
UNARY ALGEBRAS

JOHN G. MARICA AND STEVEN J. BRYANT

This paper is concerned with algebraic systems composed of a non-
empty set A and a single unary operation on A; i.e., a function on A
into A, usually denoted by '. Such a system is called a unary algebra.

Our main objective is to give a proof of the following theorem:
If A and B are two finite unary algebras and A2 is isomorphic to B2

f

then A is isomorphic to B.1 In this statement, A2 means the Cartesian
product of the algebra A with itself. In addition to this result, we
prove some basic structure theorems for unary algebras, and cancella-
tion theorems for some classes of unary algebras. In §7 we list some
counter examples which indicate limitations on the generalization of
these results to infinite algebras.

Most of the definitions and theorems were suggested by the graphs
of unary algebras and should be easily understood in this context. The
graphs are obtained by joining each element to its "prime" or ' 'suc-
cessor' ' by a directed line segment. Theorems, equations, definitions,
etc. are numbered consecutively in each section.

l Notation and general theorems. We shall not distinguish nota-
tionally between an algebra and the set of elements of the algebra, and
unless it is essential to do otherwise, we shall use ' to denote the opera-
tion in all of the algebras discussed. In general, upper case letters will
denote algebras, lower case letters will denote elements. Brackets and
parentheses are used in several senses, but for p, q integers (p, q) and
[p, q] will always denote the g.c.d. and l.c.m., respectively, of p and q.

1.1. DEFINITION. If A c B, A Φ 0, B a unary algebra, and A is
closed under ', i.e., A' c A, then A will be called a subalgebra of B.

1.2. LEMMA. If F is a family of subalgebras of A, then [J F is
a subalgebra of A, and if f)F Φ φ, then Π F is a subalgebra of A.

The proof is immediate.

1.3. DEFINITION. If A and B are unary algebras and A Π B = ψ
then A U B is the algebra formed from A U B by applying the opera-
tion of A to elements of A and the operation in B to elements of B.
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1 This problem was mentioned by Tarski in a course taken by one of the authors dur-
ing 1951.
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1.4. DEFINITION. A x B is the Cartesian product of A and B, i.e.,
the algebra formed from the Cartesian product of the sets A and B by-
defining the operation componentwise.

1.5. T H E O R E M . Ax(B{jC)~AxB{jAxC.
The proof is immediate.

1.6. DEFINITION. If x e A we define x° = x, and for n > 0, xn =
(x*1-1)'. Thus, x1 = x\ x2 = (xry, etc.

1.7. DEFINITION, X is called a cyclic element of A if xa — x for
some n > 0.

1.8. DEFINITION. A\k — {x : x e A and xk is cyclic}. In particular,
A/0 is the set of all cyclic elements of A.

It is easily seen that unless A\k is empty it is a subalgebra of A.

1.9. DEFINITION. If x, y are in A then we say x is connected to
y if and only if for some n,m xn — ym.

This relation is an equivalence relation (in fact, a congruence rela-
tion) and we have:

1.10. DEFINITION. The equivalence classes with respect to the re-
lation of 1.9 are called the components of A, the class to which x be-
longs being written C(x).

If an algebra has only one component we call it connected. The
components are disjoint subalgebras and an algebra is completely cha-
racterized by the set of its components. Formally, we have

1.11. THEOREM. If A,B are unary algebras then A~B if and
only if the components of A are pair wise isomorphic to the components
of B.

The proof is obtained by defining the isomorphism / : A~B as the
union of the isomorphisms on the components; and conversely, given
/ , / restricted to each of the components of A yields an isomorphism
onto a component of B. In general, if a sequence of algebras is pair-
wise isomorphic with another sequence, in some order, we shall write
{A} -TO

Suppose that A and B are unary algebras, x e A and y e B,
f:A~B, (that is, / i s an isomorphism of A onto B) and f(x) — y. If
xr is cyclic, and hence for some p xr+p = of, then y satisfies the same
equation. It follows from this that the image of A\k under / must be
B/k, the result holding for all k.

If C and D are unary algebras, z e C,w e D, zr+p = zr, and wr+t =
wr, then in C x D, with q = [p, t] we have (z, w)r+q = (z, w)r. We col-
lect these results in
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1.12. THEOREM. Iff: A~ B then f: A/k ~ Bjk. Moreover, for any
C, D C/k x Ώ\k ~ (C x D)lk.

In particular, this shows that isomorphisms send the cyclic part of
one algebra onto the cyclic part of the image. This fact will be used
frequently in the remainder of the paper

2. The cyclic case. Let us now restrict our attention to finite al-
gebras and, in fact, to those finite algebras in which every element is
cyclic. We call these cyclic algebras, and a component of a cyclic al-
gebra, a cycle.

It is evident that a cyclic is characterized by the number of its
elements, one with p elements being called a p-cycle. It is also clear
that a cyclic algebra is determined up to isomorphism by the number
of p-cycles for p = 1, 2, •••. We now want to show directly that for
cyclic algebras A2 ~ B2 implies A ~ B.

If x is cyclic then by Definition 1.7 xn = x for some n, let us write
o(x) for the smallest such n and call this the order of x. With A and
B cyclic let aif bif cίf and di be the number of elements of order i in
A, Bf A2 and B2 respectively. Then Lemma 2.1, which follows, is evi-
dent, and Lemma 2.2 is quickly obtained by counting, using the fact
that o(x) = r and o(y) = s implies o(x, y) = [r, s].

2.1. LEMMA. A~B if and only if for each i a% == bt.

2.2. LEMMA. CW = 2 Σ a i a j + a2

n, in which the sum is extended
over all pairs (i, j) with i < j and [i, j] = n.

Suppose now that A2 ~ B2 and hence for each i, ct = dt. If A is
not isomorphic to B then there is a smallest n for which anΦbn. We
have always:

cn = 2 Σ a^j + a2

n = 2 Σ a^j + 2 Σ α*α» + a\
i<j i<j<k i\n

and similarly for dny since j — n and [i, j] = n implies i \ n. From this
we obtain

2 Σ Wn + < = 2 Σ bfin + b2

ni\n t\n
i=n iφn

since at = bt for any i < n. Hence

an[2 Σ at] + a\ = bn[2 Σ δ*] + K .
i\n i\n

But the expressions in brackets are the same since i < n and from this
it follows readily that an = bn which is a contradiction. We have shown
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2.3. THEOREM. // A and B are finite cyclic algebras and A2~ B2

then A~ B.
We do not have cancellation even for finite cyclic algebras (see § 7).

3, Ordering* In § 2 we have seen that the cyclic part of an al-
gebra is well behaved, with respect to the square root problem, and we
now turn to the noncyclic part. Consider the class of unary algebras
defined by:

3.1. DEFINITION. A unary algebra A will be called basic if it is
connected, has exactly one cyclic element, and for each k ^ 0 A/k is
finite. B denotes the class of basic algebra.

Notice that in a basic algebra there is an idempotent element,
namely the single cyclic element. The rest of this section is devoted
to the ordering of B in a useful way; the procedure is somewhat com-
plicated and we have several preliminary definitions.

Suppose A e B and x e A, let P(x) be the set of all elements of
A which precede x; i.e.,

3.2. DEFINITION. P(X) = {y :y e A and for some n, yn = x}.
This set of elements can be turned into a basic algebra by chang-

ing the definition of x\ setting xf = x, and leaving everything else un-
changed. The resulting algebra will also be called P(x), and if x is the
cyclic element of A, P(x) = A.

If x e A, A e B, and a is the cyclic element of A then in view of
the connectivity of A we may make

3.3 DEFINITION, deg (x) = the smallest integer n such that xn = α.
Notice that for A e B, A\k is the subalgebra of A consisting of

elements with degree less than or equal to k.

3.4. DEFINITION. If A is finite h(A) = max {deg (x): x e A}.

3.5. DEFINITION. For A e B, the width of A = w(a) = the num-
ber of elements of degree 1.

3.6. DEFINITION. [A] = {P(x): deg (x) = 1 and x e A.
[A] is a collection of basic algebras and as mentioned after 1.11 we

shall write [A] **> [B] when the elements of these sets are pair wise
isomorphic.

3.7. THEOREM. A ~ B if and only if [A] ~ [B].
The proof of this should offer no difficulty since the members of

[A] are disjoint.



UNARY ALGEBRAS 1351

If A and B are in B then A/0 ~ B/0 since each has only a single
element. The proof of the following theorem is included in § 8, but
the theorem is probably not surprising.

3.8. THEOREM. If A and B are in B and for each k ^ 0 A\k ~ B\k
then A~B.

In view of 3.7 we may make the following

3.9. DEFINITION. If A is not isomorphic to B, e(A, B) is the largest
integer for which A/e ~ B/e.

If A is not isomorphic to B and e(A,B) = 0 then w(A) < w(B) or
conversely; we order A, B accordingly. If e(A, B) = 1 then w(A) = w(i?)
and [A] and [B] have the same length, but [A/2] η^ [B/2], Each mem-
ber of these sets is an algebra of height ^ 1 and the collection of al-
gebras of height ^ 1 is ordered as above. We may then arrange the
collections [A/2], [B/2] in nondecreasing order and compare them lexi-
cographically. Continuing this process yields an ordering of B.

The following lemma, together with 3.12 and 3.13 is devoted to
a precise statement and proof of the preceding remarks. In the lemma,
A and B are in B and the members of [A] and [B] will be assumed
ordered by a relation R. We write [A][iτ!][ί?] to mean that [A] is length-
jβ-lexicographically less than [B] in the following sense:

(i) [A] is shorter than [JS], or
(ii) length [A] — length [B] and [A] is lexicographically less that

[B] when both are regarded as nondecreasing sequences relative to R
(i.e., the members of [A] are indexed so that At ~ Ai+1 or AtRAi+1 for
A, e [A]).
To simplify matters we write = instead of ~ .

3.10. LEMMA. Let Rk, k ^ 0, be a relation satisfying:
(i) (A,B) e Rk implies e(A, B) ^ k.
(ii) If e(A, B) ^ k then either (A, B) e Rk or (B, A) e Rk and not

both.
(iii) (A, B) e Rk and (B, C) e Rk implies (A, C) e Rk.
(iv) If e(A, B) ^ fc, (A, B) e Rk if and only if

[AMA, B) + l][Rk][Ble(A, B) + 1] .

Then there is a unique relation Rk+1 satisfying the same conditions
(with k replaced by k + 1) and containing Rk.

Proof. We show first that such an extension is unique. Let (A, B)
be in Rk+1; then e(A, B) ^ k + 1, and by (iv),

[Ale(A, B) + l][Rk+1][Ble(A, B) + 1] .
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If A, is in [A/e(A, B) + 1] then h(At) ^ k + 1, so if At Φ AJf e(Aif A3) g k
and similarly for e(Bif B5) and e(Aif Bj). This means that [Rk] can be
applied. But Rk+1 contains Rk hence [Rk+i] and [Rk] must agree for
these sequences and it follows that RΛ+1 is unique.

We now define Rk+1 by:

3.11. DEFINITION. Rk+1 = {(A, B): e(A, B)=k + 1 and [A/e(A, B) + l]
[Rk][Ble(A, B) + l)}\JRk.

Properties (i) and (ii) are easily checked. In order to check (iv),
suppose that e(A, B) ^ k + 1. If (A, B) e Rk+1 then

[Ale(A, B) + l][Rk][Ble(A, B) + 1] ,

but [Rk+1] agrees with [Rk] whenever both are defined. Conversely, if
e{A, B) ^ k + 1 then [Rk+1] agrees with [Rk] and the definition implies
that {A, B) e Rk+1. Finally, to prove (iii) take e = e(A, B) < e(B, C) and
hence < k + 1. Then A/e = B/e = C/e while [Aje + l][Rk][Ble + 1] =
[C/β + 1] and (A, C) e Rk s Λfc+1. A similar proof is obtained if e(A, C) >
e(B, C) or e(A, C) = e(JB, C ) < fc + 1. If e(A, C) = e(B, C) = fc + 1 then
(A, C) e i^ + 1 because of the transitivity of [Rk]. This completes the
proof of the lemma.

3.12. DEFINITION. RO = {(A, B): e(A, B) = 0 and w(A) <

It is readily seen that i?0 satisfies the conditions of 3.10 For each
k > 0 let Rk+1 be the extension of Rk given in 3.10 and let R — \JRif

k^O.

3.13. DEFINITION. A ^ B if and only if Ai?S or A = 5 .
It can be shown, using § 3.8, that ^ is a simple ordering of B (strictly

speaking, of the isomorphism types of members of B). Two properties
of < obtained from sections 3.10-3.13 which we shall use are

3.14. If w(A) < w(B) then A < B.

3.15. A < B if and only if A/e(A, B) + 1 < Bje{A, B) + 1.

4. Dot product*

4.1. DEFINITION. If A and JS are basic algebras then A B is
defined to be the subalgebra of A x B consisting of all pairs (a?, 2/) for
which degO) (in A) = άeg(y) (in B).

The following facts are easily derived.

4.2. A/fc B/fc =f (A β)/fc (see 1.12).

4.3. &(A -5) = min [h(A), h(B)].

4.4. w(A - B) = w(A)w{B).
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The main theorem on the dot product is the following one and in
it the properties of lexicographic order are used without mention. The
order between the algebras is the one given in 3.13.

4.5. T H E O R E M , ( i ) If A<B and h(C) g e(A, B) then A-C = B-C.

(ii) If A<B and h(C) > e(A, B) then A-C < B-C.

Proof, ( i ) i s e a s y , f o r i n t h i s c a s e A-C = (Alh(C)) - C = (Blh(C))-C=
B - C. (ii) is proved by induction on e = e(A, B). If e = 0 then A < B
if and only if w(A) < w(B), but w(A - C) = w(A)w(C) < w(B)w(C) =
w(B - C) and hence A- C < B C. Now take e > 0, assuming (ii) for
smaller values of e. If A < B then [A/e + 1] < \B\e + 1] and [A/e] =
[B/e], Let [C/e + 1] = {C19 , Cp}; fc(C4) ̂  e, the same holding for the
members of [A/e + 1] and [B/e + 1]. If fc(C4) ^ e - 1 then [A/e + 1]. C4 =
[S/e + 1 Cίβ If Λ(Cί) = e, then let Am < Bm be the first pair in which
[Aje + 1] and [B/e + 1] differ; then Am C4 < Bm. C4 by the inductive
hypothesis, while for i < m, A^ C4 = B5 C4. Thus [A/e + 1] C, < [5/e +1]
• Ct lexicographically. For any Ct in [C/e + 1] then, either [A/e + 1 Ct =
[B/e + 1] C4 or [A/e + 1] C, < [S/e + 1] C4. But [A/e + 1]. [C/e + 1]
is just the ordered union of [A/e + 1] C4, Ct e [C/e + 1], and at least
one strict inequality must hold. Hence, [A/e + 1] [C/e + 1] < [B/e + 1]
[C/e + 1] lexicographically, and A/e + 1 C/e + 1 < B\e + 1 C/e + 1, while
A/e C/e = B/e-Cle( = B- C/e) and A C < J5. C, by definition of < .

4.6. COROLLARY. // A, B, C are infinite and A<B then A-C<B C.

4.7. COROLLARY. // A, B, C are basic algebras and A S B then
A-C ^B-C.

Up to isomorphism, the collection of infinite basic unary algebras
with forms a commutative semigroup which by 4.6 is ordered. This
is the semigroup to which we apply the following lemma.

4.8. LEMMA. If <S, , ^ > if an ordered semigroup2, S* denotes
the set of all finite nonempty, nondecreasing sequences in S; for {#$}
and {y3) in S*, {̂ ί}*{̂ /j} is defined as the nondecreasing sequence formed
from {xt yj}; and ^ * is the length lexicographic order; then <S*, *, ^ * >
is an ordered semigroup.

Proof. Suppose x = {as4}, y = 0/j}, 2 = {zm} are in S* and x <* y.
If length α; < length j/ then length xz < length yz and xz <* yz. If
length a? = length y there is a ί > 0 with xi — yi for any i < ί and
xt <yt. Let as = {α?4: i < ί}, » = {a?4: i ^ ί} and similarly for y and ?/.
The smallest elements in y*z and ?/*are formed from xt,yt, and zλ.

2 We use ordered in the sense of Clifford [2], i.e., a <b implies a c < δ c.
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Therefore, x * z < y * z . Now x — y, %*z = y *z and we have x*z =

(x u x)*z < (y[Jy)*z = y*z. The reason is: inserting equal sequences

in two ordered sequences cannot change their order.

5. Unraveled algebras. Let A be a finite unary algebra, x a cyclic
element of A and X — C(x) (1.10). We associate with x an infinite basic
algebra which we think of as "X unraveled backwards, starting at x",
and call W(x).

5.1. DEFINITION. W(X) = <X x I, *> with J = {0,1, •}

(x, 0)* = (x, 0)

(x, k)* = (&', fc - 1) for k > 0

(V, Ψ = (ϊΛ fc) for » =̂ a? .

It is not difficult to see that W(x) is a basic algebra, the only cyclic
element being (x, 0). (#, m) e W(a?) we still use deg(y, vi) as in 3.3.
If x is any cyclic element in a connected algebra A and y 6 A then for
some n, yn = x; in this context we need

5.2. DEFINITION. degx(#) = m if and only if m is the least non-
negative integer for which ym = x. If y is not in C(x) then dega. y is
not defined.

If the cyclic part of a connected algebra is a p-cycle we say the
algebra is p-cyclic. Lemma 5.3 follows immediately from the definitions.

5.3. If {y,m)e W{x) and C(x) is p-cyclic, then άeg(y,m) —

degx (y) + mp.

5.4. LEMMA. If a and x are in A, b and y are in B, C(a) is p-

cyclic, and C(b) is q-cyclic; then in A x B; (x, y) e C(α, b) if and only
if άega x = deg6 y mod (p, q).

Proof, (x, y) e C(a, b) if and, only if for some m, (x, y)m = (α, 6),
which is equivalent to xm = a and ym — b. Such an m exists if and
only if there are nonnegative integers r, s with

5.5. m = άegax + rp = degby + sq.
The necessary and sufficient condition for the existence of r, s is

that degax = degbymoά(p, q). This completes the proof.
If (x, y) e C(α, b) and m = deg(α,6) (x, y) then the integers satisfying

5.5 are unique and will be denoted by

5.6. r 0 = (deg(α>&) (x, y) - degax)lp, s0 = (deg(α>&) (x, y) - degby)/q.
A result on which the rest of the development depends is
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5.7. THEOREM. If A, B are finite unary algebras, a e A/0 and
b e B/0; then W(a) W(b) ~ W(a, b) in A x B.

Proof. Let C(a) be p-cyclic and C(b) be g-cyclic. Take an element
((x, k), (y, m)) in W{a) W(b) and using the definition of , and 5.3 obtain:

5.8. degα x + kp = deg (a?, k) = deg (y, m) = degb y + mq.
We have then degα x = deg& y mod (p, q) and can apply 5.4; yielding:

(x9 y) e C(a, b) and

5.9. deg(α>&) (x, y) = degα x + rop = deg& y + soq.
Subtracting equation 5.9 from equation 5.8 and dividing by [p, q],

it is easily seen that the result is an integer h,

5.10. h = h((x,k), (y, m)) = (deg (x, k) - deg(α,δ) (x, y))l[p, q]

= (deg (y, m) - deg(α,δ) (x, y))l[p, q\.

Clearly, h is a well defined function and we can now define a func-
tion / which we shall show is the required isomorphism,

5.11. f((x, k), (y, m)) = ((a?, y), h).
To see that / is one-to-one and onto one need only take ((x, y), h)

in W(a, b) and solve equation 5.10 for k and m, using 5.8, the solution
being unique. It remains to be shown that / commutes with the opera-
tions involved. Using * for the operations in the W algebras, and
recalling that on W(a) W(b), * is defined componentwise, let z — ((x, k)f

(y, m)). We want to show that /(«*) = [/(«)]* and we need to consider
three cases:

(1) x Φ a;
(2) x = α, y — by neither k nor m = 0; and
(3) x — α, y = 6, k — m = 0. No other cases are needed, for if

(yf m) = (δ, 0) then (x, k) — (α, 0), otherwise z would not be in W(a) W(b).
All other possible cases are taken care of by symmetry.

Case 1. [/Ml* = [(«, V), h\* = [(«', 2/')» Λ] since (a?, T/) Φ (α, 6), ^* =
[(%', k), (yf, m)] the value of m being unimportant, and f(z*) = [(ίc', 2/'), fc]
in which Λ is calculated from 5.10; h = (deg (a;', ft) — deg(α>6) (a;', y'))l[p, ?].
But deg (a?', fc) = deg (a;, fe) — 1 and deg ( α δ ) (a?', 2/') = deg(α(&) (a?, 2/) — 1,
hence h — h and this case is complete.

Case 2. [/(*)]* = [(α, δ), h]* - [(α', δr), Λ - 1] and ^* - [(αf, fc - 1),

(δ', m - l)] f/(«*) - [(α'f δ'), λ]. We calculate A and Λ:

(α, Jk), (δ, m)] = (deg (α, k) - deg(α>&) (α, δ))/[p, q]

= (deg α α + &p - 0)/[>, g] = fcp/[p, q] .
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h[(a', k - 1), (&', m - 1)] = (degaa' + (k - l)p - [pf g])/[pf q]

This completes the proof of the theorem, since Case 3 is trivial.
We now associate with any unary algebra the collection of its W

algebras by

5.12. DEFINITION. If A is a unary algebra W(A) = {W(a): a e
Since A/0xB/Q^AxB/0 it follows that W(AxB) = {W(a, b): (α, 6}e

(A x B)/0} which is naturally pairwise isomorphic to {Wa Wb :a e A/0,
b e B/0}. This last expression we write W(A) W(B) instead of * as in
Lemma 4.8 This proves

5.13. THEOREM. W(A X B) ~ W(A) W(B).

5.14. THEOREM. // A, B are connected, finite, and A is p-cyclicr

B is q-cyclic, then A^Bif and only if p — q and for some a e AOf

b e Bo, W(a) ~ Wφ).

Proof. One of the implications is clear; for the other, let / be an
isomorphism / : W(a) ~ Wφ) for some a e A/0, b e BjO. We have seen
that isomorphisms preserve degree and they certainly preserve number
of predecessors. Thus, /(α, 0) = (6, 0) and since (α, 1) may be charac-
terized as the only element of degree p with infinitely many predeces-
sors /(α, 1) must be the corresponding element of Wφ). But p = q so
that this element is (6,1). Moreover, / i x O ^ ΰ x O since these are
the sets of elements which do not precede (α, 1) and (6, 1) respectively.
It then follows immediately that the first coordinate of / is an isomor-
phism of A onto B.

Notice that in the connected case, the existence of an isomorphism
between any W(a) and Wφ) is sufficient, (with p = q), to insure the
isomorphism of A and B. If the two sequences W(A) and W(B) have
the same number of elements, then we must have p = q and conversely.
This yields

5.15. COROLLARY. If A, B are finite and connected then A^B
if and only if W(A) ~ W(B).

6. Cancellation. We can now apply the preceding results to the
cancellation problem for finite unary algebras.

It is readily seen that in any ordered semigroup either of x x —
y*y or x z = y z implies x = y. The system of infinite basic algebras
with and ^ is (up to isomorphism) such a semigroup. This system in-
cludes W algebras and we apply Lemma 4.8 to the system of finite
sequences of W algebras. From these considerations we obtain for finite
unary algebras A, B, C,
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6.1. LEMMA. W(A) W(A) ~ W(B) W(B) or W(A) W(C) ~ W(B)

W(C) implies W(A) ~ W(B).

6.2. LEMMA. // A, B, and C are finite unary algebras and A2 ~
B2orAxC~BxC, then W(A) is pair wise isomorphic to W(B).

Proof. From 5.13 W(A). W(A) ~ W(A2) ~ W(B2) ~ W(B) W(B), and
similarly f o r i x C ^ ΰ x C . The lemma follows by applying 6.1.

6.3. THEOREM. If A, B, C, are connected finite unary algebras and
A2 ~ B2 or A x C ~ B x C, then A^B.

Proof. The theorem follows from 6.1 and 5.15.
If an algebra is not connected let us say that it is pure if all the

components are p-cyclic for some fixed p and use the term p-cyclic for
pure algebras as well as connected algebras.

6.4. THEOREM. If A, B, and C are pure finite unary algebras and
A2~B2; or Ax C~B x C and A/0 ~ B/0, then A~B.

Proof. From 6.2 we obtain W(A) ~ W(B). Since we have unique
square roots for cyclic algebras (2.3) and from the hypothesis in the
other case we see that the cyclic structure of both A and B is the same.
They are both pure and consequently there is an integer p such that
all of the cycles of A and B are p-cycles. Given W(A) and W(B) and
p we can put each of the elements of W(A) and W(B) back together
again—see 5.14 and its proof. This will yield the components of A and
B each repeated p times, hence A and B must be isomorphic.

If A is a finite algebra we can write A = Aλ [j A2 [j >* \J An in
which each At is a pure subalgebra (a collection of components) and the
decomposition is maximal in the sense that At U A3 is not pure. This
decomposition is clearly unique up to order and the integer n is called
the length of A. We can now complete the solution of the square root
problem with

6.5. THEOREM. If A and B are finite unary algebras and A2 ~ B2

then A~ B.
The proof is by induction on n, the length of A (and in view of

2.3, also the length of B). For n = 1 the conclusion is part of § 6.4.
For n > 1, assuming the result for smaller n, we know from 2.3 that
the cyclic structure of A and B is the same. Hence, in the decomposi-
tion into pure subalgebras, A = Ax U A2 U U An, B = Bλ U B2 U U Bn,
we may assume that both At and B% consist of pΓcyclic algebras with
AJO ~ J5J0, and pλ < p2 < < pn.

It is not possible for At to be isomorphic to B% for all i Φ j and
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Aj φ Bj. For we know that W(A) ~ W(B) and if the above condition
were to hold then there would be a one-to-one correspondence between
the W algebras obtained from At ί Φ j and Bt i Φ j and hence between
those obtained from A3 and B3. But this and the fact that A3 and B3

have the same cyclic structure implies that A3 ~ B3.
Hence, if A ^ B then for some smallest j < n Aj Φ B3. If J is the

set of indices for which piy i e I divides p3; let P = \J {APi: i e /}, Q =
U {BH\ i e 1} and define A", B" so that A = P \J A", B = Q \j B". Then
A2 = P2 U PA" U A"P U A"2. But for integers ra, p, q; [p, q] divides m
if and only if p divides m and q divides m. Hence the components of
P2 are those which are Λ -cyclic with k dividing p3. From this it follows
that when the isomorphism. given between A2 and B2 is restricted to
P2, it maps P 2 isomorphically onto Q2. Hence P ~ Q since P and Q are
shorter than A and B. This implies that A3 ^ B3 which is a contradic-
tion and completes the proof.

7 Summary• We have seen that all finite unary algebras have
unique (if any) square roots, and that in some cases A x C ^ B x C im-
plies A^ B. This last implication does not hold in general for finite
algebras. The simplest example of its failure is: A a 2-cycle and B two
1-cycles. In this case i x i ^ ί x i and A η^ B.z It is easy to see
that if A is a fc-cycle and B is any collection of pΓcycles with pt \ k and
Y_ipi = k then the same situation obtains.

In view of 6.2 it would be reasonable to conjecture that if the cyclic
structure of A and B is the same then A x C ~ B x C implies A ^ B.
Whenever there is only one way of putting the W algebras back toge-
ther, as in the pure case when the size of the cyclic parts is determin-
ed, we can obtain cancellation.

In the infinite case, it is known that an algebra need not have
a unique square root, a simple example being: A and B free unary al-
gebras with k and I generators, k Φ I. Then A2 ~ B2 but Aη^B. It
seems likely that the results of this paper could be generalized to suita-
ble classes of infinite algebras such as basic algebras, locally finite con-
nected algebras, or algebras satisfying some kind of descending chain
condition. We have not as yet attempted such generalizations.

8. Proof of Theorem 3.8

THEOREM. If A, B are basic algebras with A\k ~ Bjk for all k ^ 0,
then A~ B.

Proof. If A, B are finite the theorem is trivial; we assume that
they are infinite. For each k let Jfc be the set of isomorphisms of A\k

3 This example is attributed to B. Jόnsson by Birkhoff [1], p. 96, ex. 4.
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onto B/k. Ik is not empty, and since Ak is finite, so is Ik. If m > k
and φ e I™ then (φ)Alk(φ restricted to Ajk) e Ik; hence, some members
of Ik must be the restrictions of infinitely many isomorphisms of greatet
degree, and in fact of arbitrarily great degree. Let Ek be the subser
of Ik consisting of isomorphisms of this type. If φ e Ek there is a
member of Ek+U ψ, with (ψ)Ajk — φ, let Eφ be the subset of Ek+1 satis-
fying this condition. By the axiom of choice there is a function /
which selects for each φ in Ek an f(φ) in Eφ.

We now define φ0: A/0 ~ B/Q by φo(α) = b (this is the only member
of Jo); and for k > 0 φk — /(Φfc_i). We show that φ = \J φk is an isomor-
phism, φ : A~ B. In the sequence φ0, φx, each φ is the restriction
of φi+1 to A/i so that φ is a function. Since JJ A\i and each A\i is the
domain of φi the domain of φ is A. If α? e A then a; e A\i for some
i φ(aj') = Φι(xf) — Φi(x)r = Φ{x)f. It is equally easy to see that φ is one-
to-one and onto B, and consequently is an isomorphism.
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