ON THE ACTION OF A LOCALLY COMPACT GROUP ON E_{n}

F. J. Hahn

It is known [2, p. 208] that if a locally compact group acts effectively and differentiably on E_{n} then it is a Lie group. The object of this note is to show that if the differentiability requirements are replaced by some weaker restrictions, given later on, the theorem is still true. Let G be a locally compact group acting on E_{n} and let the coordinate functions of the action be given by $f_{i}\left(g, x_{1}, \cdots, x_{n}\right), 1 \leqq i \leqq n$. For economy we introduce the following notation

$$
Q_{i j}(g, t, x)=\frac{f_{i}\left(g, x_{1}, \cdots, x_{j}+t, \cdots, x_{n}\right)-f_{i}\left(g, x_{1}, \cdots, x_{j}, \cdots, x_{n}\right)}{t}
$$

We denote by $\sigma\left(Q_{i j}(e, 0, x)\right)$ the oscillation of $Q_{i j}(g, t, x)$ at the point ($e, 0, x$).

Before proceeding there is one simple remark to be made on matrices. If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix such that $\left|a_{i j}-\delta_{i j}\right|<(1 / n)$ then A is non-singular. If A were singular there would be a vector x such that $\sum_{i} x_{i}^{2}=1$ and $A x=0$. From the Schwarz inequality it follows that $x_{i}^{2}=\left(\sum_{\jmath}\left(a_{i \jmath}-\delta_{i \jmath}\right) x_{j}\right)^{2}<(1 / n)$ and consequently $1=\sum x_{i}^{2}<1$ which is impossible. If $\left|a_{i j}-\delta_{i j}\right| \leqq(\alpha / n)$, where $0<\alpha<1$, then the determinant of A is bounded away from zero since the determinant is a continuous function and the set $\left\{a_{i j}:\left|\alpha_{i j}-\delta_{i j}\right| \leqq(\alpha / n)\right\}$ is compact in $E_{n^{2}}$.

Theorem 1. If T is a pointwise periodic homeomorphism of E_{n} then T is periodic.

Proof. [2, p. 224.]
Theorem 2. If G is a compact, zero dimensional, monothetic group acting effectively on E_{n} and satisfying

$$
\begin{equation*}
\sigma\left(Q_{i j}(e, 0, x)\right)<\frac{\varepsilon}{n}, \quad 0<\varepsilon<1, \quad \text { for each } x \text { in } E_{n} \tag{*}
\end{equation*}
$$

then G is a finite cyclic group.
Proof. Since G is monothetic, let a be an element whose powers. are dense in G. It is enough to show that there is a power of a which leaves E_{n} pointwise fixed since the action of G is effective.

[^0]If q is a positive integer we let

$$
T_{i}^{q}(g, x)=x_{i}+f_{i}(g, x)+\cdots+f_{i}\left(g^{q-1}, x\right)
$$

If $y=\left(y_{i}\right)$ and $x=\left(x_{i}\right)$ let

$$
T_{i j}^{q}(g, x, y)=\frac{T_{i}^{q}\left(g, x_{1}, \cdots, x_{j-1}, y_{j}, \cdots, y_{n}\right)-T_{i}^{q}\left(g, x_{1}, \cdots, x_{j}, y_{j+1}, \cdots, y_{n}\right)}{y_{j}-x_{j}}
$$

for $y_{j} \neq x_{j}$ and zero otherwise. If we let $y=f(g, x)$ then we obtain

$$
\begin{aligned}
f_{i}\left(g^{q}, x\right)-x_{i} & =T_{i}^{q}(g, y)-T_{i}^{q}(g, x) \\
& =\sum_{j=1}^{n} T_{i j}^{q}(g, x, y)\left(y_{j}-x_{j}\right) \\
& =q \cdot \sum_{i=1}^{n} \frac{1}{q} T_{i j}^{q}(g, x, y)\left(y_{j}-x_{j}\right) .
\end{aligned}
$$

Because of the fact that $f_{i}(e, x)=x_{i}$ and because of $(*)$ it follows that there is a compact neighborhood $U(x)$ of the identity of G such that if $g, \cdots, g^{q} \in U(x)$ then $\left|(1 / q) T_{i j}^{q}(g, x, y)-\delta_{i j}\right| \leqq(\alpha / n), 0<\varepsilon<\alpha<1$. It follows that if T is the matrix with entries $(1 / q) T_{i j}^{q}(g, x, y)$ then T is non-singular and its determinant is bounded away from zero uniformly in q, so the determinant of the inverse is bounded uniformly in q; thus

$$
(f(g, x)-x)=(y-x)=\left(\delta_{i j} \frac{1}{q}\right) \cdot T^{-1} \cdot\left(f\left(g^{q}, x\right)-x\right) .
$$

Since G is monothetic and zero dimensional there is a power of a such that if $g=a^{p}$ then all the powers of g lie in $U(x)$. Since $U(x)$ is compact it follows that the vectors $f\left(g^{q}, x\right)-x$ are bounded uniformly in q and thus $f(g, x)-x=f\left(a^{p}, x\right)-x=0$. Hence a is pointwise periodic on E_{n} and it follows from Theorem 1 that it is periodic and consequently has a power leaving E_{n} pointwise fixed.

From this it follows quickly that if G is a locally compact group acting effectively on E_{n} and satisfying (*) then it is a Lie group. This follows from the fact that since G is effective it must be finite dimensional [1] and then if G is not a Lie group it must contain a compact, non-finite zero dimensional subgroup H [2, p. 237] which acts effectively. H has small subgroups which act effectively and it follows from Newman's theorem [3, 4] that H cannot have arbitrarily small elements of finite order. Thus H has an element a of infinite order such that the compact subgroup generated by a acts effectively on E_{n} and satisfies (*) but by Theorem 2 this is impossible.

Bibliography

1. D. Montgomery, Finite dimensionality of certain transformation groups, Ill. J. Math. 1, No. 1 (1957), 28-35.
2. D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publishers, New York (1955).
3. M. H. A. Newman, A theorem on periodic transformations of spaces, Quart. J. Math. 2 (1931), 1-8.
4. P. A. Smith, Transformations of finite period, III, Newman's theorem, Ann. of Math. 42 (1941), 446-458.

Institute for Advanced Study
Princeton, New Jersey

[^0]: Received April 12, 1960. The author is a National Science Foundation Fellow.

