THE MULTIPLICATIVE SEMIGROUP OF INTEGERS MODULO m

Edwin Hewitt and H. S. Zuckerman

1. Introduction. Throughout this paper, m denotes a fixed integer >1. The set of all residue classes modulo m is denoted by S_{m}. For an integer $x,[x]$ denotes the residue class containing x. Under the usual multiplication $[x] \cdot[y]=[x y], S_{m}$ is a semigroup. The subgroup of S_{m} consisting of all residue classes $[x]$ such that $(x, m)=1$ is denoted by G_{m}.

We write $m=\prod_{j=1}^{r} p_{j}^{\alpha_{j}}$, where the p_{j} are distinct primes and the α_{j} are positive integers. Following the usual conventions, we take void products to be 1 and void sums to be 0 .

In 2.6-2.11 of [2], the structure of finite commutative semigroups is discussed. In § 2, we work out this structure for S_{m}. In § 3, we give a construction based on [2], 3.2 and 3.3 , for all of the semicharacters of S_{m}. In $\S 4$, we prove that if χ is a semicharacter of S_{m} assuming a value different from 0 and 1 , then $\sum_{[x] \in s_{m}} \chi([x])=0$. In $\S 5$, we compute $\chi([x])$ explicitly in terms of the integer x, for an arbitrary semicharacter χ of S_{m}. In $\S 6$, we discuss the structure of the semigroup of all semicharacters of S_{m}.

Our interest in S_{m} arose from seeing the interesting paper [4] of Parízek and Schwarz. Some of their results appear in somewhat different form in §2. Other writers ([1], [5], [6], [7]) have also dealt with S_{m} from various points of view. In particular, a number of the results of $\S 2$ appear in [6] and in more detail in [7]. We have also benefitted from conversations with R. S. Pierce.
2. The structure of S_{m}. Let G be any finite commutative semigroup, and let a denote an idempotent of G. The sets $T_{a}=\left\{x: x \in G, x^{m}=a\right.$ for some positive integer $m\}$ are pairwise disjoint subsemigroups of G whose union is G. The set $U_{a}=\left\{x: x \in T_{a}, x^{l}=x\right.$ for some positive integer $l\}$ is a subgroup of G and is the largest subgroup of G that contains a. For a complete discussion, see [2], 2.6-2.11. In the present section, we identify the idempotents a of S_{m} and the sets T_{a} and U_{a}. We first prove a lemma.
2.1 Lemma. Let x be any non-zero integer, written in the form

$$
\prod_{j=1}^{r} p_{j}^{\beta_{j}} \cdot a, \quad \quad \beta_{j} \geqq 0,(a, m)=1
$$

[^0]Then there is an integer c prime to m such that

$$
x \equiv \prod_{j=1}^{r} p_{j}^{\lambda} \cdot c(\bmod m)
$$

where $\lambda_{j}=\min \left(\alpha_{j}, \beta_{j}\right)(j=1, \cdots, r) . \quad$ If

$$
x \equiv \prod_{j=1}^{r} p_{j}^{\mu_{j}} \cdot d(\bmod m),
$$

where $0 \leqq \mu_{j} \leqq \alpha_{j}(j=1, \cdots, r)$ and $(d, m)=1$, then $\mu_{j}=\lambda_{j}(j=1, \cdots, r)$. However, it may happen that $d \not \equiv c(\bmod m)$.

$$
\begin{aligned}
& \text { Proof. Let } b=\prod_{\substack{j \\
a_{j}=\beta_{j}}} p_{j} . \quad \text { Then we have } \\
& \qquad \begin{aligned}
x+b m & =p_{1}^{\beta_{1}} \cdots p_{r}^{\beta_{r}} a+p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}} b \\
& =\prod_{j=1}^{r} p_{j}^{\min \left(\alpha_{j}, \beta_{j}\right)} \cdot(A a+B),
\end{aligned}
\end{aligned}
$$

where

$$
A=\prod_{j=1}^{r} p_{j}^{\max \left(0,\left(\beta_{j}-\alpha_{j}\right)\right)}
$$

and

$$
B=\prod_{j=1}^{r} p_{j}^{\max \left(0,\left(\alpha_{j}-\beta_{j}\right)\right)} \cdot b
$$

Then it is easy to see that $(A \alpha+B, m)=1$, so that

$$
x \equiv \prod_{j=1}^{r} p_{j}^{\min \left(\alpha_{j}, \beta_{j}\right)} \cdot c(\bmod m)
$$

where $c=A a+B$ is prime to m. The last two statements of the lemma are also easily checked.
2.2 Theorem. Consider the 2^{r} sequences $\left\{\delta_{1}, \cdots, \delta_{r}\right\}$, where $\delta_{j}=0$ or $\alpha_{j}(j=1, \cdots, r)$. Corresponding to each such sequence, there is exactly one idempotent of the semigroup S_{m}, and different sequences give different idempotents. The idempotent corresponding to $\left\{\delta_{1}, \cdots, \delta_{r}\right\}$ can be written as

$$
\left[\prod_{j=1}^{r} p_{j}^{\delta j} \cdot d\right]
$$

where d is any solution of the congruence

$$
\prod_{j=1}^{r} p_{j}^{\delta_{j}} \cdot d \equiv 1\left(\bmod \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}}\right)
$$

Proof. An element [x] of S_{m} is idempotent if and only if $x^{2} \equiv x(\bmod m)$. If x is written as in 2.1 , this congruence becomes $\Pi_{j=1}^{r} p_{j}^{2 \lambda_{j}} \cdot c^{2} \equiv \prod_{j=1}^{r} p_{j}^{\lambda_{j}} c(\bmod m)$, which is equivalent to

$$
\begin{equation*}
\prod_{j=1}^{r} p_{j}^{\lambda_{j} j} \cdot c \equiv 1\left(\bmod \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\lambda_{j}}\right) \tag{1}
\end{equation*}
$$

The congruence (1) has a solution c if and only if $\prod_{j=1}^{r} p_{j}^{\lambda_{j}}$ is relatively prime to $\prod_{j=1}^{r} p_{j}^{\alpha_{j}-\lambda_{j}}$, that is, if and only if $\lambda_{j}=0$ or $\alpha_{j}(j=1, \cdots, r)$. If c_{0} is a solution of (1), then all solutions of (1) are given by

$$
c=c_{0}+y \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\lambda_{j}},
$$

where y is an integer. Plainly

$$
\left[\prod_{j=1}^{r} p_{j}^{\lambda} c\right]=\left[\prod_{j=1}^{r} p_{j}^{\lambda j} c_{0}\right]
$$

for all such c.
We have thus proved the existence of a unique idempotent

$$
\left[\prod_{j=1}^{r} p_{j}^{\delta_{j} j} \cdot d\right]
$$

corresponding to a sequence $\left\{\delta_{1}, \cdots, \delta_{r}\right\}$, where $\delta_{j}=0$ or $\alpha_{j}(j=1, \cdots, r)$. If $\left\{\delta_{1}, \cdots, \delta_{r}\right\}$ and $\left\{\delta_{1}^{\prime}, \cdots, \delta_{r}^{\prime}\right\}$ are distinct such sequences, the corresponding idempotents are distinct by 2.1.

2.21 Corollary. Let

$$
\left[\prod_{j=1}^{r} p_{j}^{\delta_{j} j} \cdot d\right]
$$

and

$$
\left[\prod_{j=1}^{r} p_{j}^{8,} \cdot d^{\prime}\right]
$$

be idempotents in S_{m}, written as in 2.2. Then their product is the idempotent

$$
\left[\prod_{j=1}^{r} p_{j}^{\max \left(\delta_{j}, \delta_{j}^{\prime}\right)} \cdot d^{\prime \prime}\right]
$$

as in Theorem 2.2.
This follows directly from 2.1 and the obvious fact that products of idempotents are idempotent.

We next determine the sets T_{a} and U_{a} defined above.
2.3 Theorem. Let

$$
[x]=\left[\prod_{j=1}^{r} p_{j}^{\lambda_{j}^{j} c}\right]
$$

be any element of S_{m}, where $0 \leqq \lambda_{j} \leqq \alpha_{j}(j=1, \cdots, r)$ and $(c, m)=1$. Then $[x] \in T_{a}$, where the idempotent

$$
a=\left[\prod_{\substack{1, j \leq s) r \\ \lambda, j>0}} p_{j}^{x_{j}} \cdot d\right],
$$

and d is as in 2.2.
Proof. The idempotent a such that $[x] \in T_{a}$ has the property that $[x]^{n k}=a$ for some positive integer k and all integers $n \geqq$ some fixed positive integer n_{0} (see [2], 2.6.2). For $n=n_{0} \cdot \max \left(\alpha_{1}, \cdots, \alpha_{r}\right), 2.1$ implies that

$$
a=[x]^{n k}=\left[x^{n k}\right]=\left[\prod_{j=1}^{r} t_{j}^{n k \lambda_{j}} \cdot c^{n k}\right]=\left[\prod_{j=1}^{r} p_{j}^{\min \left(n k \lambda_{j}, \alpha_{j}\right)} \cdot d^{\prime}\right]=\left[\prod_{j=1}^{r} p_{j}^{\delta_{j}} \cdot d\right],
$$

where $\delta_{j}=0$ if $\lambda_{j}=0$ and $\delta_{j}=\alpha_{j}$ if $\lambda_{j}>0$, and d^{\prime} and d are relatively prime to m.

2.4 Theorem. Let

$$
a=\left[\prod_{j=1}^{r} p_{j}^{s_{j}} \cdot d\right]
$$

be any idempotent of S_{m}, written as in 2.2. The group U_{a} consists of all elements of S_{m} of the form

$$
\left[\prod_{j=1}^{r} p_{j}^{\S s \cdot c}\right]
$$

where $(c, m)=1$.
Proof. Let $[x] \in U_{a}$. Then for some integers $l>1$ and $k \geqq 1$ and all integers $n \geqq n_{0}$, we have $[x]^{l}=[x]$ and $[x]^{n k}=a$. This implies that $[x]=[x]^{n k+l}$. Writing x as in 2.1 and using 2.1, we now have

$$
\prod_{j=1}^{r} p_{j}^{\lambda} \cdot c \equiv \prod_{j=1}^{r} p_{j}^{\lambda_{j}(n k+l)} c^{n k+l} \equiv \prod_{\substack{1, j \leq \leq r \\ \lambda_{j} \leq 0}} p_{j}^{\alpha j} \cdot h(\bmod m),
$$

provided that n is sufficiently large; here $(h, m)=1$. From 2.1 we infer that $\lambda_{j}=0$ or $\alpha_{j}(j=1, \cdots, r)$. Since $[x] \in U_{a} \subset T_{a}, 2.3$ now implies that $\lambda_{j}=\delta_{j}(j=1, \cdots, r)$.

Now let $x=\prod_{j=1}^{r} p_{j}^{\delta_{s}} \cdot c$, where $(c, m)=1$. Then 2.3 shows that $[x] \in T_{a}$. To prove that $[x] \in U_{a}$, we need to find an integer $l>1$ such that $[x]^{l}=[x]$. This is equivalent to finding an l such that

$$
\left(\prod_{j=1}^{r} p_{j}^{\delta j} \cdot c\right)^{l} \equiv \prod_{j=1}^{r} p_{j}^{\delta j} \cdot c(\bmod m)
$$

and this congruence is equivalent to the congruence

$$
\left(\prod_{j=1}^{r} p_{j}^{\delta_{j}} \cdot c\right)^{l-1} \equiv 1\left(\bmod \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}}\right) .
$$

Since

$$
\prod_{j=1}^{r} p_{j}^{\delta_{j}^{\prime} \cdot c}
$$

is relatively prime to the modulus, such an l exists.
We now identify the groups U_{a}.
2.5 Theorem. Let

$$
a=\left[\prod_{j=1}^{r} p_{j}^{s_{j}^{s}} \cdot d\right]
$$

be any idempotent of S_{m}, written as in 2.2. Let

$$
A=\prod_{j=1}^{r} p_{j}^{\alpha_{j} j-\delta_{j}} .
$$

The group U_{a} is isomorphic to the group G_{A}.
Proof. For every integer x, let $[x]^{\prime}$ be the residue class modulo A to which x belongs. For $[x] \in S_{n}$, let $\tau([x])=[x]^{\prime}$. Plainly τ is singlevalued and is a homomorphism of S_{m} onto S_{A}. We need only show that τ is one-to-one on U_{a}. If $(c, m)=\left(c^{*}, m\right)=1$ and

$$
\tau\left(\left[\prod_{j=1}^{r} p_{j}^{\delta_{j}^{s}} \cdot c\right]\right)=\tau\left(\left[\prod_{j=1}^{r} p_{j}^{\delta_{j}} \cdot \bullet^{*}\right]\right),
$$

then

$$
\prod_{j=1}^{r} p_{j}^{\delta_{j}^{j}} \cdot c \equiv \prod_{j=1}^{r} p_{j}^{\gamma_{j}} \cdot c^{*}(\bmod A),
$$

which implies that $c \equiv c^{*}(\bmod A)$, because $\left(\prod_{j=1}^{r} p_{j}^{\delta_{j}^{j}}, A\right)=1$. Since $\Pi_{j=1}^{j} p_{j}^{\delta_{j}^{j}} \cdot A=m$, we can multiply the last congruence by $\prod_{j=1}^{\gamma} p_{j}^{\delta_{j}^{j}}$ to obtain

$$
\prod_{j=1}^{r} p_{j}^{\delta_{j}} \cdot c \equiv \prod_{j=1}^{r} p_{j}^{\delta_{j}} \cdot c^{*}(\bmod m) .
$$

3. A construction of the semicharacters of S_{m}. A semicharacter of S_{m} is a complex-valued multiplicative function defined on S_{m} that is not identically zero. The set X_{m} of all semicharacters of S_{m} forms a semigroup under pointwise multiplication, since [1] is the unit of S_{m}
and $\chi([1])=1$ for all $\chi \in X_{m}$. In this section, we apply the construction of [2], 3.2 and 3.3, to obtain the semicharacters of S_{m}. In §5, we will give a second construction of the semicharacters of S_{m}, more explicit than the present one, and independent of [2]. This construction will enable us to identify X_{m} as a semigroup (§6).

Theorems 3.2 and 3.3 of [2] give a description of all semicharacters of S_{m} in terms of the groups U_{a}. Let χ_{a} be any character of the group U_{a}. We extend χ_{a} to a function on all of S_{m} in the following way:
(1) $\chi([x])=\left\{\begin{array}{l}0 \text { if } a b \neq a \text { for the idempotent } b \text { such that }[x] \in T_{b} ; \\ \chi_{a}([x] a) \text { if } a b=a \text { for the idempotent } b \text { such that }[x]\end{array}\right.$

The set of all such functions χ is the set X_{m}.
3.1 Theorem. The semigroup X_{m} has exactly

$$
\prod_{j=1}^{r}\left(1+p_{j}^{\alpha_{j}}-p_{j}^{\alpha_{j}-1}\right)
$$

elements.
Proof. For each idempotent $a=\left[p_{1}^{\delta_{1}} \cdots p_{r}^{\delta_{r}} c\right]$ as in 2.2, (1) yields as many distinct semicharacters of S_{m} as there are characters of the group U_{a}. The group U_{a} has just as many characters as elements. By 2.5, U_{a} consists of

$$
\varphi\left(\prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}}\right)=\prod_{\substack{1 \leq j \leq r \\ \delta_{j}=0}}\left\{p_{j}^{\alpha_{j}-1}\left(p_{j}-1\right)\right\}
$$

elements. Also, distinct idempotents a and b of S_{m} yield distinct semicharacters of S_{m} under the definition (1). Therefore the number of elements in X_{m} is

$$
\begin{gather*}
\sum_{\delta} \varphi\left(\prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}}\right)=\sum_{\delta} \varphi\left(\prod_{\substack{1 \leq j \leq r \\
\delta_{j}=0}} p_{j}^{\alpha_{j}}\right)=\sum_{\delta}\left(\prod_{\substack{1 \leq j \leq r \\
\delta_{j}=0}} \varphi\left(p_{j}^{\alpha_{j}}\right)\right) \tag{2}\\
=\prod_{j=1}^{r}\left(1+\varphi\left(p_{j}^{\alpha_{j}}\right)\right)=\prod_{j=1}^{r}\left(1+p_{j}^{\alpha_{j}}-p_{j}^{\alpha_{j} j-1}\right) .
\end{gather*}
$$

The sums in (2) are taken over all sequences $\left\{\delta_{1}, \cdots, \delta_{r}\right\}$ where each δ_{j} is 0 or α_{j}.
3.2 Theorem. Let χ be a semicharacter of S_{m} as given in (1) with the idempotent $a=\left[p_{1}^{\delta_{1}} \cdots p_{r}^{\delta_{r}} d\right]$, and let χ^{\prime} be a semicharacter with the idempotent $a=\left[p_{1}^{\delta_{1}^{\prime}} \cdots p_{r}^{\delta_{r}^{\prime}} d^{\prime}\right]$. Then the semicharacter $\chi \chi^{\prime}$ is given by
(1) with the idempotent $a^{\prime \prime}=\left[p_{1}^{\min \left(\delta_{1}, \delta_{1}^{\prime}\right)} \cdots p_{r}^{\min \left(\delta_{r}, \delta_{r}^{\prime}\right)} d\right]$.

This theorem follows at once from 2.21 and the definition (1).
We now prove two facts needed in § 4.
3.3 Theorem. Let χ be a semicharacter of S_{m} that assumes somewhere a value different from 0 and 1 . Then χ assumes a value different from 1 somewhere on G_{m}.

Proof. Definition (1) implies that the character χ_{a} of U_{a} assumes a value different from 1. It is also easy to see that $G_{m}=U_{[1]}$. For $[x] \in G_{m}$, definition (1) implies that $\chi([x])=\chi_{a}(a[x])$. We need therefore only show that the mapping $[x] \rightarrow a[x]$ carries G_{m} onto U_{a}.

Write $a=\left[p_{1}^{\delta_{1}} \cdots p_{r}^{\delta_{r}} d\right]$. Every element of U_{a} can be written as [$\left.p_{1}^{\delta_{1}} \cdots p_{r}^{\delta_{r}} c\right]$ where $(c, m)=1$, by 2.4. We must produce an $[x] \in G_{m}$ such that $a[x]=\left[p_{1}^{\delta_{1}} \cdots p_{r}^{\delta_{r}} c\right]$. That is, we must produce an integer x such that

$$
\begin{equation*}
\prod_{j=1}^{r} p_{j}^{\delta_{j}^{j}} \cdot d x \equiv \prod_{j=1}^{r} p_{j}^{\gamma_{j}^{j}} \cdot c(\bmod m) \tag{3}
\end{equation*}
$$

and $(x, m)=1$. The congruence (3) is equivalent to

$$
\begin{equation*}
d x \equiv c\left(\bmod \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}}\right) . \tag{4}
\end{equation*}
$$

Since d is relatively prime to the modulus in (4), the congruence (4) has a solution x_{0}. We determine x as a number

$$
x_{0}+l \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}},
$$

where l is an integer for which

$$
x_{0}+l \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}} \equiv 1\left(\bmod \prod_{j=1}^{r} p_{j}^{\delta_{j}}\right) .
$$

Clearly

$$
x=x_{0}+l \prod_{j=1}^{r} p_{j}^{\alpha_{j}-\delta_{j}}
$$

satisfies (3) and the condition $(x, m)=1$.
3.4. Let $\left\{\lambda_{1}, \cdots, \lambda_{r}\right\}$ be a sequence of integers such that $0 \leqq \lambda_{j} \leqq \alpha_{j}$ $(j=1, \cdots, r)$, and consider the set $V\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ of all $\left[p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r} x}\right] \in S_{m}$ with $(x, m)=1$. It is easy to see that this set is contained in T_{a}, where a is the idempotent

$$
\left[\prod_{\substack{1 \leq j \leq r \\ j_{j}>0}} p_{j}^{\alpha_{j}} \cdot d\right] .
$$

3.5 Theorem. Given $\lambda_{1}, \cdots, \lambda_{r}$, there is a positive integer k such that the mapping $[x] \rightarrow\left[p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda} r x\right]$ of G_{m} onto $V\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ is exactly .k to one.

Proof. Let u be any integer such that $(u, m)=1$, and let $\left[x_{1}\right]$, $\cdots,\left[x_{k_{u}}\right]$ be the distinct elements of G_{m} such that $\left[p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda} x_{j}\right]=$ [$\left.p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r}} u\right]$. That is,

$$
p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r}} x_{j} \equiv p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r} r} u(\bmod \dot{m})\left(j=1, \cdots, k_{u}\right)
$$

Let u^{*} be any solution of $u u^{*} \equiv 1(\bmod m)$. If $(v, m)=1$, then we have

$$
p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r}} r u^{*} v x_{j} \equiv p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r}} r v(\bmod m)
$$

Since $\left(u^{*} v x_{j}, m\right)=1\left(j=1, \cdots, k_{u}\right)$ and the elements $\left[u^{*} v x_{1}\right], \cdots,\left[u^{*} v x_{k_{u}}\right]$ are distinct in G_{m}, it follows that $k_{u} \leqq k_{v}$. Similarly, we have $k_{v} \leqq k_{u}$.
4. A property of semicharacters of S_{m}. It is well known and obvious that if H is a finite group and χ is a character of H, then $\sum_{x \epsilon_{H}} \chi(x)=0$ or $o(H)$ according as $\chi \neq 1$ or $\chi=1$. This result does not hold in general for finite commutative semigroups. As a simple example, consider the cyclic finite semigroup $T=\left\{x, x^{2}, \cdots, x^{l}, \cdots, x^{l+k-1}\right\}$, where $x^{l+k}=x^{l}$, and l and $l+k$ are the first pair of positive integers. $m, n, m<n$, for which $x^{m}=x^{n}$. The following facts are easy to show, and follow from the general theory in [2]. The subset $\left\{x^{l}, x^{l+1}, \cdots, x^{l+k-1}\right\}$ is the largest subgroup of T. Its unit is the element $x^{u k}$, where the integer u is defined by $l \leqq u k<l+k$. The general semicharacter of T is the function χ whose value at x^{h} is $\exp (2 \pi i h j / k)$, where $j=0$, $1, \cdots, k-1$. For $j=1,2, \cdots, k-1$, the $\operatorname{sum} \sum_{n=1}^{k+l-1} \chi\left(x^{h}\right)$ is equal to

$$
\frac{1-\exp \left(\frac{2 \pi i(k+l) j}{k}\right)}{1-\exp \left(\frac{2 \pi i j}{k}\right)},
$$

which is 0 if and only if $k /(k, l)$ divides j. Hence the sum of a semicharacter assuming values different from 0 and 1 need not be 0 .

Curiously enough, the above-mentioned property of groups holds for the semigroup S_{m}.
4.1 Theorem. Let χ be a semicharacter of S_{m} that assumes somewhere a value different from 0 and 1 . Then $\sum_{[x] \in s_{m}} \chi([x])=0$.

Proof. It is obvious from 2.1 that the sets $V\left(\lambda_{1}, \cdots, \lambda_{r}\right)$ of 3.4 are pairwise disjoint and that their union is S_{m}. We therefore need only show that $\sum_{[x] \in V\left(\lambda_{1}, \ldots, \lambda_{r}\right)} \chi([x])=0$ for all $\left\{\lambda_{1}, \cdots, \lambda_{r}\right\}$. By $3.3, \chi$ assumes a value different from 1 somewhere on the group G_{m}, so that $\sum_{[x] \in G_{m}} \chi([x])=0$. (Note that χ on G_{m} is a character of the group G_{m}.) Thus we have $0=\sum_{[x] \in \epsilon_{m}} \chi\left(\left[p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r}}\right]\right) \chi([x])=\sum_{[x] \in \epsilon_{m}} \chi\left(\left[p_{1}^{\lambda_{1}} \cdots p_{r}^{\lambda_{r}} x\right]\right)=$ $k \sum \chi([y])$, where $[y]$ runs through $V\left(\lambda_{1}, \cdots, \lambda_{r}\right)$.
5. A second construction of semicharacters of S_{m}. In this section, we compute explicitly all of the semicharacters of S_{m}. The case m even is a little different from the case m odd. When m is even, we will take $p_{1}=2$. To compute the semicharacters of S_{m}, we need to examine the structure of S_{m} in more detail than was done in $\S 3$. For this purpose, we fix once and for all the following numbers.
5.1 Definition. For $j=1, \cdots$, r, let
$g_{j}=a$ primitive root modulo p_{j}^{α} if p_{j} is odd;
$g_{1}=5$ if $p_{1}=2$;
$h_{j}=g_{j}+y_{j} p_{j}^{\alpha_{j}}$ where y_{j} is such that $h_{j} \equiv 1\left(\bmod m / p_{j}^{\alpha_{j}}\right)$;
$h_{0}=-1+y_{0} p_{1}^{\alpha_{1}}$ where y_{0} is such that $h_{0} \equiv 1\left(\bmod m / p_{1}^{\alpha_{1}}\right)$;
$q_{j}=p_{j}+z_{j} p_{j}^{\alpha_{j}}$ where z_{j} is such that $q_{j} \equiv 1\left(\bmod m / p_{j}^{\alpha_{j}}\right) ;$
For $j=1, \cdots, r, l=1, \cdots, r, j \neq l$, and p_{l} odd, let $k_{j l}$ be a positive integer such that $p_{j} \equiv g_{l}^{k_{j l}}\left(\bmod p_{l}^{\alpha}\right)$.
For $j=2, \cdots, r$ and $p_{1}=2$ let
$k_{j_{1}}$ be a positive integer such that $p_{j} \equiv(-1)^{\left(p_{j}-1\right) / 2} g_{1}^{k_{j 1}}\left(\bmod p_{1}^{\alpha_{1}}\right)$.
Plainly $y_{0}, y_{1}, \cdots, y_{r}$ and z_{1}, \cdots, z_{r} exist. For p_{l} odd, the integers $k_{j l}$ exist because g_{l} is a primitive root modulo $p_{l}^{\alpha}{ }^{\alpha}$. For $p_{1}=2$, the integers $k_{j 1}$ exist for $\alpha_{1} \geqq 3$ by [3], p. 82, Satz 126. For $\alpha_{1}=1$ or 2 , $k_{j 1}$ can be any positive integer.
5.2. Let x be any integer $\neq 0$. Then $x=\prod_{j=1}^{r} p_{j}^{\beta_{j}(x)} \cdot \alpha(x)$, where $\beta_{j}(x) \geqq 0$ and $(a(x), m)=1$. Plainly the numbers $\beta_{j}=\beta_{j}(x)$ and $a=a(x)$ are uniquely determined by x. For $j=1, \cdots, r$ and p_{j} odd, let $e_{j}=e_{j}(x)$ be any positive integer such that

$$
a(x) \equiv g_{j}^{e}(x)\left(\bmod p_{j}^{x}\right)
$$

The number $e_{j}(x)$ is uniquely determined modulo $\varphi\left(p_{j}^{\alpha_{j}}\right)$. For $p_{1}=2$, let
$e_{1}=e_{1}(x)$ be any positive integer such that

$$
a(x) \equiv(-1)^{(a(x)-1) / 2} g_{1}^{e_{1}(x)}\left(\bmod p_{1}^{\alpha_{1}}\right)
$$

For $\alpha_{1} \geqq 3, e_{1}(x)$ exists and is uniquely determined modulo $p_{1}^{x_{1}-2}$ (see [3], p. 82, Satz 126). For $\alpha_{1}=1$ or $2, e_{1}(x)$ can be any positive integer.

If m is even, let

$$
\begin{equation*}
A(x)=\left(\prod_{j=2}^{r} h_{0}{ }^{\left(p_{j}-1\right) \beta_{j} / 2}\right)\left(\prod_{l=1}^{r} \prod_{j=1}^{r} h_{l}^{\beta_{j} k_{j l}}\right)\left(\prod_{j=1}^{r} q_{j}^{\beta_{j}}\right) h_{0}{ }^{(a-1) / 2}\left(\prod_{j=1}^{r} h_{j}^{\rho_{j}}\right) . \tag{e}
\end{equation*}
$$

If m is odd, let

$$
\begin{equation*}
A(x)=\left(\prod_{l=1}^{r} \prod_{\substack{j=1 \\ j \neq 1}}^{r} h_{l}^{\beta_{j k j}}\right)\left(\prod_{j=1}^{r} q_{j}^{\beta_{j}}\right)\left(\prod_{j=1}^{r} h_{j}^{e_{j}}\right) . \tag{0}
\end{equation*}
$$

If m is even, it is easy to see from 5.1 that

$$
\begin{align*}
A(x) & \equiv\left(\prod_{j=2}^{r}(-1)^{\left(p_{j}-1\right) \beta_{j} / 2}\right)\left(\prod_{j=2}^{r} g_{1}^{\beta_{j} k_{j 1}}\right) p_{1}^{\beta_{1}}(-1)^{(a-1) / 2} g_{1}^{e_{1}}\left(\bmod p_{1}^{\alpha_{1}}\right) \tag{2}\\
& \equiv\left(\prod_{j=2}^{r}(-1)^{\left(p_{j}-1\right) / 2} g_{1}^{k_{j 1}}\right)^{\beta_{j}} p_{1}^{\beta_{1}}(-1)^{(a-1) / 2} g_{1}^{e_{1}} \\
& \equiv \prod_{j=2}^{r}{ }_{p j}^{\beta j} \cdot p_{1}^{\beta_{1}} a \equiv x\left(\bmod p_{1}^{\alpha_{1}}\right),
\end{align*}
$$

and, if $n=2, \cdots, r$,

$$
A(x) \equiv \prod_{\substack{j=1 \\ j \neq n}}^{r} g_{n}^{\beta_{j} k_{j n}} \cdot p_{n}^{\beta} g_{n}^{e} g_{n}^{e n} \equiv \prod_{\substack{j=1 \\ j \neq n}}^{r} p_{j}^{\beta_{j}} \cdot p_{n}^{\beta_{n}} \alpha \equiv x\left(\bmod p_{n}^{v_{n}}\right) .
$$

Therefore $A(x) \equiv x(\bmod m)$ if m is even.
If m is odd, then for $n=1, \cdots, r$, we have

$$
A(x) \equiv \prod_{\substack{j=1 \\ j \neq n}}^{r} g_{n}^{\beta_{j} k_{j} n} \cdot p_{n}^{\beta_{n} n} g_{n}^{e} n \equiv \prod_{\substack{j=1 \\ j \neq n}}^{r} p_{j}^{\beta_{j}} \cdot p_{n}^{\beta_{n} n} a \equiv x\left(\bmod p_{n}^{\alpha_{n}}\right)
$$

Therefore $A(x) \equiv x(\bmod m)$ if m is even or odd.
5.3. Suppose that χ is any semicharacter of S_{m}. Let ψ be the function defined for all integers x by the relation $\psi(x)=\chi([x])$. Then ψ is obviously a semicharacter of the integers under multiplication, and $\psi(x)=\psi(y)$ if $x \equiv y(\bmod m)$. We will construct the semicharacters of S_{m} by finding all of the functions ψ with these properties. As 5.2 shows, ψ is determined by its values on $h_{0}, h_{1}, \cdots, h_{r}$ and q_{1}, \cdots, q_{r}. We now set down relations involving the h 's and q 's which restrict the values that ψ can assume on these integers.
5.4. If p_{j} is odd, then

$$
h_{j}^{\varphi\left(p_{j}^{\alpha_{j}}\right)} \equiv 1\left(\bmod p_{j}^{\alpha_{j}}\right), \quad h_{j}^{\varphi\left(p_{j}^{\alpha_{j}}\right)} \equiv 1\left(\bmod \frac{m}{p_{j}^{\alpha_{j}^{\prime}}}\right) ;
$$

hence

$$
h_{j}^{\varphi\left(p_{j}^{\left.\alpha_{j}\right)}\right.} \equiv 1(\bmod m) .
$$

Also,

$$
h_{0}^{2} \equiv 1\left(\bmod p_{1}^{\alpha_{1}}\right), \quad h_{0}^{2} \equiv 1\left(\bmod \frac{m}{p_{1}^{\alpha_{1}}}\right) ;
$$

hence $h_{0}^{2} \equiv 1(\bmod m)$.
If $p_{1}=2$ and $\alpha_{1}=1$, then $h_{0} \equiv 1(\bmod 2), h_{0} \equiv 1(\bmod m / 2)$; hence $h_{0} \equiv 1(\bmod m)$.

If $p_{1}=2$ and $\alpha_{1}=1$ or 2 , then
$h_{1} \equiv 5 \equiv 1\left(\bmod p_{1}^{\alpha_{1}}\right), h_{1} \equiv 1\left(\bmod m / p_{1}^{\alpha_{1}}\right) ;$ hence $h_{1} \equiv 1(\bmod m)$. If $p_{1}=2$ and $\alpha_{1} \geqq 3$, then
$h_{1}^{\alpha_{1}-2} \equiv 1\left(\bmod p_{1}^{\alpha_{1}}\right), h_{1}^{\alpha_{1}-2} \equiv 1\left(\bmod m / p_{1}^{\alpha_{1}}\right) ;$ hence $h_{1}^{\alpha_{1}-2} \equiv 1(\bmod m)$.
(The first congruence on the line above is proved in [3], p. 81, Satz 125.)
For $j=1, \cdots, r$, we have

$$
\begin{array}{ll}
q_{j}^{\alpha_{j}} \equiv 0, & q_{j}^{\alpha_{j}} h_{j} \equiv 0,
\end{array} \quad q_{j}^{\alpha_{j}+1} \equiv 0\left(\bmod p_{j}^{\alpha_{j}}\right), ~ 子 q_{j}^{\alpha_{j}} \equiv 1, \quad q_{j}^{\alpha_{j}} h_{j} \equiv 1, \quad q_{j}^{\alpha_{j}+1} \equiv 1\left(\bmod \frac{m}{p_{j}^{\alpha_{j}}}\right) . ~ \$
$$

Therefore we have

$$
q_{j}^{\alpha_{j}} \equiv q_{j}^{\alpha_{j}} h_{j} \equiv q_{j}^{\alpha_{j}+1}(\bmod m)
$$

Also, if $p_{1}=2$, we have

$$
\begin{array}{ll}
q_{1}^{\alpha_{1}} \equiv 0, & q_{1}^{\alpha_{1}} h_{0} \equiv 0\left(\bmod p_{1}^{\alpha_{1}}\right) \\
q_{1}^{\alpha_{1}} \equiv 1, & q_{1}^{\alpha_{1}} h_{0} \equiv 1\left(\bmod \frac{m}{p_{1}^{\alpha_{1}}}\right)
\end{array}
$$

Therefore we have

$$
q_{1}^{\alpha_{1}} \equiv q_{1}^{\alpha_{1}} h_{0}(\bmod m)
$$

5.5 If ψ is to be a function on the integers such that $\psi(x)=\chi([x])$ for some semicharacter χ of S_{m}, then the choices of the values of ψ at the h 's and q 's are restricted by the congruences modulo m derived in 5.4. Thus, since $\chi([1])=1$, we have

$$
\begin{aligned}
& \psi\left(h_{j}\right)^{\varphi\left(p_{j}^{\alpha_{j}}\right)}=1 \text { if } p_{j} \text { is odd; } \\
& \psi\left(h_{0}\right)= \pm 1, \text { and } \psi\left(h_{0}\right)=1 \text { if } \alpha_{1}=1 \text { and } p_{1}=2 ; \\
& \psi\left(h_{1}\right)=1 \text { if } p_{1}=2 \text { and } \alpha_{1}=1 \text { or } 2 ; \\
& \psi\left(h_{1}\right)^{2^{\alpha_{1}-2}}=1 \text { if } p_{1}=2 \text { and } \alpha_{1} \geqq 3 .
\end{aligned}
$$

Also we have

$$
\psi\left(q_{j}\right)^{\alpha_{j}}=\psi\left(q_{j}\right)^{\alpha_{j}} \psi\left(h_{j}\right)=\psi\left(q_{j}\right)^{\alpha_{j+1}} \text { for } j=1, \cdots, r .
$$

If $p_{1}=2$, we have

$$
\psi\left(q_{1}\right)^{\alpha_{1}}=\psi\left(q_{1}\right)^{\alpha_{1}} \psi\left(h_{0}\right) .
$$

The last two equalities give us:

$$
\psi\left(q_{j}\right) \neq 0 \text { implies } \psi\left(h_{j}\right)=\psi\left(q_{j}\right)=1 ;
$$

and

$$
\psi\left(q_{1}\right) \neq 0 \text { implies } \psi\left(h_{0}\right)=1 \text { if } p_{1}=2 .
$$

5.6. To construct our functions ψ, we now choose numbers ω_{0}, $\omega_{1}, \cdots, \omega_{r}$ and μ_{1}, \cdots, μ_{r} which are to be $\psi\left(h_{0}\right), \psi\left(h_{1}\right), \cdots, \psi\left(h_{r}\right)$ and $\psi\left(q_{1}\right), \cdots, \psi\left(q_{r}\right)$. The relations in 5.5 show that we must take these numbers such that:

$$
\begin{aligned}
& \omega_{j}^{\varphi\left(\alpha_{p}{ }_{j}\right)}=1 \text { if } j=1, \cdots, r \text { and } p_{j} \text { is odd; } \\
& \omega_{0}= \pm 1 ; \omega_{0}=1 \text { if } p_{1}=2 \text { and } \alpha_{1}=1 \text {, or if } m \text { is odd }{ }^{1} ; \\
& \omega_{1}=1 \text { if } p_{1}=2 \text { and } \alpha_{1}=1 \text { or } 2 ; \\
& \omega_{1}^{2} \alpha_{1}-2 \\
& \alpha_{j}=1 \text { if } p_{1}=2 \text { and } \alpha_{1} \geqq 3 ; \\
& \mu_{j}=0 \text { or } 1 \text { if } j=1, \cdots, r ; \\
& \omega_{j}=1 \text { if } \mu_{j}=1, j=1, \cdots, r ; \\
& \omega_{0}=1 \text { if } p_{1}=2 \text { and } \mu_{1}=1 .
\end{aligned}
$$

Formulas $\left(1_{e}\right)$ and (1_{0}) of 5.2 now require us to define $\psi(x)$ for nonzero integers x as follows:

$$
\begin{align*}
& \left(3_{e}\right) \quad \psi(x)=\left(\prod_{j=2}^{r} \omega_{0}^{\left(p_{j}-1\right) \beta_{j}(x) / 2}\right)\left(\prod_{l=1}^{r} \prod_{j=1}^{r} \omega_{l}^{\beta_{j}(x) k_{j l}}\right)\left(\prod_{j=1}^{r} \mu_{j}^{\beta_{j}(x)}\right) \tag{e}\\
& \cdot \omega_{0}^{(a(x)-1) / 2}\left(\prod_{j=1}^{r} \omega_{j}^{e_{j}(x)}\right) \text { if } m \text { is even }{ }^{2} ; \\
& \left(3_{0}\right) \quad \psi(x)=\left(\prod_{l=1}^{r} \prod_{j=1}^{r} \omega_{l}^{\left.\beta_{j}^{\beta_{j}(x) k_{j l}}\right)\left(\prod_{j=1}^{r} \mu_{j}^{\beta_{j}(x)}\right)\left(\prod_{j=1}^{r} \omega_{j}^{e_{j}(x)}\right) \text { if } m \text { is odd. }}\right.
\end{align*}
$$

Finally, we define $\psi(0)=\psi(m)$.
The q 's, h 's, and k 's appearing in (1) and (3) were fixed once and for all in terms of m. The ω 's and μ 's are at our disposal and serve to define ψ. The β 's are determined uniquely from x; but the e 's are not. As noted in 5.2, e_{j} is determined modulo $\varphi\left(p_{j}^{\alpha_{j}}\right)$ if p_{j} is odd, and e_{1} is determined modulo $p_{1}^{\alpha_{1}-2}$ if $p_{1} \doteq 2$ and $\alpha_{1} \geqq 3$. Since $\omega_{j}^{\varphi\left(p_{j}^{\alpha_{j}}\right)}=1$ if p_{j} is odd, $\omega_{1}^{2_{1}-2}=1$ if $p_{1}=2$ and $\alpha_{1} \geqq 3$, and $\omega_{1}=1$ if $p_{1}=2$ and $\alpha_{1} \leqq 2$, we see that ψ is uniquely defined by the formulas $\left(3_{e}\right)$ and $\left(3_{0}\right)$.
5.7. We now prove that $\psi(x y)=\psi(x) \psi(y)$. Since ψ is obviously bounded and not identically zero, this will show that ψ is a semicharacter.

Suppose first that $x \neq 0, y \neq 0$. Then we have

$$
x=\prod_{j=1}^{r} p_{j}^{\beta_{j}(x)} \cdot \alpha(x), \quad y=\prod_{j=1}^{r} p_{j}^{\beta_{j}(y)} \cdot \alpha(y), \quad x y=\prod_{j=1}^{r} p_{j}^{\beta_{j}(x)+\beta_{j}(y)} \cdot a(x) a(y)
$$

[^1]Therefore $a(x y)=a(x) a(y)$ and $\beta_{j}(x y)=\beta_{j}(x)+\beta_{j}(y)$ for $j=1, \cdots, r$. Also we have

$$
g_{j}^{e_{j}(x y)} \equiv a(x y) \equiv a(x) \alpha(y) \equiv g_{j}^{e_{j}(x)} g_{j}^{e_{j}(y)} \equiv g_{j}^{e_{j}(x)+e_{j}(y)}\left(\bmod p_{j}^{\alpha_{j}}\right)
$$

if p_{j} is odd. Since g_{j} is a primitive root modulo $p_{j}^{\alpha_{j}}$ and $\omega_{j}^{\varphi\left(p_{j}^{\left.\alpha_{j}\right)}=1 \text {, it }\right.}$ follows that $e_{j}(x y) \equiv e_{j}(x)+e_{j}(y)\left(\bmod \varphi\left(p_{j}^{\alpha \jmath}\right)\right)$ and $\omega_{j}^{e_{j}(x y)}=\omega_{j}^{e_{j}(x)} \omega_{j}^{e_{j}(y)}$ if p_{j} is odd $(j=1, \cdots, r)$. If $p_{1}=2$, then $\alpha(x)$ and $a(y)$ are odd, and plainly

$$
\frac{a(x y)-1}{2} \equiv \frac{a(x)-1}{2}+\frac{a(y)-1}{2}(\bmod 2) .
$$

Therefore we have

$$
\omega_{0}^{(a(x y)-1) / 2}=\omega_{0}^{(a(x)-1) / 2} \omega_{0}^{(a(y)-1) / 2}
$$

for both admissible values of ω_{0}. Furthermore,

$$
\begin{aligned}
& (-1)^{(a(x y)-1) / 2} g_{1}^{e_{1}(x y)} \equiv a(x) a(y) \\
& \quad \equiv(-1)^{(a(x)-1) / 2} g_{1}^{e_{1}(x)}(-1)^{(a(y)-1) / 2} g_{1}^{e_{1}(y)}\left(\bmod p_{1}^{\alpha_{1}}\right),
\end{aligned}
$$

if $p_{1}=2$. Therefore we have

$$
g_{1}^{e_{1}^{1}(x y)} \equiv g_{1}^{e_{1}^{1}(x)+e_{1}(y)}\left(\bmod p_{1}^{x_{1}}\right),
$$

if $p_{1}=2$.
Hence, if $\alpha_{1} \geqq 3$ and $p_{1}=2$, we have $e_{1}(x y) \equiv e_{1}(x)+e_{1}(y)\left(\bmod p_{1}^{\alpha_{1}-2}\right)$, as follows from [3], p. 82, Satz 126 (recall that $g_{1}=5, p_{1}=2$). Hence

$$
\omega_{1}^{e_{1}(x y)}=\omega_{1}^{e_{1}(x)} \omega_{1}^{e_{1}(y)} \quad \text { if } \alpha_{1} \geqq 3, p_{1}=2
$$

The last equality also holds if $\alpha_{1} \leqq 2$ and $p_{1}=2$, since $\omega_{1}=1$ in this case.

The foregoing computations, together with (3), now show that $\psi(x y)=\psi(x) \psi(y)$ if $x y \neq 0$.

We next show that $\psi(x y)=\psi(x) \psi(y)$ if $x y=0$. We compute $\psi(m)$. Since $\beta_{j}(m)=\alpha_{j}>0$ for $j=1, \cdots, r$, we have

$$
\prod_{j=1}^{r} \mu_{j}^{\beta_{j}^{j}(m)}=\left\{\begin{array}{l}
1 \text { if } \mu_{1}=\cdots=\mu_{r}=1 \\
0 \text { otherwise }
\end{array}\right.
$$

If $\mu_{1}=\cdots=\mu_{r}=1$, then by 5.6 , we have $\omega_{0}=\omega_{1}=\cdots=\omega_{r}=1$, so that $\psi(x)=1$ for all x. In this case, we have $\psi(x y)=\psi(x) \psi(y)$ for all x and y. If some $\mu_{j}=0$, then $\psi(m)=0$, and hence $\psi(0)=0$. In this case, $\psi(x y)=\psi(x) \psi(y)$ if $x y=0$.
5.8. We now prove that $\psi(x)=\psi(y)$ if $x \equiv y(\bmod m)$. Suppose first that $x y \neq 0$ and $x \equiv y(\bmod m)$. Then

$$
\prod_{j=1}^{r} p_{j}^{\beta_{j}^{\prime}(x)} \cdot a(x) \equiv \prod_{j=1}^{r} p_{j}^{\beta_{j}(y)} \cdot a(y)(\bmod m)
$$

From this, we see that $\beta_{j}(x)>0$ if and only if $\beta_{j}(y)>0$. If, for some j, we have $\beta_{j}(x)>0$ and $\mu_{j}=0$, then $\beta_{j}(y)>0$ and $\psi(x)=0=\psi(y)$.

Now we can suppose that $\mu_{j}=1$ for all j such that $\beta_{j}(x)>0$. Then $\omega_{j}=1$ if $\beta_{j}(x)>0(j=1, \cdots, r)$ and $\omega_{0}=1$ if $\beta_{1}(x)>0$. If m is odd, or if m is even and $\beta_{1}(x)>0$, we have

$$
\begin{align*}
& \psi(x)=\left(\prod_{\substack{l=1 \\
\beta_{l}(x)=0}}^{\prod_{j=1}^{r}} \omega_{j \neq l}^{r} \omega_{l}^{\beta_{j}(x) k_{j l}}\right)\left(\prod_{\substack{j=1 \\
\beta_{j}(x)=0}}^{r} \omega_{j}^{e_{j}(x)}\right), \tag{4}\\
& \psi(y)=\left(\prod_{\substack{l=1 \\
\beta_{l}(x)=0}}^{r} \prod_{j=1}^{r} \omega_{j \neq l}^{r} \omega_{l}^{\beta_{j}(y) k_{j l}}\right)\left(\prod_{\substack{j=1 \\
\beta_{j}(x)=0}}^{r} \omega_{j}^{e_{j}(y)}\right) . \tag{5}
\end{align*}
$$

If m is even and $\beta_{1}(x)=0$, we have
(6) $\psi(x)=\left(\prod_{j=2}^{r} \omega_{0}^{\left({ }_{j}{ }_{j}-1\right) \beta_{j}(x) / 2}\right)\left(\prod_{\substack{l=1 \\ \beta_{l}(x)=0}}^{r} \prod_{\beta_{j} j(x)>0}^{r} \omega_{l}^{\beta_{j}(x) k_{j l}}\right) \omega_{0}{ }^{(a(x)-1) / 2}\left(\prod_{\substack{j=1 \\ \beta_{j}(x)=0}}^{r} \omega_{j}^{\rho_{j}(x)}\right)$,
(7) $\psi(y)=\left(\prod_{j=2}^{r} \omega_{0}{ }^{\left({ }_{j}-1\right) \beta_{j}(y) / 2}\right)\left(\prod_{\substack{l=1 \\ \beta_{l}(x)=0}}^{r} \prod_{\beta_{j}=1}^{r}(x)>0<1 \omega_{l}^{\beta_{j}(y) k_{j s}}\right) \omega_{0}{ }^{(\alpha(y)-1) / 2}\left(\prod_{\substack{j=1 \\ \beta_{j}(x)=0}}^{r} \omega_{j}^{e_{j}(y)}\right)$.

Since $x \equiv y(\bmod m)$, we see from 5.2 that $A(x) \equiv A(y)(\bmod m)$ and hence

$$
\begin{equation*}
A(x) \equiv A(y)\left(\bmod p_{n}^{\alpha}\right) \text { for } n=1, \cdots, r . \tag{8}
\end{equation*}
$$

The congruence

$$
\begin{equation*}
A(x) \equiv \prod_{\substack{j=1 \\ j \neq n}}^{r} h_{n}^{\beta_{j}(x) k_{j n}} \cdot q_{n}^{\beta_{n}(x)} h_{n}^{e_{n}(x)}\left(\bmod p_{n}^{\alpha_{n}}\right) \tag{9}
\end{equation*}
$$

holds if p_{n} is odd. To verify this, use $\left(1_{e}\right)$ and $\left(1_{0}\right)$ together with 5.1. Notice that for $n=1$, we use only (1_{0}).

The congruences (8) and (9), together with the fact that $\beta_{n}(x)=0$ if and only if $\beta_{n}(y)=0$, now show that

$$
\prod_{\substack{j=1 \\ j \neq n}}^{r} h_{n}^{\beta_{j}(x) k_{j l}} \cdot h_{n}^{e_{n}(x)} \equiv \prod_{\substack{j=1 \\ j \neq n}}^{r} h_{n}^{\beta_{j}(y) k_{j n}} \cdot h_{n}^{e_{n}(y)}\left(\bmod p_{n}^{\alpha_{n}}\right)
$$

if p_{n} is odd and $\beta_{n}(x)=0$. This implies that

$$
\sum_{\substack{j=1 \\ j \neq n}}^{r} \beta_{j}(x) k_{j n}+e_{n}(x) \equiv \sum_{\substack{j=1 \\ j \neq n}}^{r} \beta_{j}(y) k_{j n}+e_{n}(y)\left(\bmod \varphi\left(p_{n}^{\alpha_{n}}\right)\right),
$$

and

$$
\begin{equation*}
\prod_{\substack{j=1 \\ j \neq n}}^{r} \omega_{n}^{\beta_{j}(x) k_{j n}} \cdot \omega_{n}^{e_{n}(y)}=\prod_{\substack{j=1 \\ j \neq n}}^{r} \omega_{n}^{\beta_{j}(y) k_{j n}} \cdot \omega_{n}^{e_{n}(y)}, \tag{10}
\end{equation*}
$$

if p_{n} is odd and $\beta_{n}(x)=0$.
Similarly, if $p_{1}=2$ and $\beta_{1}(x)=0$, in which case $g_{1}=5$, (2) implies that

$$
\begin{equation*}
A(x) \equiv\left(\prod_{j=2}^{r}(-1)^{\left(p_{j-1}\right) \beta_{j}(x) / 2}\right)\left(\prod_{j=2}^{r} 5^{\beta_{j}(x) k_{j_{1}}}\right)(-1)^{(\alpha(x)-1) / 2} 5^{e_{1}(x)}\left(\bmod 2^{\alpha_{1}}\right) \tag{11}
\end{equation*}
$$

The congruences (8) and (11), together with the fact that $\beta_{1}(y)=0$, now show that

$$
\begin{array}{r}
(-1)^{\sum_{j=2}^{r} \frac{1}{2}\left(p_{j}-1\right) \beta_{j}(x)+\frac{1}{2}(a(x)-1)} 5^{\sum_{j=2}^{r} \beta_{j}(x) k_{j 1}+e_{1}(x)} \equiv \\
\equiv(-1)^{\sum_{j=2}^{r} \frac{1}{2}\left(p_{j}-1\right) \beta_{j}(y)+\frac{1}{2}(a(y)-1)} 5^{\sum^{\sum_{=2}^{r} \beta_{j}(y)+e_{1}(y)}\left(\bmod 2^{\alpha_{1}}\right)}
\end{array}
$$

From this congruence, we find that

$$
\begin{aligned}
& \sum_{j=2}^{r} \frac{1}{2}\left(p_{j}-1\right) \beta_{j}(x)+\frac{1}{2}(a(x)-1) \equiv \\
& \sum_{j=2}^{r} \frac{1}{2}\left(p_{j}-1\right) \beta_{j}(y)+\frac{1}{2}(\alpha(y)-1)(\bmod 2)
\end{aligned}
$$

if $\alpha_{1} \geqq 2$, and

$$
\sum_{j=2}^{r} \beta_{j}(x) k_{j 1}+e_{1}(x) \equiv \sum_{j=2}^{r} \beta_{j}(y) k_{j 1}+e_{1}(y)\left(\bmod 2^{\alpha_{1}-2}\right)
$$

if $\alpha_{1} \geqq 3$. Since $\omega_{0}=1$ if $\alpha_{1}=1$ and $\omega_{1}=1$ if $\alpha_{1}=1$ or 2 , we now have

$$
\begin{equation*}
\prod_{j=2}^{r} \omega_{0}^{\left(p_{j}-1\right) \beta_{j}(x) / 2} \cdot \omega_{0}^{(a(x)-1) / 2}=\prod_{j=2}^{r} \omega_{0}^{\left(p_{j}-1\right) \beta_{j}(y) / 2} \cdot \omega_{0}^{(\alpha(y)-1) / 2} \tag{12}
\end{equation*}
$$

if $\alpha_{1} \geqq 1$, and

$$
\begin{equation*}
\prod_{j=2}^{r} \omega_{1}^{\beta_{j}(x) k_{j 1}} \cdot \omega_{1}^{e_{1}(x)}=\prod_{j=2}^{r} \omega_{1}^{\beta_{j}(y) k_{j 1}} \cdot \omega_{1}^{e_{1}(y)} \tag{13}
\end{equation*}
$$

if $\alpha_{1} \geqq 1$. Multiplying (10) over the relevant values of n, we have

$$
\begin{equation*}
\left(\prod_{\substack{\beta_{n}(=1)=1 \\ p_{n}>2}}^{r} \prod_{\substack{j=1 \\ j \neq n}}^{r} \omega_{n}^{\beta_{j}(x) k_{j n}}\right)\left(\prod_{\substack{\beta_{n}=1 \\ p_{n}>=1 \\ p_{n}>2}}^{r} \omega_{n}^{e_{n}(x)}\right)=\left(\prod_{\substack{n=1 \\ \beta_{n}(x)=0 \\ p_{n}>2}}^{r} \prod_{\substack{j=1 \\ j \neq n}}^{r} \omega_{n}^{\beta_{j}(y) k_{j_{n}}}\right)\left(\prod_{\substack{n=1 \\ p_{n}(x)=0 \\ p_{n}>2}}^{r} \omega_{n}^{e_{n}(y)}\right) . \tag{14}
\end{equation*}
$$

If m is odd, or if m is even and $\beta_{1}(x)>0$, (14), (4), and (5) show that $\psi(x)=\psi(y)$. If m is even and $\beta_{1}(x)=0$, we multiply (12), (13), and (14) together. Comparing the result with (6) and (7), we find that $\psi(x)=\psi(y)$ in this case also.

We have therefore proved that $\psi(x)=\psi(y)$ if $x \equiv y(\bmod m)$ and $x y \neq 0$. If $x \equiv 0(\bmod m)$ and $x \neq 0$, then $\psi(x)=\psi(m)$. Since $\psi(0)=$ $\psi(m)$ by definition, the proof is complete.
5.9. The foregoing construction of the functions ψ, and from these the semicharacters χ of $S_{m}, \chi([x])=\psi(x)$, clearly gives us all of the semicharacters of S_{m}. As the ω 's and μ 's of 5.6 run through all admissible values, each semicharacter χ appears exactly once. We could show this by exhibiting, for each pair ψ and ψ^{\prime}, a number x such that $\psi(x) \neq \psi^{\prime}(x)$. Rather than do this, we prefer to count the ψ^{\prime} 's and compare their number with the number obtained in 3.1.

For p_{j} odd, the number of possible values of ω_{j} is $\varphi\left(p_{j}^{\alpha}\right)$ if $\mu_{j}=0$ and 1 if $\mu_{j}=1$. Hence this number is $\varphi\left(p_{j}^{\left.\alpha_{j}^{\left(1-\mu_{j}\right)}\right) \text {. For } p_{1}=2 \text {, there }}\right.$ are several cases to consider ($\mu_{1}=0$ or $1, \alpha_{1}=1, \alpha_{1}=2, \alpha_{1} \geqq 3$). In each case, it is easy to see that the number of admissible pairs $\left\{\omega_{0}, \omega_{1}\right\}$ is $\varphi\left(2^{\alpha_{1}\left(1-\mu_{1}\right)}\right)$. Thus, for each sequence $\left\{\mu_{1}, \cdots, \mu_{r}\right\}$, the total number of sequences $\left\{\omega_{0}, \omega_{1}, \cdots, \omega_{r}\right\}$ is equal to

$$
\prod_{j=1}^{r} \varphi\left(p_{j}^{\alpha \alpha_{1}\left(1-\mu_{j}\right)}\right) .
$$

Summing this number over all possible $\left\{\mu_{1}, \cdots, \mu_{r}\right\}$, we obtain $\Pi_{j=1}^{r}\left(1+p_{j}^{\alpha j}-p_{j}^{\alpha_{j}-1}\right)$, as in Theorem 3.1.

6. The structure of X_{m}.

6.1. Let χ and χ^{\prime} be any semicharacters of S_{m}, and let (μ_{1}, \cdots, μ_{r}; $\omega_{0}, \omega_{1}, \cdots, \omega_{r}$) and ($\mu_{1}^{\prime}, \cdots, \mu_{r}^{\prime} ; \omega_{0}^{\prime}, \omega_{1}^{\prime}, \cdots, \omega_{r}^{\prime}$) be the parameters as in 5.6 that determine χ and χ^{\prime}, respectively. The product $\chi \chi^{\prime}$ then has as its parameters

$$
\begin{equation*}
\left(\mu_{1} \mu_{1}^{\prime}, \cdots, \mu_{r} \mu_{r}^{\prime} ; \omega_{0} \omega_{0}^{\prime}, \omega_{1} \omega_{1}^{\prime}, \cdots, \omega_{r} \omega_{r}^{\prime}\right) . \tag{1}
\end{equation*}
$$

Thus, all of the χ 's in X_{m} for which the μ 's are a fixed sequence of 0 's and 1's form a group, plainly the direct product of cyclic groups, one corresponding to each zero value of μ. These are maximal subgroups of X_{m}, and X_{m} is the union of these subgroups. The multiplication rule (1) shows clearly how elements of different subgroups are multiplied. The rule (1) shows also that X_{m} resembles a direct product of groups and $\{0,1\}$ semigroups. It fails to be one because of the condition in 5.6 that $\mu_{j}=1$ implies $\omega_{j}=1$.
6.2. The characters modulo m of number theory (see [3], p. 83) are of course among the semicharacters that we have computed. They are exactly those for which $\mu_{1}=\mu_{2}=\cdots=\mu_{r}=0$. In the description of $\S 3$, they are the semicharacters that are characters on the group G_{m} and are 0 elsewhere on S_{m}.
6.3. We can also map X_{m} into S_{m}, and represent X_{m} as a subset of S_{m} with a new definition of multiplication. Let χ be in X_{m} and let
χ have parameters $\left(\mu_{1}, \cdots, \mu_{r} ; \omega_{0}, \omega_{1}, \cdots, \omega_{r}\right)$. For m odd and $j=0,1$, \cdots, r or m even and $j=0,2,3, \cdots, r$, let w_{j} be any integer such that $\omega_{j}=\exp \left(2 \pi i w_{j} / \varphi\left(p_{j}^{\alpha j}\right)\right)$. For m even and $\alpha_{1}=1$ or 2 , let $w_{1}=0$; for m even and $\alpha_{1} \geqq 3$, let w_{1} be any integer such that $\omega_{1}=\exp \left(2 \pi i w_{1} / 2^{\alpha_{1}-2}\right)$.

We now define the mapping

$$
\begin{equation*}
\chi \rightarrow \tau(\chi)=\left[h_{0}^{w_{0}\left(1-\mu_{1}\right)} \prod_{j=1}^{r}\left(h_{j}^{w_{j}\left(1-\mu_{j}\right)} q_{j}^{\alpha_{j} \mu_{j}}\right)\right], \tag{2}
\end{equation*}
$$

which carries X_{m} into S_{m}. Evidently τ is single-valued.

6.4 Theorem. The mapping τ is one-to-one.

Proof. Suppose that χ and χ^{\prime} are semicharacters of S_{m} with parameters as in 6.1. Suppose that $\tau(\chi)=\tau\left(\chi^{\prime}\right)$, that is,

$$
\begin{equation*}
h_{0}^{w_{0}\left(1-\mu_{1}\right)} \prod_{j=1}^{r}\left(h_{j}^{w_{j}\left(1-\mu_{j}\right)} q_{j}^{\alpha_{j} \mu_{j}}\right) \equiv h_{0}^{w_{0}^{\prime}\left(1-\mu_{1}^{\prime}\right)} \prod_{j=1}^{r}\left(h_{j}^{w^{\prime}\left(1-\mu_{j}^{\prime}\right.} q_{j}^{\alpha_{j} \mu_{j}^{\prime}}\right)(\bmod m) . \tag{3}
\end{equation*}
$$

This congruence, along with 5.1 , implies that

$$
h_{l}^{\left.w_{l} l^{1-\mu_{l}}\right)} p_{l}^{\alpha} \mu_{l} \equiv h_{l}^{w_{l}^{\prime}\left(1-\mu_{l}^{\prime}\right)} p_{l}^{\alpha} \mu_{l}^{\mu_{l}^{\prime}}\left(\bmod p_{l}^{\alpha}\right)
$$

for $l=1, \cdots, r$ and p_{l} odd. Since $\left(h_{l}, p_{l}\right)=1$, and μ_{l} and μ_{l}^{\prime} are 0 or 1 , it is obvious that $\mu_{l}=\mu_{l}^{\prime}$. If $\mu_{\imath}=\mu_{l}^{\prime}=1$, then from 5.6, we have $\omega_{l}=\omega_{l}^{\prime}=1$. If $\mu_{l}=\mu_{l}^{\prime}=0$, then $h_{l}^{w} \equiv h_{l}^{w i}\left(\bmod p_{l}^{\alpha}\right)$, so that $w_{l} \equiv w_{l}^{\prime}$ $\left(\bmod \varphi\left(p_{l}^{\alpha}\right)\right)$ and hence $\omega_{l}=\omega_{l}^{\prime}$.

If $p_{1}=2$, (2) implies that

$$
\begin{equation*}
h_{0}^{\left.w_{0}^{\left(1-\mu_{1}\right.}\right)} h_{1}^{w_{1}\left(1-\mu_{1}\right)} p_{1}^{\alpha_{1} \mu_{1}} \equiv h_{0}^{w_{0}^{\prime}\left(1-\mu_{1}^{\prime}\right)} h_{1}^{w_{1}^{\prime}\left(1-\mu_{1}^{\prime}\right)} p_{1}^{\alpha_{1} \mu_{1}^{\prime}}\left(\bmod p_{1}^{\alpha_{1}}\right) . \tag{4}
\end{equation*}
$$

Again, we have $\mu_{1}=\mu_{1}^{\prime}$. If $\mu_{1}=\mu_{1}^{\prime}=1$, then 5.6 states that $\omega_{0}=\omega_{0}^{\prime}=$ $\omega_{1}=\omega_{1}^{\prime}=1$. If $\alpha_{1}=1$, then $\omega_{0}=\omega_{0}^{\prime}=1$, also by 5.6. If $\alpha_{1}=2$ and $\mu_{1}=\mu_{1}^{\prime}=0$, then (3), along with 5.1 , shows that $(-1)^{w_{0}} \equiv(-1)^{w_{0}^{\prime}}(\bmod 4)$, and hence $\omega_{0}=\omega_{0}^{\prime}$. If $\alpha_{1} \geqq 3$ and $\mu_{1}=\mu_{1}^{\prime}=0$, then we have $(-1)^{w_{0}} 5^{w_{1}} \equiv$ $(-1)^{w_{0}^{\prime}} 5^{w_{1}^{\prime}}\left(\bmod 2^{\alpha_{1}}\right)$. Once again, [3], p. 82, Satz 126 shows that $(-1)^{w_{0}}=$ $(-1)^{w_{0}^{\prime}}$ and that $w_{1} \equiv w_{1}^{\prime}\left(\bmod 2^{\alpha_{1}-2}\right)$. Hence $\omega_{0}=\omega_{0}^{\prime}$ and $\omega_{1}=\omega_{1}^{\prime}$. Therefore τ is one-to-one.
6.5. The set $\tau\left(X_{m}\right)$ consists of all the elements [$p_{1}^{\delta_{1}} \cdots p_{r}^{\delta_{r}} a$] of S_{m} for which $\delta_{j}=0$ or α_{j}, and $(a, m)=1$. It is evident from (2) that $\tau\left(X_{m}\right)$ is contained in the set $\left\{\left[p_{1}^{\delta_{1}} \cdots p_{r}^{\delta_{r}} a\right]\right\}$. The reverse inclusion is established by a routine examination of cases, which we omit.
6.6. The mapping τ plainly defines a new multiplication in $\tau\left(X_{m}\right)$: $\tau(\chi)^{*} \tau\left(\chi^{\prime}\right)=\tau\left(\chi^{\prime}\right)$. Every residue class $\tau(\chi)$ contains a number

$$
x=h_{0}^{w_{0}\left(1-\mu_{1}\right)} \prod_{j=1}^{r}\left(h_{j}^{w_{j}\left(1-\mu_{j}\right)} q_{j}^{\alpha_{j} \mu_{j}}\right) .
$$

If x^{\prime} is another number of this form, then it can be shown that $[x]^{*}\left[x^{\prime}\right]$ is equal to $\left[x x^{\prime} / \Pi q_{j}^{\alpha}\right]$, where the product $\Pi q_{j}^{\alpha_{j}}$ is taken over all j, $j=1, \cdots, r$, for which $p_{j} \mid x x^{\prime}$. We omit the details.

Literature

1. Eckford Cohen, A finite analogue of the Goldbach problem, Proc. Amer. Math. Soc. 5 (1954), 478-483.
2. Edwin Hewitt and H. S. Zuckerman, Finite dimensional convolution algebras, Acta Math. 93 (1955), 67-119.
3. Edmund Landau, Vorlesungen über Zahlentheorie, Band I. S. Hirzel Verlag, Leipzig, 1927.
4. B. Parízek, and Š. Schwarz, O multiplikatívnej pologrupe zvyškových tried (mod m), Mat.-Fyz. Časopis Slov. Akad. Ved 8 (1958), 136-150.
5. E. T. Parker, On multiplicative semigroups of residue classes, Proc. Amer. Math. Soc. 5 (1954) 612-616.
6. H. S. Vandiver and Milo W. Weaver, Introduction to arithmetic factorization and congruences from the standpoint of abstract algebra, Herbert Ellsworth Slaught Memorial Papers, no. 7, 1958. Math. Assoc. of America.
7. Milo W. Weaver, Cosets in a semi-group, Math. Mag. 25 (1952), 125-136.

The University of Washington

[^0]: Received January 9, 1960. The authors gratefully acknowledge financial support from the National Science Foundation, under Grant NSF-G 5439.

[^1]: ${ }^{1}$ We take $\omega_{0}=1$ when m is odd merely as a matter of convenience. Actually, as will shortly be apparent, ω_{0} does not appear in the definition of ψ if m is odd.
 ${ }^{2}$ We take $0^{0}=1$.

