
WEAK COMPACTNESS AND SEPARATE CONTINUITY

IRVING GLICKSBERG

l For a locally compact space X let C(X) denote the Banach space
of all bounded continuous complex valued functions on X, CQ(X) the
subspace of functions vanishing at infinity, so that the adjoint CQ(X)*
consists of all finite complex regular Borel measures on X. In a natural
fashion, we may view C(X) as a subspace of C0(X)**.

When X is compact Grothendieck [6 Th. 5] has shown that a
bounded set K c C(X) is compact in the weak topology if (and of course
only if) K is compact in the topology of pointwise convergence on X,
and then both topologies, being comparable, coincide on K. In some
recent work the writer was led to a simple corollary of Grothendieck's
result which yields the significance, when X is only locally compact, of
compactness in C(X) under pointwise convergence:

1.1. Let K be a bounded subset of C(X), X locally compact. Then
K is compact in the topology of pointwise convergence on X {if and)
only if K is compact in the weak* topology of C0(X)** [4, 5.1].

Again both topologies coincide on K. A direct corollary of 1.1 is

1.2. Let X and Y be locally compact spaces, and f a bounded
complex function on X x Y which is separately continuous, i.e., for
which all the maps

x-*f(x, y) and y->f(x, y)

are continuous. Then for μeCQ{X)*,

y -* j/0», y)μ(dχ)

is continuous [4, 5.2],
The continuity obtained in 1.2 allows one to form the iterated

integral

(1.21) j J/(x, y)μ{dx)v{dy), μ e C0(X)*, v e C0(F)* ,

and thus one can extend the notion of convolution of a pair of finite
measures to a locally compact semigroup S in which the operation is
only separately continuous. Moreover 1.2 shows (1.21) is identical with
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(1.22) \\f(x,vMdy)μ(dx)

so that convolution is commutative if S is. Consequently we show in
§ 4 how some results of [3] extend to the separately continuous situation;
these in turn yield an analogue of the Weyl equidistribution theorem
which applies to weakly almost periodic functions on locally compact
abelian groups (4.6 below).

Although the fact will not be needed in what follows, note that 1.1
is actually a weak compactness criterion for the complete locally convex
space C(X)β formed from C(X) by endowing it with the strict topology
(cf. [0]). For since the dual C(X)$ consists precisely of the measures
in C0(X)*, the weak topology of C(X)β is just the weak* topology in 1.1 and
the bounded sets of C(X) and C(X)β coincide. But as a consequence
the topology of point wise convergence on C(X), when restricted to
bounded sets, shares some properties of weak topologies of complete
locally convex spaces: conditionally countably compact sets are condition-
ally compact, and have compact convex hulls.

Notation. For a function f, f\E will denote its restriction to E,
while for a set K of functions, K \ E will denote the corresponding set
of restrictions. C(X)P and C(X)w*wi\\ denote C(X) in the topology of
pointwise convergence on X, and in the weak* topology of C0(X)**,
respectively. In general X and Y will denote locally compact (Haus-
dorff) spaces, and, for a function / on X x Y, /(•, y) will be its section
x-^f(x,y) (with f(x, •) defined analogously). As we have indicated / is
separately continuous only if all of sections are continuous. Other
notation is standard.

2 Since the proofs of 1.1 and 1.2 (given in [4]), are quite short, we
shall include them for completeness.

Consider 1.1, and let j ^ ~ be an ultrafilter on K. J^ converges to
some /o in K in C(X)p9 and we need only show ^ converges to /0 in
C(X)W*. On the bounded set K the weak* topology is defined by the
dense set of measures μ with compact carriers Cμ, so we need only show

\fodμ — \im&\ fdμ for such μ. But K\Cμ is compact in C(Cμ)p and thus,

by Grothendieck's theorem, compact in the weak topology, and both

topologies coincide on K| Cμ. Clearly then \fQdμ — \ιm&\ fdμ as desired.

In order to prove 1.2 we have to show the map y—*f( ,y) of Y
into C(X)W* is continuous. But it is a continuous map into C(X)P, so
that any compact neighborhood F of y0 e Y has an image which is
compact in the weak* topology by 1.1. And since the weak* topology
coincides on this image with that of pointwise convergence, the desired
continuity is immediate.
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As a first application of 1.2 we note the following simple proof of
the well known fact (due to Krein and Smulian) that if K is a weakly
compact subset of a complete locally convex linear space E, then the
closed convex hull C^{K) is weakly compact. Take, as our X and Y
of 1.2, K in the weak topology, and the polar V° c E* of a neigh-
borhood V of 0 in E, in the weak* topology. Since x —> ζx, x*> and
#*—>(x,x*y are each continuous in the appropriate topologies, by 1.2
we have, for μeC{K)*,

(2.11) x* -> [<p, x*>μ{dx)
J

continuous on V°. Since V is an arbitrary neighborhood of 0, and E is
complete, a well known result of Grothendieck [5] shows (2.11) repre-
sents a weak* continuous functional on E*, and thus there is an Xμ, in
E satisfying

(2.12) <xμ, x*y = [ζx, x*yμ{dx) , #* e # * .

Let N = {μ: μe C{K)*, μ Ξ> .0, μ{K) — 1}, a weak* compact convex subset
of C(K)*f and endow N with the weak* topology. Since

c, x*yμ{dx)

is clearly continuous on N, (2.12) implies μ—>Xμ, is a continuous map
from iV into E under the weak topology; thus the range of this map is
a convex weakly compact subset of E, which clearly contains K. Since
^(K) is weakly closed by Mazur's theorem, this is all we need to
show.

3 As was noted in the introduction, 1.2 allows one to form the
iterated integral

\\f(x, y)μ(dxMdy)f μ e C0(X)*, v e C0(Γ)* ,

for any bounded separately continuous /. The desirable interchang-
ability of the order of integration would of course be immediate once
/ is, say, locally Borel measurable; however the writer is not aware of
any general answer to the question of measurability of separately con-
tinuous functions (a special case is covered in [7, §39]). Nevertheless
the independence of order is easily obtained from 1.2.

THEOREM 3.1. Let f be a bounded separately continuous complex
function on X x Y. Then

μeC0(X)*,veC0(Y)* .
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Proof. Let μ be fixed. For K a compact subset of Y let Eκ —
{v: \\v\\ ̂  1, v vanishes on subsets of K'}. Clearly (3.11) holds when
v is a finite linear combination of point masses; since these are weak*
dense in Eκ we can prove (3.11) holds for all v in Eκ by showing both
sides are continuous functions on Eκ, taken in the weak* topology of
C0(F)*. By Urysohn's lemma this topology coincides on Eκ with the
weak* topology of C{K)*, and thus the left side of (3.11) is continuous
since the inner integral represents an element of C(K). On the other
hand Eκ is compact in the weak* topology of C(K)* and

(x, v) -> y(x, y)v(dy)

defines a bounded separately continuous function on X x Eκ (by 1.2 and
the definition of the weak* topology). Thus 1.2 implies

'x, y)v{dy)μ{dx)

is continuous on Eκ.
Consequently (3.11) holds for any given μ, and any v with compact

carrier. Since such v are strongly dense in C0(X)*, (3.11) follows.

4. Let S be a compact space which is also a semigroup (group),
and suppose the operation is separately continuous:

x—*xy and y—>xy

are continuous; then we shall call S a compact separately continuous
semigroup (group). For μ and v in C(S)* we can form the convolution
of μ and v, an element μv of C(S)*, by virtue of the Riesz represent-
ation theorem and 1.2:

\f(x)μv(dy) = j \f{xy)μ{dx)v(dy)y feC(S)

Convolution is easily seen to be associative, and endowing C{S)* with
its weak* topology, separately continuous (by 3.1). Moreover 3.1 shows,
convolution is commutative when S is.

Let S = {μ: μ e C(S)*, μ ^ 0, μ(S) = 1}; S forms a compact separ-
ately continuous semigroup under convolution and the weak* topology.
In [3] the writer determined the subgroups of S when S is also jointly
continuous; in the present section we shall see how some of the results,
of [3] extend to the separately continuous situation. (We might remark
that compact separately continuous semigroups arise naturally in the
study of weakly almost periodic functions on, for example, the real line
(cf. [2])).
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That most of these results carry over to the separately continuous
situation is due to the consequences of Grothendieck's theorem given
above. We shall also make mild use1 of a fact due to Ellis [1] which
can be obtained, interestingly enough, from Grothendieck's result [2,
Appendix]: a compact separately continuous group is a compact topo-
logical group. In particular any closed algebraic subgroup of S is a
compact topological group. (However an algebraic subgroup need not
have its closure an algebraic subgroup, as in the jointly continuous
case.)

To begin, let us note some distinctions between the present, separ-
ately continuous, situation, and that of [3], preserving, insofar as
possible, the notation of [3]. When S is separately continuous, only
the same is true of S in general. But all of the ideal structure used
in [3] continues to hold (with one exception: (1.11) of [3] fails); in par-
ticular every abelian separately continuous compact semi-group S con-
tains a least ideal (Γ\xes%S) which is closed, a group, and thus a com-
pact topological group. (In [3] we allowed S to be abelian, or a group;
by virtue of the result cited above nothing new is obtained by allowing
S to be a group here, and we shall insist that S be abelian in all but
our first result.) The following is, in modified form, the key lemma
of [3].

LEMMA 4.1. Let S be a compact separately continuous semi-group,
and let μ, v e S. Then

(4.11) carrier μv — [(carrier μ)(carrier v)]~ .

Proof. The proof given in [3, Lemma 2.1] with A B replaced by
the right side of (4.11) shows the right side has μv-measnre 1. To see
that any open set W which meets the right side of (4.11) has μv(W) > 0,
we argue as follows.

Let xoyoe W, xoe carrier μ, yQ e carrier v. Then if feC(S) vanishes

off Wwhile f(xQyQ) = l, 0 ^ / ^ l , we have [f(xyo)μ(dx)>O since x-+f(xyQ)

is positive near x — xύ. Since y—Λf(xy)μ(dx) is continuous by 1.2, and

positive at y = y0,

0 < \^f{xy)μ{dx)v{dy) = \f{z)μv(dz) ^ μv{W) .

Consequently the right side of (4.11) is indeed carrier μv.
In the remainder of this section we assume that S is an abelian

compact separately continuous semigroup.
1 Essentially we use this to assert that μ in 4.2, when shown to be an invariant nor-

malized measure on a separately continuous compact group, is the Haar measure; of course
this could easily be avoided.
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THEOREM 4.2. Let μ2 = μ e S. Then carrier μ is a compact sub-
group of S, and μ its Haar measure.

If H = carrier μ, then 4.1 shows i ί 2 ' = iJ, and scrutiny of the
proof of [3, Th. 2.2] shows this is an adequate replacement for H2=H.
(Note that 1.2 must be used to obtain the continuity of /'.)

THEOREM 4.3. Let Γ be an algebraic subgroup of S. Then
G=\Jμer carrier μ is an algebraic subgroup of S. If 7] is the identity of
Γ, g = carrier η is a compact topological group, η its Haar measure, and
Γ the set of G-translates of rj. Furthermore if Γ is closed, G is closed.

Proof. G is algebraically a subsemigroup of S by 4.1, while g is a
compact group and f) its Haar measure by 4.2. Let e be the identity
of g. Then for μeΓ, xe carrier μ = [g carrier μ]~ implies ex — x since
this holds for x in g carrier μ. Consequently e acts as an identity on G.

Again let μ e Γ, xe carrier μ, z e carrier μ~u, then zga carrier μ~x by
4.1, so xzg c (carrier ^(carrier μ'1) c g, and thus g = (xzg)g = xzg. Con-
sequently there is a y in zg for which xy — e and G is a group. More-
over x~x = y ezg so z e x~xg; since z was any element of carrier μ~τ,
carrier μ~x c x~τg = yg azg c (carrier μ~x)g c carrier μr1. Thus carrier μ~x

= zg for any z e carrier μ~λ, or carrier μ — xg, for any x in carrier μ,
and carrier μ is a coset of g in G. Now

γ(z)μ(dz) = ^f(xy)v(dx)μ(dy), fe C(S) ,

since μ — rjμ. Since y —> \f{xy)y]{dx) is constant on carrier μ,

= γ(xy)v(dx)

for any y in carrier μ. Thus μ is exactly the translate to yg oί η.
Finally suppose Γ is closed. If xeG~ we can find nets {x8} and

{μB} for which #δ—>x, xs e carrier μ8, μ^eΓ and μ5—>μ eΓ. If x φ carrier μ
then xg Π carrier μ = φ and there is an / in C(S), 0 ^ / ^ 1, which is
1 on xg and 0 on carrier μ. Since

is continuous by 1.2, and assumes the value 1 for y in xg, we have

i ^ j/(tfδz)??(dz) = J/(z)μδ(dz) for δ ^ δ0,

despite the fact that
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Thus x 6 carrier μ c G, and G is closed, completing our proof.
Actually we can obtain all of the analogous result (Th. 2.3) of [3];

it is easy to see that if Γ is closed (as [3] required) then the weak*
closed convex hull &{Γ) of Γ is the image of (G/g)~, using exactly the
map Tη of [3, 2.3] (alternatively we could note that our measures all lie
on a compact topological group G, and apply 2.3 of [3]).

THEOREM 4.4. Let Σ be a closed subsemigroup of S with least
ideal ^\ let2 Sx = (\JμeΣ carrier μ)~, with least ideal I. Then
I = \J^e^ carrier μ.

Proof. Since ^y is a closed subsemigroup of Σ, and thus of S, by
4.3, G — Uμe^ carrier μ is a closed subgroup of S, and thus of Sx. Let
-So — \Jμ.€Σ carrier μ, and algebraic subsemigroup of S with S^ = Slu

Suppose xSi does not contain G for some x in Sλ. Then since
yexS1 Π G implies G = yG c ^SXG c xS19 xS1 Π G = φ. Consequently
there is an / in C(S) which vanishes on xSx and is 1 on G. Since
xeS1 = So", there is a net xδ~>x9 x5 e carrier μ5, μδeΣ. For v i n , / ,

a? carrier vaxS19 so that l/(a?2/Md2/) = 0, and therefore \f(x5y)v(dy)—>0

by 1.2. On the other hand μBv e ^ so that xs carrier v c carrier μδv

c G, and \f(x?>y)v(dy) = 1, a contradiction, whence we conclude that

'G c αSί for all x in Slβ Thus G c I = Π ^ ^ ^ .
Now for a; in So and v in . j ^ , the fact that x carrier v c G shows

xG a G; for 3/ in G then xyeG for all <B in Ŝ  since G is closed and
x—>xy continuous. Consequently xG c G, all a? in Slf and G is an ideal
in Sjj of course G must then contain the least ideal /, whence G = I
and our proof is complete.

By virtue of 4.4 and the remark immediately preceding it we obtain,
by exactly the proof of [3, 3.2],

THEOREM 4.5. Let μeS. Then (l/jW)Σ»=ii"n —* Haar measure on
the least ideal of the closed subsemigroup of S generated by carrier μ.

For the proofs of some of our next remarks (and for definitions of
the basic entities involved) the reader is referred to [2]. Let G be a
locally compact abelian group. Then the weakly almost periodic func-
tions on G form a closed translation invariant subalgebra W(G) of C(G)

• containing C0(G). Moreover W(G) is isometrically isomorphic to C(GW),
where Gw is a compact abelian separately continuous semigroup, the

2 Separate continuity (applied twice) is sufficient to guarantee that the closure of an
algebraic subsemigroup is a subsemigroup.
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weakly almost periodic compactification of G, in which G forms (topo-
logically3 and algebraically) a dense open subgroup; the elements in W(G)
are just the restrictions, to G, of the elements of C(GW). (Gw is not
jointly continuous, or a group, unless G is compact.) Naturally each
finite measure μ on G induces an element μ' of C(GW)*, and μ—>μf is
easily seen to preserve convolution, norm and order; in particular μT^O,
|| μ || = 1 imply μr eGw. If we define the carrier, in G, of such a non-
negative μ to be the closed complement of the union of all open sets
of //-measure zero, then carrier μ' in Gw contains the carrier of μ (since
open sets in G remain open in Gw, and C0(G) c W(G)). Finally let the
translate RJ of / be defined by Rgf{gf) =f{g'g), g, g' in G, / in W(G).
We need only apply 4.5 to S = Gw and μ' to obtain

THEOREM 4.6. Let G be a locally compact abelian group, and let
μ ^ 0 he an element of C0(G)* of norm 1. Then there is a non-negative
functional F of norm 1 on W(G) for which

4 r ΣΪ f(9)μn(dg) -> F(f) , f in W(G) „

and F(Rgf) = F(f) for all g in the carrier of μ.
Here μn is, of course, the ordinary n-ίold convolve of μ. As the

reader will observe, a related result can be obtained when G is merely
an abelian topological semigroup, as in [2].

Familiar results from ergodic theory suggest an alternative approach,
to 4.6, but yield a result of a different nature. Indeed if we define
μn*f, for / in W(G), by μn*f{g) = \^f{gg')μnW) then μn*f lies in the
weakly compact closed convex hull K of the set of translates of /,
and ergodic theory shows (l/i\0S£=i£*w*/ converges strongly to an fx in
K with μ*/i = /x. From this alone it is not all apparent that fx should
have the stronger invariance property that Rgfx — fλ for g in the carrier

of μ. But since μP*f(g) = \RgAg')μP(dg'), 4.6 shows

N »=

and f±(g) = F(Rgf), so f± does indeed have the invariance property...
Consequently we have proved

COROLLARY 4.7. Let G be a locally compact abelian group, μ a
non-negative measure of norm 1 on G. Then the operators

3 In the more general context of [2] G is only imbedded continuously in Gw; here
Co((τ)C W(G) guarantees the imbedding is open as well.
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on W(G) converge in the strong operator topology to a projection onto
the manifold of functions left fixed by {Rg: g in the carrier of μ}.

4.8 REMARK. The remaining result of §3 of [3], 3.5, extends to
the present context with no change in proof; beyond this point, how-
ever, there are difficulties in obtaining extensions. In particular §4
makes strong use of the now lacking property that the closure of an
algebraic subgroup of S be a group.

5 For E c C(X) let σ(C0(X)*, E) denote the least fine topology
for which the maps

are continuous. When X is taken to be a locally compact abelian group
G, 1.1 can be applied to some topologies on C0(G)* by virtue of the
Fourier-Stieltjes transformation. Let G~ denote the character group of
G, μ the Fourier-Stieltjes transform of μeCύ{G)*, C0(G)*~ the set of
all such transforms.

THEOREM 5.1. Let K c C0(G)* have a uniformly bounded set of
Fourier-Stieltjes transforms. Then K is σ(C0(G)*, C0(G~)*~) compact
if (and of course only if) K is σ(C0(G)*, G") = ff(C0(G)*, P ( G T ) compact,
where P(G~) is the set of point masses on G~. Moreover K is then
weak* compact if bounded.

We need only note that by virtue of the identity

(for μeC0(G)*,veC0(G~)*),σ(C0(G)*,C0(G~)*~) is the topology
C0(G^)*) (or the weak* topology of C0((T)**) transported to C0(G)*, while
<J(CO(G)*, P ( G T ) corresponds in the same way to σ(C0(G)*^, P(G~)) (or
the topology of pointwise convergence). Thus 1.1 can be applied. For
the final statement, note that C0(G~)*~ contains L^G^y, which defines
the weak* topology on bounded subsets of C0(G)*
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