CONSTRUCTION OF A CLASS OF MODULAR
FUNCTIONS AND FORMS

MARVIN ISADORE KNOPP

1. Introduction. Let G(j) be the principal congruence subgroup, of
level 7, of the modular group. In this paper we construct functions
which are invariant under G(j), for each integer j = 2.

We begin by defining certain functions \,(J7; 7) which, although not
in general invariant under G(J), do possess the transformation properties

(1.01) M(F; Tt) = M(J; T) + constant, for all T in G(jJ).

'This is the content of the main theorem, Theorem (4.02). Once this
result has been established it is a simple matter to construct invariants
for G(j) by forming certain linear combinations of the )\, (j; 7). This is
done in § 5.

These functions \,(7; 7) are defined as Fourier series which generalize
the Fourier series expansion of A7), given by Simons [6]. To derive the
transformation equations (1.01), we proceed directly from the Fourier
series, extending a method introduced by Rademacher [4], and since
generalized by Lehner [2] and the author [1]. Although in [4] only the
invariant J(z) for the modular group is treated, the method of [4] has
much wider applicability. Thus, in [2] it is used in the case of the
modular group to overcome the usual convergence difficulties encountered
in constructing forms of dimension —2 by means of Poincaré series,
while in [1] it is used to construct forms of nonnegative even integral
dimension (in which case we, of course, do not have the method of the
Poincaré series) for the modular group and several other closely related
groups.

We will indicate in section 6 how the method of this paper can be
used to construct automorphic forms of all positive even integral dimen-
sions for the groups G(j). In a future publication these same methods
will be applied to construct automorphic functions and forms for certain
other congruence subgroups of the modular group and for congruence
subgroups of several other groups.

I would like to thank the referee of this paper for his helpful
remarks.

2. Several lemmas. In [4] the principal analytic tool is a rather
delicate lemma in which the terms of a certain conditionally convergent
double series are rearranged. Several variations of this lemma can be
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found in [1] and [2]. In this section we derive two generalizations of
the lemma that will be needed in § 4.

LEMMA (2.01). Let a <0,6<0,d>¢c>0. Let y>0,r=0, and
vy and j be positive integers. Let t = (¢ — 1/2b)d~*. Then
(2.02) Stlim ¢ 0
. m -_
©51 Moo iaisy BT (K1Y — m)
[K(dt;c)] * e—zxivm'lk
{ = [m—bkldléK/dm

[K(db‘i;*c)] g—2mivm’ [k }

= lim

E—oo

*
k=[K{at—0)1+1 ab—Kt_  _bk+K k“”(kiy —m)
¢ =M=Tg

where the asterisk (*) indicates that the inner sum s taken on those
m such that (m,k) =1 and m =1 (mod j), the sharp (%) indicates that
the outer sum 1is taken on those k such that k = j (mod %), and m' is
1s defined by mm’ = —1 (mod k).

LEMMA (2.03). Let y, 7, v, and j be as above. Let p be any posi-
tive number. Then

2.04 ¢ i P ————
(2.04) 2 S iy —m)

_ ,
e 2rivm’ [k

N 1. [pK% * e—Zﬁivm'/k
_Kl-ragkgi |,§‘§K kl“(lmjy — m) '

REMARK. With care, (2.03) could have been included as a special
case of (2.01). However, it is simpler and somewhat more germane to
our purpose to state them as separate lemmas. It should be noted
that Lemma (2.03) is the same as a lemma in [1], except for the
congruence conditions on m and k.

A geometric interpretation may be helpful. By a ‘‘lattice point’”
we will mean a pair of relatively prime integers k, m such that
k=7 (modj®) and m =1 (modj). Rademacher’s lemma [4] shows that
the sum can be taken by first summing over the lattice points of the
half square in the k¥ — m plane defined by 1=k < K,|m| < K, and
then letting K — . Lemma (2.03) allows us to first sum over the
lattice points of the rectangle 1 <k < [pK], |m| < K, while Lemma
(2.01) shows that the sum can be taken first over the lattice points
of the trapezoid bounded by the lines k = 0, m = (ak — Kt)/c, m =
bk — K)|d, m = (bk + K)/d.

The lemma can actually be proved for other trapezoids, but the
form in which we have stated it will suffice for our application.

Proof of (2.01). We prove the lemma in the case r» = 0, the proof
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for » > 0 being virtually the same. We first show the convergence of
the left hand side of (2.02).

L A
imsy k(kiy — m) 0Eh<k pamey KUY — b — nk
where we have put m = h + nk. Therefore,
lim Sy O g gy Y, L
woe imi=y f(kiy — m) 0Sh<k Noo o n 4y — hlk —m

|nk+h|=N

— k-—2 Z* e—2n‘ih'v/k.27z-,l:(1/2 . {1 — e?zi(iy—h/k)}—l)

0=h<k

= ik~ S\ e FVIE — 2mif? E e ir X exp[ 2y == (vh' + ph)] .
0=h<k 0<h<k

Now, the inner sum of the second term is a Kloosterman sum, for

which we have the estimate (see [5])

(2.05) SV exp [—@i(ph’ + ph)] = O(k*+e) .
0<n<k k
Also, the sum in the first term can be written

S'* exp [—@i(uh' + kh)] — Oy

0=h<k

We conclude that

_ ’
e 2nim’'v[k

lim >3*

— = O(fuste[] — gy}l ,
N sy k(kiy — m) ( { ) .

and the left hand side of (2.01) converges.

Let Z denote the set of integers. Let 2z(K) = [K(dt —¢)] and
2(K) = [K(dt + ¢)]. Welet &7 (K, N)={me Z|— N=m <(bk — K)/d
or (bk + K)/d <m < N} and F(K,N)={meZ|(bk+ K)[d<m<=N
or —N = m < (ak — Kt)/c}.

We can now state the lemma in the following form

(2.06) lim {Silim S T
. m im —
Kl—>eo ,5221 N me g, k(kiy — m)

n zz(K*) 1 2* e—zzim vk }

m _— =
k= z%z)ﬂ N> megz (K,N) k(kzy - M)
The function defined by

e-—zfrim'v/k’ if (m’ k) =land m=1 (mod ,7)
0, otherwise

g(m) = {

is periodic modulo k. This is easily seen if we recall that & = j (mod 52)
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and therefore j| k. It follows that

%
g(m) — ZBZeznum/k ,
=1
where

B, =k 3*exp [—&I:i(vm' + l’m)] .

0=m<k

Using (2.05) we see that

(2.07) Bz — O(k—1/3+s) i
In the first double sum of (2.06) put
T(K, N) = S g 2rtvm’ [k _ 5 i B, ei!nilm/k
mE K (K,N) k(lmy — m) megx.mi=t  k(kty — m)
(2.08) E—1 giriimik 1
- lzz“lBlmebdZ(‘K,N) lc(lczy — m) + Bkmé,qz(K,N) k(k’by - m) ’

Let Ty(K) =limy_.. Ty(K, N), 2,(K) = [(K + bk)/d], and z(K) = [(K — bk)/d]-
Recalling the definition of &7 (K, N) and making use of (2.08), we may
write
T K _ k—l k—lB e21rilm/lc
K) = z—% lm=za(x)+1 kty — m
+ k_lkij B,
=1

Z e—z;rilmlk
= m=7,K)+1 iy + m

P 1 1
(2.09) + Bik m=z§r)+1<kiy —m + kiy + m>
+ B k—-l 24(K) 1
K m=2,(K)+1 kKiYy — m

281+S2+S3+S4‘
To handle S,, put

m e:ril(2m+1)/lc . ezil(ﬂzs(K)—l—l)/k
E = Z o2riinlk —

m
p=23(K)+1

gmillk __ g—willk
Therefore,

| E,.| < (sin 7l/k)™ < (min {2k, 2(k — L[k} < %(w + 1/ — 1)) -

Now,

oo e27r'i,lm/76

E,—En,
1 kiy — m

0o
= 2
m=23(K

m=f3K0+1 K1Y — m

s 1 1
= Em( - ) ) -
m=25(K) +1 kty—m kiy—m—1
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Hence,

o griimik

m=g3(K)+1 1Y — M
s Ayt -1 5 er ey + o 1o
m=23(K)+1

92 — 24+ 110k — W)UK + byl

x2

k
<Ean+ 10 -v))

-]
23(K)

Now, we are here considering only those k in the range 1 < k < 2(K)
= [K(dt — ¢)]. Since b<0,d >0, (K+ bk)/d = {K + Kb(dt — ¢)}/d =
K/2d. Making use of (2.07), we conclude that

S & IEZ_:B greitmlk
= K 7 —_—
! =1 m:zg(K)+1k’l,y — m

=o<k—lgk—w+e%{1/l 1Y — Z)}K—l) .

Therefore,
(2.10) S, = Ok~ *+*K-log k) .

We can estimate S, in exactly the same way simply by noticing
that (K — bk)/d = K/d. We obtain

(2.11) S, = O(k~P+Klog k) .

The estimation of S, is simpler. We notice that

S, =B,k S _ 2wk
m=2,(K)+1 ——-gsz —m?
and hence
SI<IB] 3 Zoip| 2.
m=2,(K)+1 M 24(K) X
Therefore,
(2.12) S, = O(k~"*+[(K — bk)/d]™*) = O(k*K™) .

We consider S,. Recalling that z,(K) + 1 > (K + bk)/d = K/2d, we
find that

245 1 < =y 2,2 2)-1/2 < U 2,2 2/Ad2)-1/2
—l = 3 Eyr+m)yr=s 3 (B + K4d)
m=23(K)+1ka —m m=23(K)+1 m=23(K)+1

< 2dKY(K — bk)/d — (K + bk)|d} = —4bkK ™ .
Therefore, using (2.07),
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24(K) 1

(2.13) S, = B,k = O+ K) .

m=z3(K)+1 kiy —m

Collecting our results (2.10), (2.11), and (2.12), we have T (K) =
O(k~*+*K~'log k). Hence,

zl(Ki); " S+ g—2mivm’[k zl(K; T(K)

m —_—_— =

Icgl N—® e gf (K,N) k(kiy —_ m) k§=:l *

(2.14) - 0< K-S ot log k)
k=1

= O(K'***]og K)
In the second double sum of (2.06) put

—2ziym’ [k

UK, N) = e —
KNy = 2 Ty —m)

kZ_:B Z gty [k LB 1

=1 lme@(x.m k(kvy — m) *

(2.15)

me@z(‘;c,m k(kiy — m) )

Let UyK) = limy... UK, N) and 2z(K) = [(Kt — ak)/c]. Then using
(2.15) and the definition of <# (K, N) we find

oo ezztlm/k e~2xilmlk

k—1 k—1 oo
UK) = k5, B, +E 5B S

=1 T m=g &+ kY — m i=1

r1kiy + m

- 1 1
. B .k_l
(2.16) T B m:z%zm( kiy — m - kiy +m >

k—1 25(K) e—27rilm/k 25(K) 1

+ k3 B, : + B,k 1
5 menmakly —m m=i5)+1 K1Y — m

=S;+ S+ S+ S+ S,

Since (Kt — ak)/c > Kt/e, we can estimate S; and S; in the same
way as S;, and S, in the same way as S, We obtain

2.17) S; + Se + S; = O(k™*+*K~*log k) .
To handle S; define E,, as before. Then

25(K) e2zilm/k

m=ig) 11 K1Y — M
25(K)

— ( 1 _ 1
m=23(K)+1 " kiy - m kiy —m—1

) + Ennl iy — 2(K) — 1) .

Recalling that | E, | < (k/2){1/l + 1/(k — 1)}, we have
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25(K) e2zilm/k

m=23(K)+1 Iciy —m

) (I R e LR G
+ ey + (Kt — akyle})
<Eaprue-v) S 0+ oK)
= L0+ 10 — DUy (K — alfe — (K + V)id) + oftK)
= B0+ 1000 — DKy (dt—0) +(—ad—be)(dt+ o)) +oltK) ,

since —ad —be > 0 and k is in the range K(dt —¢) <2(K)+ 1=k =
2(K) < K(dt + ¢). Therefore,

SS _ k—lkz—"lBl 25(K) eimrilm/k
i=1 m=z3(K)+1 k@y —m
(2.18) _ O<k_1k§—:1k_1/a+e,%{1/l + 1)(k — DKk + K1}
=
= O(k**log kK{Kk™* + K}) .

Finally, we estimate S,.

IA

> By +m) =y k(K —ak)/o— (K —bk)/d}

25(K) 1 l 25(K)
m=z3(K)+1

m=23(K) +1 k/l/y — m
< K(edyk)™{(dt — ¢) — (ab + be)(dt + ¢)} .

Therefore,
(2.19) Sy = By k™!

25(K) 1 ’
—_ = O(k—ws-x-sK) .
m=z3(K)+1 lm,y —m

Using (2.17), (2.18), and (2.19), we find that

UK) = O(k~"* log K{K~ + K-k%) .

Hence,
29(K) . —2xtvm’ |k
¢ lim * 6—
k=21 (K)+1 N=%° me P (K,N) k(lczy — m)

_ zg) Uk(K) _ O( z2(21‘z) f1s+e log k{K-—J_I_K. k-—z})
(220) k=21 (K)+1 k=21(K)+1
— O(K—l 10g K 23(K) Jo—1/3+ e> — O(K—l log K. K—llai e‘ch)

k=z)(K)+1

= O(K"***log K) .
Now (2.06) follows from (2.14) and (2.20) and the lemma is proved.
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Proof of (2.03). We outline the proof for the case » = 0. The left
hand side of (2.04) is the same as the left hand side of (2.02) and its
convergence has already been demonstrated.

The lemma may be stated as follows

e——hivm 1k

5 *
(2'21) 1111—12 kzi }71—»12 K<I%ISN k(k@y — m)

Let

e—-z;m’.wn. 1k

— *
VK, N) =, 2, k(kiy — m)

k—1 % eix’blm/k 1

B, ¥r ¢ . p S S
g‘i ' <imisn k(kiy — m) + kK<%§N k(kiy — m)
Then,

2
e rilm/|k

Vi(K) = lim Vi(K, N) = k- S0 N Y A
=1 m=k+1 kq,y —

+ES B, S LTy Bk i (e + )
S miRnkiy + m * msE+1\k1y — m  kiy + m

=S+ S+ 5.

Now S, and S! can be estimated in the same way as S, and S} in
the same way as S;. Once we have these estimates the proof of (2.21)
proceeds exactly as the proof of (2.14) of the previous lemma.

3. The functions M(J; 7). Let 5 be an integer = 2 and let v be
a positive integer. We define the function

MG T) = 3 Gy, ferh
(8.01) n=1

au(v, 4) = (¥[8) A~ Ay o) (o) "L AT (nY ),

where

Anm) = | 33 exp [ 2Ll £ )]

a Kloosterman sum, and I, is the modified Bessel function of the first
kind. Recall that the sharp (¥f) means that we allow only those % such
that £ = 5 (mod j%) and the asterisk (*) indicates that we allow only those
h such that A =1 (mod j) and (&, k) = 1.

We need the following

LEMMA (3.02). (a) If an(v, ) is defined as in (3.01) then
a,(v, 7) ~ {0 4(27) (16} et =113 exp (47(ny)?]7) .
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(o) If |2] <1, then
S S (dm vk ! (0 + D!
18 absolutely convergent.

Proof. (a) The first term that occurs in the sum defining a,(v, J)
is for £ = j. This term is equal to

(®[8)j A, y(m)(v[n) " L(47(n)'?[7) .
But
Ay ) = exp [—2mifn + (5 — D] = en |
Therefore the first term is
(7[8)g e~ =17« (v[n) L (47(nv) " [])
It follows that
laa(v, 5) — (7[8)e* > v[n) L, (47(nv)"/7) |
= | (/8) gj k= A (n)(v[n) " L (4m(nv) " (k) |

< Ci(vmy™ SHh I LAy k) |

where we have made use of (2.05)
It is a simple consequence of the power series definition of I,

(3.03) L) = 3, (012 +1p! (0 + 1)!

that I,(7) < sinh7. We also need the fact that sinh % < (¥/B)sinh B,
for 0 < » =< B. We find that

| @n(v, ) — ([85)e "3 (v[n) " I,(47(nv)?[5) |
= C(y/n)" ,g.ﬁ k=132 {(dm(nv) k) [(4mc(nv)'?(2)} sinh (47c(nv)[2])
= C, exp (2r(nv)""[7)-n*" .

Now in ([7], p. 203, formula 2), it is shown that I,(9) ~ e"/(2an) .
Therefore,

L(4m(n)'?[5) ~ exp(4m(nv)?[7)[2m(277)  (nv)"* .

and the result follows.

(b) Z:o Am*nv[l*)?[p! (p + 1)! = {k/2r(nv)*} [ (4m(no)? k)
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=< {k/27m(nv)'?} sinh (4m(ny)*/k)
< {k[2n(nv)?} exp (dr(nv)?[k) .
The result follows.

Lemma (302a) shows that the series defining \,(Jj;7) converges
absolutely for _#(r) > 0. Therefore, \,(7j; 7) is analytic in the upper half
T-plane.

In order to derive the transformation properties of \,(J; 7) we trans-
form (3.01) into a certain double series. The computations involved are
a repetition of those found in [4, pp. 244-5] and in [1] and [2] and we
omit them. Briefly, the series definition of a,(v, 7) is inserted into the
series for \,(7; 7), I, is replaced by the power series (3.03), Lemma (3.02)
is used to justify several interchanges of summation, and use is made
of the Lipschitz formula [3]

3 nefexp [2ri(c]i — M)
(P/(2R))- 3. (—iclj + ihfk + Liy >, for p > 0

12 + (1)2m) lim S (—it)f + ihfk + L), for p=0.
Nooo l=—N
We obtain the double series

(3.04) \,(j;7) = constant + __E# STk gaein Ik

16 k=105n<x

tim 3 {exp [ 2| ).

4. Transformation properties of the \,(J;7). In (3.04) put m =
h + Kkl. Since j|k it follows that m=h (mod j). Hence m =1 (modj)
is a consequence of A =1 (modj). Also (k, k) =1 implies (m, k) = 1.
It is easy to see that as I runs through all the integers and 4 through
a residue class modulo & with the restrictions (%, k) = 1 and £ = 1 (mod j),
then h + kl takes on, exactly once, each integer value m such that
(m,k)y=1and m=1 (mod 7). Then (3.04) becomes

(4.01) MGi7T) = A + L kz* lim S* —mvm'/k{exp [Wg’_”—”——] - 1} .

1 N-oo |m|SN ‘L'/j — m)

Let a,b,¢,d be integers such that ad —bc =1,a =d = 1 (mod j),
and b =c¢ =0 (mod j). Denote by T,,.. the element of G(j) defined by

_art+b
abcd() T-l—d

We wish to prove

THEOREM (4.02).. The function \(J; ) satisfies the transformation

1 See correction at end of paper.
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equations

(@09 MG Tuea@) = (35 LED) =0 (i) + il e ),

Jor all Ty, .0 1m G(3) and .7 () > 0. Here w/(j;c,d) does not depend
on T,a, or b.

Proof. Let us suppose we have already shown that

X(-_ at + b

= M(7; ,
cr-i—d) o)+

where @ does not depend on 7. Under this assumption we prove that
w is independent of @ and b.

Let T, , .4 be in G(j). Then, sincea —a’' =b — b’ = 0 (mod 5) and
ad —bec =a'd —be =1, we have that o' =a + ¢'7,b = b + r'J, with
q', ' integers and ¢'d = r'¢. Since (¢,d) =1 it follows that ¢ = qc,
" = qd with ¢ an integer, and therefore o' = a + qcj, b’ = b + qdj.
Hence T yea="Ti4501° Tus.ca» and clearly

w0 ) M

>:7uy(j;z')+a).

Therefore, @ does not depend on @ or b.
It suffices to prove (4.03) subject to the restrictions d > je > 0,a < 0,
b < 0. First we may assume ¢ > 0, changing the signs of a,b,¢,d if
necessary. It is then simple to compute that T, ;.c0=T1 s5.01° Tw.pv.5° Th—rs 019
with a = a — sje, B = rj(a — sjc) + b — sjd, vy =¢,8 = d + rje, and we
can choose integers r and s so large that « < 0,8 < 0,8 > j¢. But
M(7; 7) is clearly invariant under T),,,, and T _,,,, since these are
translations by sj and —rj respectively. Hence, if M(J; T p4.5(7)) =
v(J, T) + w, then )Vy(jl aD, cd(z—)) = 7\’11(.7, 7'.) + .

Now, in order to apply Lemmas (2.01) and (2.03) we assume that
7 is a pure imaginary number. Expanding the expression in the braces
in (4.01) into a power series, we get

N(J,T)'“A-F——Z* lim Si* g-teivmit 1<27r—w>1’

Fo1 Nooo [mI=N =1p! \k(kt[] — m)
2Ty
— L XU 1 * —er'Lvm 13
(4.04) =4+ Zl lim >.L¢ ke(lz]; — m)
1 21y ?
= # * —2-ztvm 13 s
T 16 kz‘l 11333 m%zv z;Zp'(k(kT/J — M))

The separation into two sums is justified since the first is convergent
by Lemma, (2.01) and the second is an absolutely convergent triple sum.
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It follows that the second sum can be rearranged in any fashion. Making
use of this fact and noting that the restrictions ¢ < 0,6 < 0,d > je¢ >0
make it possible to apply Lemma (2.01), with » = 0 and a, b, ¢, d replaced
by a, b/7, je, d to the first sum, we obtain

. 1 [K (@t—Jjo)] g—2mivm’ [k .
Mot =A+ — hm{ # * 2wy
16 - \ &=t Im-wxiaskiak(kt|] — m)
[K(dz+,;c)] % e—Zzivm'lk

. 2m'v}

B=[K (@—jo)1+1 (ak—Kv) [jedmsvriia+Kia k(KT[] — m)

-+ _L lim {[K(gﬁjc)] Z* g—irtvmI|k Z < 2miy )1’

16 5~ | &1 im—dkfiaisK/a =2 p! \Ek(kT[] — m)
& @4e] S - i_( 27y >”}
E=[K (@1—J0)1+1 (ak—Kt) [Jo<m<ok/ja+K[d =2 pl \k(kt[] — m)
Therefore,
(4.05)
[K(at—je)] o, )
MG D) = A+ lim{ TS s gmomi(exp | 2T ] 1)
16 x-e U %=1 im—dkfjalsK/a k(ktl] — m)
[K (a@t+c)] , 2wy
# * e—znivm /k(ex [ ] — 1>} .
+k=[x(§‘-1c)]+1 (alc—Kt)/jcé‘gnlébk/jd+K/d P k(kt|] — m)

Now, let
[K(at—io)] - 21y
Sue) = 3 3 emiexp| 2
=1 Im—dkfalsK/a k(kt|j — m)
[K(at+ic)]
%

* —axiym! [k [ 2riy ]
b
E=[K (@i—Jo)1+1 (ak—K1) |jeSmSok/ja+ K a k(kt[7 — m)

A¥little computing shows that

[&(@t—je)] L —T — s
Se(t) = % >*  exp 2mv—k _ mzlg
K
#=1 im—vKljd|SK/a ktlj —m
[K(at+jo)] . =k — m't]
E# 2* exp [Zn@p_@_:m—m_] y
k=LK (d1—Jc)1+1 (ak—Kt) [JcSmSOk/ja+K|a ktlj — m

where —k' = (mm’ + 1)/k. We see that kk' + mm’ +1 =0, so kk' =
—1 (mod m). Now given the relatively prime pair %, m, the pair k', m’
is not uniquely determined. In fact, m' can be replaced by m' + qk,
where ¢ is any integer. Then k& must be replaced by k¥’ — gm. The
corresponding term in Sg(7) is replaced by

oo TEE 25 T i K=ot )

= exp [271"5»(:]‘];‘;“—7_7”;—;&)] ,
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so that Sg(7) is unaffected by the ambiguity in the choice of %’ and m/'.

Recall that in Sg(r) we are summing over the lattice points of the
trapezoid bounded by the lines &k = 0, m = bk/jd — K/d, m = bk[jd + K|d,
m = (ak — Kt)/je. Now, if the pair k, m is replaced by —k, —m, the
pair k', m’ is replaced by —Fk’, —m’, and the corresponding term in Sx(7)
is unchanged. Therefore, if we extend our region of summation in Sg(7)
by reflecting the trapezoid through the origin, Sz(z) is multiplied by 2.
The new region of summation is the parallelogram, &?(K), bounded by
the four lines m = bk/jd + K/d, m = (ak + Kt)/jc. Therefore,

(4.06) Se(r) = L S¥S* exp [2niui°i:’”"—'7/j] .
2 kmeghK) kTl —m

It follows from this that

at +b\ 1 % . —(dk’ 4+ dbm'[7) — ([5)(gck’ + am’)
SK( ot +d > = g 2 eXP [2’m (z[7)(ak — jem) — (md — bkfj) ] .

2 xmegx)

If the transformation I = ak — jem,n = —bk/j + md is performed, the
parallelogram <Z(K) in the & — m plane is mapped onto the rectangle
defined by |I| <tK,|n| =< K in the | — n plane. Furthermore, since
a=d=1(modj),b=c=0(modj), and ad — bc =1, there is a one-to-one
correspondence set up between the set of all lattice points (k, m) in #(K)
and the set of all lattice points (I, n) of the rectangle |I| < tK, |n| < K.
Also, a little computing shows that (ak — jem)(dk' + bm'[5) +
(md — bk[§)(jck’ + am’) + 1 = kk' + mm’ + 1 = 0. Therefore we can put
U'=dk + bw'[j, n’ = jek’ + am', and we finally obtain

SK<£—-|—_—b—> = —1— SE SFexp [2ﬂipiﬂ]
ct+d 2 1Stk In|=K It]j —n
(4.07) ux) ¥ — wri
=S¥ Y *exp [2niu_,—j] .
Izl —n

Therefore, it follows from (4.05) that
A(7; &€ +b
<‘7’ ct+d )

. [K(dt—jo)] ,
= A+ Lo lim {8 (L) TR s e

Koo ct+d k=1 [|m—bk[jd|sK|a

[K(dH-gC)]

_ * e—2nivm’lk}
(4'08) k=[K(dt—Jc)]+1 (ak—Kt)[jc=m=bk[jd+K]d
K] LY Ty
=A+ 1 lim {Z*‘ S exp [277:@1)——1—.—7"—7/—3]
16 z-« liz1 1n12k lzlj —n

[K (at—jc)]
—_ ] * e—zxiwn'[k

k=1 Im—bk/jd|<K/[a
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[K (at+je)]
—_ Z# * e—znivm’/k} .
k=[K (dt—Jjc)1+1 (ak—Kt)/jcsm=bk/jA+K |d

We now return to (4.01) and apply Lemma (2.03) with » =0, p = ¢.
Proceeding in the same way as in the proof of (4.05), we find that

(4.09) (75 7)
= 1y S o pmtrtvmn [ 27y ] _
A -+ 16 lim Z E e <exp N 1)

K=o b=l ImISK k(kt[j — m)
[tK] e (7S [tK]
=A+ L jim {Z* > exp [Znip__k___m_lﬁ] — S S e—zmm'/k} .
16 x-~ lis1imi=x ktlj —m k=1 \mIsK
Upon comparing (4.08) and (4.09), we conclude that
) L b .
by ( ; aT + ) — M5 T
T g (75 T)
4.10) 1 I {UK; ¥ —tmivmfe gl S oxtym’ [k
. = — lim e~ — e~
( 16 e kz=‘1 lm%l{ kz=“l |m—vk[IalSK|Q
[K (at+1c)] , .
- > > e ”“} = wy(J; ¢, d) .
k=[K (dt—Jjc)]+1 (ak—Kt)/jcsm<bk[ja+K|d

We have proved the required transformation properties when 7 is
a pure imaginary number. But \,(j;7) is regular for _Z(r) > 0, and
therefore, by analytic continuation, (4.10) holds for .#(z) > 0, and the
proof of the theorem is complete.

There are other transformation properties of the \,(j; 7) for special
values of v. These can be summarized in the following.

THEOREM (4.11). (a) If v is a multiple of j, then for _Z(7) >0,

(4.12) NG5 —1T) = M55 T) .
(o) If 7 is even and v is an odd multiple of j/2, then for 7 () > 0,
(4.13) M(J; —1[7) = 0(3) — M3 ),

where 0,(7) does not depend on T.

Proof. We again begin by assuming that ¢ is a pure imaginary
number. Returning to (4.01), applying Lemma (2.03) with » =0, p = J,
and proceeding as in the proof of (4.05), we obtain

ye = _];_ 1 jKﬁ- * ,—2mivm’ |k [ 27T’I:V ] _ 1
(414) M(f7)= A+ lm S¥ Si*e (exp o > )
This time, put

% B , 27y
— E] * 2xivm’ [k —
Se(t) = 28 >.7e oxp [k(kr/j - m)]
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(4.15) = jﬁ*ﬁ* exp [Zﬂiu—w]
k=1 m=1 ktlj — m

+ jZK* ZK“* exp [ZzipM] ,
%=1 m=1 ktli + m
where we have separated the terms for m < 0 and m > 0.
It follows that

Se(—1/7) = jz‘j*i* exp [27?*5)):_]%07__'*'_”7'_’&]
(4.16) o g—m

jK# K* [ . —k’z‘—m’/j]
+ k% mZ:1 exp 2m»———————_k/j el K
Put I = k/j and n = jm; it follows from (k, m) = 1,k = j (mod %), and
m =1 (mod j) that (I,n) =1,l =1 (mod j), and » = 5 (mod 72). Also, we
may put l'=jk'—m, n'=(k/j+m')/j. For mm'=—1 (mod k), m=1 (mod j),
and j|k together imply that m’= —1 (modj). Using the fact that
klj = 1(mod 7), we find that k/7 + m’ = 0 (mod 7) and »’, as defined above,
is an integer. Furthermore, I’ + nn' + 1 =kk' + mm’ +1=0. With
the above definition of I’ and %', we have k' = (I’ 4+ n/7)/j and m’' = jn' —1.
Now, (4.16) becomes

Se(—11e) = 5 oxp [min = nlieli & (' = D |
n=11=1 —l —ntlg

& & o — (U + nlj)rls — (Gn' — D]g
w1 + 7;2:1 ; exp [2mu T+ el ]

JKE K . —m! er/ > A
— o5k 9 nw +1UTlj 4 ]
nz:‘l ZZ‘; exp[ mv( el 11 + /J>

|

We see from (4.14) and the definition of Si(z) that
)\:v(j; T) = A -+ L lim {SK(T) _ sz“if E* e~2xivm’/k} .
16 x-o k=1 |m =K

Now, if v is a multiple of j, a comparison of (4.15) and (4.17) shows
that Sx(—1/7) = Sk(r) and therefore (4.12) follows. This is part (a) of
the theorem. In part (b), Sg(—1/t) = —Sk(z), and therefore,

iK
MG —1/0) + (s D) = 24 — = lim 3 S e i = 6,(j) .
8 Kow k=1 Im[=K
This is part (b) of the theorem. Here again the theorem has been proved
for 7 a pure imaginary number, but as before we extend our results
by analytic continuation to all = such that _#(z) > 0.
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5. Construction of functions for G(j). In order to construct fune-
tions which are invariant under the group G(j), we make use of Theorem
(4.02) and the fact that G(j) is finitely generated. Let T,, 1 =1, -+, q(J),
be a set of generators for G(j). Then by Theorem (4.02), we have

(5.01) M35 Tu(T) — M(J5 7) = ex(9) l=1,--+,409),

for any integer v = 1.
Let 1=y, <y, <<y, be integers and consider the function
defined by

(5.02) F(z) = b\ (457) oo+ by (55 7)
Then F'(7) satisfies the functional equations
(5.03)  F(Ty7)) — F(z) = bicn(9) o+ buery,(3), 1=1,--+,4() -

Let m = q(7) + 1 and consider the homogeneous linear system in the m
unknowns b, «--, b,

(5'04) blcl.vl(j) Ao+ bmcl,vm(j) =0 ’ l= 1) ct q(j) .

This has m — q(j) linearly independent solutions (b, -+-, b,). With
b, +-+, b, chosen to satisfy (5.04), put

(5~05) g(j; bl; ) bm; Vis ***y Ynms T) == bl 7\’vl(J; T) Foeee 4 bm)\’vm(j; T) .

It follows from (5.03) and (5.04) that <2(J; by, + -+, by Vi, ==+, Vs T4(7)) =
F(F; by, coe, by vy, cee, v, T)forl =1, -+ -, q(9) and therefore, since the
T, generate G(j), we have

(5'06) —g(j; bly "',bm; Viy ** %y Yy T(T)) = g(j’ bl; ""bm; Vis ***y Vs T) ’

for all T in G(j).
In order to show that the function & defined by (5.05) cannot
reduce to a constant we prove

LEMMA (5.07). Let d, be the nth Fourier coefficient of the function
£ Then

(5.08) d,, ~ (b,/16)p1*n =342 ) 2e— 2t n—vm)/I exp [4T(NY,,)"?/]] .

Proof. We see immediately from (5.05) that d, = >™.b.a,(v;, ),
with a,(v,, J) defined as in (3.01). The lemma now is direct consequence

of Lemma (3.02a)
In particular, (5.08) implies that <& is not a constant.

6. Construction of forms for G(j). Let r be any positive even



CONSTRUCTION OF A CLASS OF MODULAR FUNCTIONS AND FORMS 291

integer. We define the function

NV(j; T, 1) = i an(”:j; T)ez"““/f
(6.01) = i
a, (v, J,r) = {('—1)7'/271‘/8} Z‘#k_lAk,v(n)‘(v/n)(T+1)/2I,-+1(47Z'(n)))1/2/k) ’

where A, ,(n) is defined as in (8.01) and I, is again a Bessel function
of the first kind. It should be noted that if we put r» = 0 in (6.01) we
obtain the function \,(J; 7) defined by (3.01).

The computations of §§3 and 4, using Lemmas (2.01) and (2.03),
with » > 0, yield the following two theorems.

THEOREM (6.02)*. The function \(j; T, r) satisfies the transforma-
tion equations

at + b
cr+d’r>

=M 7T, 1) + 0ld5 T, 150, d) ,

(07 + AYlF; Taneal®), 1) = (o7 + N5
(6.03)

Jor all T,,.. in G(j) and _#(7) > 0, where p,(j; 7, r;¢,d) s a poly-
nomial in v of degree at most r.

THEOREM (6.04). (a) If v is a multiple of 37, them for _#(7) > 0,
{6.05) (55 =1z, 7) = M55 T, 1) + 0G5 T, )

where p,.(7; 7, 1) is o polynomial in T of degree at most r.
{b) If j is even and v is an odd multiple of j/2, then for _7(7) > 0,

(6.06) M5 =17, ) = p,o(J5 T, 1) — MU T, )

where p,.(3;7,r) 1s a polynomial in T of degree at most r.

Now, in order to construct forms of dimension = for G(j), we make
use of Theorem (6.02) and proceed as in §5. We take a linear combi-
nation of the \/(J;7,r) in such a way that the resulting linear com-
bination of polynominals occurring in the transformation equation connected
with T,,l =1, ---, q(J), vanishes identically. In this case m, the number
of N(J;7,7r) in the linear combination, must be such that m =
(r + 1)-q(J) + 1.

A simple generalization of Lemma (5.07), to cover the present case,
shows that the forms constructed in this way are not identically zero.

7. Conclusion. Other functions of the type dealt with in this
paper can be constructed by generalizing the congruence conditions on
k and & in (3.01) and (6.01). Let %, and %, be any integers. If, in

2 See correction at end of paper.
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(3.01), we impose the new congruence conditions k¥ = n, j (mod j?), h =
n,(mod j), we obtain new functions which satisfy (4.03), and which,
therefore, can be used to construct functions which are invariant under
G(9)-

If (n, j) > 1, the sum defining A, ,(n) is empty and so each Fourier
coefficient is zero. Also the case n, = 0 (mod j5), n, = 1 (mod ) is unique
and will receive separate treatment in another publication. The distinc-
tive feature here is the fact that, in order to construct functions
satisfying (4.03), we must introduce a pole term at ¢ . This situation
occurs, for example, in the Fourier expansion of £(z), the reciprocal of
Mz) (see [6]).

Making the additional assumptions n, = n,, n! = 1 (mod 7) in (3.01),
we obtain functions for which we can prove Theorem (4.11).

Correspondingly, if we impose the conditions %k = n,, 7 (mod %),
h = n, (mod j) in (6.01), we obtain functions satisfying (6.03), and making'
the further assumptions, n, = n,, n} = 1 (mod 5), we obtain functions for
which Theorem (6.04) holds.

It should be noted that all of our functions vanish at the parabolic
cusp at infinity. As the referee has pointed out, it is of interest to
consider the behavior of these functions at the other parabolic cusps of
G(7). This question will be treated at a later time.

Correction to ‘‘Construction of a Class of Modular Functions and
Forms”’. As it stands the proof of Theorem (4.02) is incorrect. The
difficulty arises in the paragraph immediately preceding (4.06), where
we extend the region of summation in Sg(z). In the original expression
for Sx(r) we are summing over the points (k, m) of a certain trapezoid
subject to the additional restrictions (m, k) =1, k =7 (mod %), m=1 (mod 7).
In order to extend the region of summation to the parallelogram <#(K),
we reflect this trapezoid through the origin. That is, when (k, m) appears
in the summation, we also include the point (—%, —m). The trouble is,
that when j = 3, (—k, —m) does not satisfy the proper congruence condi-
tions, but rather the new conditions —k = — 5 (mod 5%), —m = —1 (mod j),
or equivalently, —k = 5 — j (mod 5%), —m = j — 1 (mod 7). Hence the ex-
pression (4.06) for Si(t) is incorrect, when j = 8. For j = 2, of course,.
this difficulty does not arise.

The situation can be readily rectified if we go back to (3.01) and
modify the definition of the function M\,(J;7). Put b (v, 7) = a,, 7).,
with a,(v, 7) as in (3.01) and define b, (v, 7) to be the same as a,(v, j),
except that the congruence condition on % is changed to k = 52 — 5 (mod %)
and the congruence condition on % is changed to # =7 — 1 (modj). We
now define \,(7;7) by

M3 T) = Sbaly, e,
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where
bu(v, J) = (b5 (v, ) + ba(v, 9)] .

when 7 = 2, bi(v, 7) = b;(v, 5) = b,(v, J) = a,(v, 7), and no change has been
made.
With this new definition of \,(7; 7) (4.06) becomes

Sk(7) = 3 5.5 exp [znivzlc%fl_i] ,

where the summation is over all points of <#(K) such that (m, k) = 1.
and either k= j (mod %), m=1 (mod j) or k = j2—3 (mod %), m = 7—1 (mod 5)
The remainder of the proof now carries through.

The same remark is necessary in connection with Theorem (6.02).
That is, Theorem (6.02) is incorrect as it stands, but if we modify the
function \,(J; 7, 7) in the same way as we modified M\,(7;7), the proof
goes through.

We should point out that Theorems (4.11) and (6.04) are correct as
they are, but in addition Theorem (4.11) is true for the modified \,(7; 7)
and Theorem (6.04) is true for the modified \,(7; 7, 7).

Similar modifications have to be made in the definition of the func-
tions mentioned in § 7.
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