle 1\rangle$, and hence $G^{(2)}=\langle 1\rangle$.

Proof. By Corollary 2.1, $G_{3} \subseteq P\left(G^{(1)}\right)$, thus $G_{3} \subseteq G^{(2)}$. It is known [3, Theorem 2.54] that $G^{(2)} \subseteq G_{4}$. Therefore $G_{3}=G_{4}=G^{(2)}=\langle 1\rangle$.

Theorem 3. Suppose $p \neq 2$ and let $x_{1}, x_{2}, \cdots, x_{k}$ be coset representatives of a minimal basis of the abelian group $G / G^{(1)}$. Then $P(G)=$ $\Phi(G)$ if, and only if, there exist integers $n(i)$ such that

$$
G^{(1)}=\left\langle x_{1}^{p^{n(1)}}, x_{2}^{p^{n}(2)}, \cdots, x_{k}^{p^{n^{\prime} k}}\right\rangle .
$$

Proof. If such integers $n(i)$ exist, then $G^{(1)} \subseteq P(G)$ and it follows that $P(G)=\Phi(G)$.

Suppose $P(G)=\Phi(G)$, and let $H=G / \theta(G)$. Then $\theta(H)=\langle 1\rangle$, and $H=\left\langle y_{1}, y_{2}, \cdots, y_{k}\right\rangle$ where y_{i} is the image of x_{i} under the homomorphism
mapping G onto $G \mid \theta(G)$. Since $\theta(H)=\langle 1\rangle, P(H)=\left\langle y_{1}^{p}, y_{2}^{p}, \cdots, y_{k}^{p}\right\rangle$, and $P(H) \subseteq Z(H)$. Also, $P(H)=\Phi(H) \supseteq H^{(1)}$, hence every element of $H^{(1)}$ can be expressed in the form $y_{1}^{p u} y_{2}^{p v} \cdots y_{k}^{p w}$ for suitable integers u, v, \cdots, w. Since the y_{i} are independent generators of H modulo $H^{(1)}$, it follows that there exist integers $n_{1}, n_{2}, \cdots, n_{k}$ such that $H^{(1)}=\left\langle y_{1}^{p n_{1}}, y_{2}^{p n_{2}}, \cdots\right.$, $\left.y_{k}^{p n_{k}}\right\rangle$. By Corollary 2.1, $\Phi\left(G^{(1)}\right)=\theta(G)$, thus $H^{(1)}=G^{(1)}\left|\theta(G)=G^{(1)}\right| \Phi\left(G^{(1)}\right)$. Thus we can use the Burnside Basis Theorem [6, page 111] to obtain $G^{(1)}=\left\langle x_{1}^{p n_{1}}, x_{2}^{p n_{2}}, \cdots x_{k}^{p n_{k}}\right\rangle$. The proof follows if we let $n(i)$ be the largest positive integer n for which p^{n} divides $p n_{i}$.

Corollary 3.1. Suppose $p \neq 2$ and $P(G)=\Phi(G)$. If G can be generated by k elements, then $G^{(r)}$ can be generated by k elements for $r=1,2,3, \cdots$.

Proof. Follows immediately from Theorems 2 and 3.
Lemma 2. If $p \neq 2$ and $G / \Phi\left(G^{(1)}\right) G_{3}$ is metacyclic, then

$$
\Phi\left(G^{(1)}\right) G_{3}=\theta(G)
$$

Proof. Since $p>2$ it follows from Remark 1 that $\theta(G) \subseteq P\left(G^{(1)}\right) G_{3}$ and hence $\theta(G) \subseteq \Phi\left(G^{(1)}\right) G_{3}$. The lemma will follow if it is shown that $\Phi\left(G^{(1)}\right) G_{3} \subseteq \theta(G)$. We may assume $\theta(G)=\langle 1\rangle$. Then, by Corollary 1.1, $\stackrel{\rightharpoonup}{P}\left(G^{(1)}\right)=\langle 1\rangle$, thus $\Phi\left(G^{(1)}\right) G_{3}=G_{3}$. If $G_{3} \neq\langle 1\rangle$ we may assume $G_{3}=\langle z\rangle$, where z is an element of order p in $Z(G)$. Since G / G_{3} is metacyclic, there exist elements a, b such that $G=\langle a, b\rangle$ and $G^{(1)}$ is generated modulo G_{3} by $a^{p^{k}}$ for some integer $k>0$. By (1.2), $a^{p^{k}}$ belongs to $Z(G)$. But then $G^{(1)}=\left\langle a^{p^{k}}, z\right\rangle \subseteq Z(G)$ and $G_{3}=\langle 1\rangle$.

Blackburn [1] showed that a p-group G is metacyclic if, and only if, $G / \Phi\left(G^{(1)}\right) G_{3}$ is metacyclic. Our next theorem follows immediately from Lemma 2 and this result of Blackburn. We shall give a simple direct proof of Theorem 4, and obtain Blackburn's result for $p>2$ as Corollary 4.2.

Theorem 4. Suppose $p>2$. Then G is metacyclic if, and only if, $G / \theta(G)$ is metacyclic.

Proof. Since any factor group of a metacyclic group is again metacyclic, we need only show that $G / \theta(G)$ metacyclic implies G is matacyclic.

Suppose G is a non-metacyclic group of minimal order for which $G \mid \theta(G)$ is metacyclic. Then $\theta(G) \neq\langle 1\rangle$ and hence we can find an element z in $\theta(G)$ such that z has order p and belongs to $Z(G)$. If we let $H=G /\langle z\rangle$; then $H \mid \theta(H)=(G \mid\langle z\rangle) /(\theta(G) \mid\langle z\rangle) \cong G / \theta(G)$ is metacyclic, and
consequently H is itself metacyclic since H has smaller order than G. Thus we can find \bar{a}, \bar{b} in H such that $H=\langle\bar{a}, \bar{b}\rangle$ and $H^{(1)}=\left\langle\bar{a}^{p^{k}}\right\rangle$ for some $k>0$. If we let a, b be coset representatives in G of \bar{a}, \bar{b}, then it follows from the Burnside Basis Theorem that $G=\langle a, b\rangle$ and hence $G^{(1)}=\left\langle a^{p^{k}}, z\right\rangle$. In particular, if we let $c=a^{-1} b^{-1} a b$, there exist integers, n and m such that $c=a^{n p^{k}} z^{m}$. Since z belongs to $Z(G)$, it is clear that $a^{-1} c^{-1} a c=1$, and

$$
b^{-1} c b=b^{-1} a^{n p^{k}} b z^{m}=\left(b^{-1} a b\right)^{n_{n}{ }^{k}} z^{m}=\left(a^{1+n p^{k}} z^{m}\right)^{n p^{k}} z^{m},
$$

thus

$$
c^{-1} b^{-1} c b=a^{n^{2} p^{2 k}} z^{m n p^{k}}=a^{n^{2} p^{2 L}}
$$

where the last equality follows from $z^{p}=1$. Similarly, $b^{-1} a^{p^{k}} b=a^{p^{k}+n p^{2}}$. Thus G_{3}, which is generated by $c^{-1} b^{-1} c b, a^{-1} c^{-1} a c$, and the various conjugates of these elements, is contained in $\left\langle a^{p^{k}}\right\rangle$. Since $P\left(G^{(1)}\right) \subseteq\left\langle a^{p^{k}}\right\rangle$, it follows from Remark 1 that $\theta(G) \subseteq\left\langle a^{p^{k}}\right\rangle$. But z belongs to $\theta(G)$, hence $G^{(1)}=\left\langle a^{p^{k}}\right\rangle$ and G is metacyclic.

Remark 2. If $p=2$, it follows from $\theta(G)=\langle 1\rangle$ that $(x y)^{2}=x^{2} y^{2}$ and hence $x^{-1} y x y^{-1}=1$ for all x, y in G. Thus $\theta(G)=G^{(1)}$ and $G / \theta(G)$ is metacyclic whenever G can be generated by two elements. Since there exist non-metacyclic 2 -groups having two generators we see that Theorem 4 is false for $p=2$.

The following result was established by Huppert [5, Hauptsatz 1].
Corollary 4.1. Suppose $p \neq 2$ and G can be generated by two elements. Then G is metacyclic if, and only if, $P(G)=\Phi(G)$.

Proof. It is clear that $P(G)=\Phi(G)$ if G is metacyclic. Suppose $P(G)=\Phi(G)$. Since G can be generated by two elements, $G^{(1)}$ is cyclic modulo G_{3} [3, Theorem 2.81]. We see from Theorem 3 that, if $G=$ $\langle a, b\rangle$, then $G^{(1)}=\left\langle a^{p^{n}}, b^{p^{m}}\right\rangle$ for some integers m and n. It follows that one of $a^{p^{n}}, b^{p^{m}}$ is mapped on a generator of $G^{(1)} / G_{3}$ by the natural homomorphism. Thus G / G_{3} is metacyclic. By Corollary 2.1, $\theta(G) \supseteq G_{3}$, hence $G \mid \theta(G)$ is metacyclic. It follows from Theorem 4 that G is metacyclic.

The next corollary is an immediate consequence of Lemma 2 and Theorem 4.

Corollary 4.2. If $p \neq 2$, then G is metacyclic if, and only if, $G / \Phi\left(G^{(1)}\right) G_{3}$ is metacyclic.

Remark 3. We define $\theta_{1}(G)=\theta(G)$ and $\theta_{n}(G)=\theta\left(\theta_{n-1}(G)\right)$ for $n>1$. The series $\theta_{1}(G) \supset \theta_{2}(G) \supset \cdots \supset \theta_{k}(G)=\langle 1\rangle$ can be considered a generalization of the derived series of G. Corresponding generalizations of the
ascending and descending central series of G can be obtained as follows: let $\Gamma_{1}(G)$ be the subgroup of G generated by the set of all x in G such that $(x y)^{p}=x^{p} y^{p}$ for every element y of G, and define $\Gamma_{n}(G)$ for $n>1$ as the subgroup of G mapped onto $\Gamma_{1}\left(G / \Gamma_{n-1}(G)\right)$ by the natural homomorphism; let $\Psi_{1}(G)=G$, and $\Psi_{n}(G)=\left[G, \Psi_{n-1}(G)\right]$ for $n>1$. These series have an important property in common with the ascending and descending central series. Namely, if we define the lengths $l(\Gamma)$ and $l(\Psi)$ of the Γ and Ψ series as, respectively, the smallest integers m and n for which $\Gamma_{m}(G)=G$ and $\Psi_{n+1}(G)=\langle 1\rangle$, it is easy to see that $l(\Gamma)=$ $l(\Psi)$.

The group $\Gamma_{1}(G)$ has been studied by Grun [2]. The groups $\theta_{n}(G)$ and $\Psi_{m}(G)$ have not appeared in the literature, however the following result is an immediate consequence of earlier work [4, Remark 1].

TheOrem 5. A non-abelian group with cyclic center cannot be one of the subgroups $\theta_{n}(G)$ or $\Psi_{m}(G)($ for $m>1)$ of a p-group G.

References

1. N. Blackburn, On prime power groups with two generators, Proc. Camb. Phil. Soc. 54 (1958), 327-337.
2. O. Grun, Beiträge zur Gruppentheorie, V. Osaka Math. J. 5 (1953), 117-146.
3. P. Hall, A contribution to the theory of groups of prime-power orders, Proc. Lond. Math. Soc. (2) 36 (1933), 29-95.
4. C. Hobby, The Frattini subgroup of a p-group. Pacific J. Math. 10 (1960), 209-212.
5. B. Huppert, Uber das Product von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58 (1953), 243-264.
6. H. Zassenhaus, Theory of Groups (trans.), New York, Chelsea, 1949.

California Institute of Technology

[^0]: Received July 30, 1959. This work was supported by a National Science Foundation pre-doctaral fellowship.

