HARMONIC FUNCTIONS WITH ARBITRARY
LOCAL SINGULARITIES

WiLLiam C. Fox

1. Introduction. This paper is concerned with a new and more
informative solution of an old existance problem, that of determining
what conditions must be imposed upon the nature of a local harmonic
singularity in order to imply the global existence of a harmonic func-
tion which ‘‘has’ the given singularity. In 1870, [17, vol. II, p. 133-
143 and p. 144-177], H. A. Schwarz solved the problem for closed surfaces
giving, as sufficient, the condition that the harmonic singularity function
must have vanishing flux across the curve (bounday of a disk) on which
it is given, and he solved the problem for open surfaces which are interiors
of compact manifolds-with-boundaries, with no restriction on the singul-
arity function. In 1909 [4, vol. 3, p. 73-80] Hilbert announced that the
problem for open surfaces, with singularities having flux, can be solved
by a special extremal method. Hilbert worked out an illustrative ex-
ample and left the general account to be presented in the thesis of his
student Richard Courant. A few months later Koebe [6], in the last
of his series of four papers on the uniformization of analytic curves,
gave the first full account of the existence of harmonic functions with
a prescribed local singularity on open surfaces. Koebe based his proofs
on exhaustion and the results of Schwarz; he did not use Hilbert’s
special extremal method. Moreover, his convergence arguments still used
the assumption that the singularity’s flux is zero. In 1910 and 1912
{2, 3] Courant published accounts of special cases taken from his thesis;
not again did Hilbert’s special extremal method appear in print. In
1913, Weyl [20] re-proved Koebe’s theorem using an extremal method,
namely that of minimizing the Dirichlet integral of what he called the
‘“‘concurrence functions.”” (In all these works the singularity function
was specified in concrete terms, e.g., as the real part of 1/z" near the
origin. However, the proofs remain valid for any singularity with
vanishing flux. Accordingly, I have described them in those terms.)

Not until 1958 were any further advances made with respect to
this existence problem. At that time, Sario [13] published a modern
account (based on preliminary notes dated 1949 and 1950) of the alter-
nating series method of Schwarz which went far beyond the work of
Schwarz both in method and in generality. When Sario’s results are
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restricted to the case of a local singularity, they duplicate those of
Schwarz for closed surfaces and in the case of open surfaces they relieve
Koebe’s theorem of the vanishing flux restriction on the singularity.
Sario states further that when the flux does vanish one may conclude
that the function asserted to exist is bounded and has finite Dirichlet
integral on any domain on whose closure it is harmonic.

In this paper, Sario’s results are sharpened in various ways. Among
others: a necessary and sufficient condition for the flux to vanish is that
a potential function exists which ‘‘has’’ the prescribed singularity and
whose normal derivatives vanish (in a certain strong sense) on the ideal
boundary. On open surfaces, there always exists a potential function
which ‘‘has’’ the prescribed singularity and which vanishes on the ideal
boundary. These conditions (on the functions’ behavior at the ideal bound-
ary) determine the two potential functions uniquely (up to additive
constants) as solutions to certain extremal problems. Concerning either
of these two potential functions, one may always state that it is bound-
ed and of finite Dirichlet integral on any domain on whose closure it is
harmonic, even when the singularity’s flux is not zero. Moreover, the
extremal properties shed some light on the role of Sario’s assumption
that the given singularity function, harmonic on certain Jordan curves,
vanishes on these curves.

An alternative existence proof is given here also. Its preliminary
part (Theorem 1) on uniform boundedness is of some intrinsic interest.
Although it parallels Sario’s Lemma 3 [13, p. 636], it was suggested by
similar arguments used by Koebe in 1909 [6] and in his 1910 recapitula-
tions [7, 8]. Mainly, however, the alternative existence proof is given
here because it also yields the other results described above.

2. Uniform boundedness. The existence theorem of the next sec-
tion makes use of the Ascoli theorem. For this purpose some informa-
tion is needed on the existence of a uniform bound for certain families
of potential functions. In what follows, the term ‘‘local coordinate’
refers to any homeomorphism (from a domain in the sphere onto a
domain in the Riemann surface in question) which is also analytic.

THEOREM 1. In the Riemann surface X, let B, C B, be the images
under a local coordinate of concentric open disks, and let S be har-
monic on the closed “‘annulus’ (B, — B;)~. If % is a set of functions,
u, with each of which is associated a domain D(u) in X containing
(B,)~ such that

(i) each function u is harmonic on D(u) — B, and is bounded

there by its extreme values on the boundary of B,
(ii) each funmction w — S determines a harmonic function U on
(B,)~ which agrees with w — S on By, — B;, and
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(iii) for some point Q of B, the set of walues {UQ):ueZ} is
bounded,
then there exists a constant K such that |u| < K on D(u) — B, for

every u in /.

Proof. Let M(u) denote the maximum value of |« | on the bound-
ary of the inner disk B,, by hypotheses, the relation |« | =< M(u) holds
on D(u) — B, and there then must exist a point p(u) in the boundary
of B, at which |u(p) = M(u). If the set {M(u):u e Z is bounded above
then the theorem is proved. Otherwise, there exists a sequence {u,}
in 2 such that (2.1) lim, M(u,) = + o and (2.2) lim, p(u,) —». On
the outer disk B,, the function U, (which agrees with u,—S on B,—B;)
is harmonic and so is bounded there by its extreme values on the bound-
ary of B,, so that

2.3) | U, | < lub {| u, ()| : x € 0By} + lub {| S(x)| : x € 8B,}.

If the right hand term in this inequality is abbreviated by the symbol
M, then relation (2.3), by hypotheses, may be written in the form

(2.4) | U, | € M(u,) + M on B,.
Thus
| U, — ULQ)] M
(2.5) _“W%Q——§2@+7WEQOH&'

By (2.1), this implies that the sequence (U, — U,(Q))/M(u,) is uniformly
bounded on B,. Moreover, the sequence u,/M(u,) is uniformly bounded
on the ring (B, — B;)". The Ascoli theorem guarantees the existence
of a subsequence of indeces for which the following limits exist uniform-

ly on the domains indicated:

(2.6) limnM = H,, harmonic on B,,
M(u,)
2.7 lim, Mu“ ] = H, harmonic on B,— (B,”), continuous on (B,— B,)".
U,

By hypotheses the sequence of numbers {U,(Q)} is bounded. Thus by
(2.1), one may conclude that

N . U(Q) _
M) =0 and hmn———M(un) 0

(2.8) lim,

’

whence

. n : S . U@ _
2.9 =1 Un _ _ lim,—2 _ — lim,—22%). = H on B, — B,.
(2.9) H,=lim, ) lim,, ) im,, ) on 1
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It is now necessary to show that Hy(p) =1 when p is given by

(2.2). Let p, denote p(u,) and let a,; = | u,(p,)/M(u,)]. In view of the
facts.

lim, a,; = | H(p,) | uniformly in j, and
lim,a,; = | u.(p)/M(u,) | for each n ,

(2.10) {

one may apply the Moore-Smith theorem on iterated limits. It follows

that the double limit lim, , @,, exists and equals the common value of
the two iterated limits:

2.11) lim,, (lim; a,;) = lim, (lim, a,,) = H{(p) .

(The last equality follows from (2.8) and (2.9), since the points p, are
all in B, — B,, for that set contains the boundary of B,.) Since a,, =1
for all » (by definition of p,), it s the case that | H(p)| = 1. Since
Hy(Q) = 0, this means that H, is not constant on B,.

On the other hand, H, must be constant, in virtue of the following
considerations. Restricted to B,, H, certainly is bounded by its extreme
values on the boundary of B,. Restricted to the ring B, — B,, it is
still true that H, is bounded by its extreme values on the boundary of
B; because H, inherits this property from the sequence u,/M(u,) which
by (2.8) and (2.9) converges to H, on B, — B,. This means that H,
must have a local maximum at some point of the boundary of B,, neces-
sarily an interior point of B,, whence H,is constant. This contradiction
completes the proof.

3. The existence theorem. The method of exhaustion requires that
the existence problem be solved on subdomains with compact closure
and smooth boundaries. For the present purposes this was started by
H. A. Schwarz in 1870 and was completed by Koebe in 1910, [8]. A
portion of the proof is sketched  here to indicate how the hypotheses
enter the arguments.

If » and s are C’ on the interior of Y except for a closed set of
measure zero then the Dirichlet integral of » relative to s over Y will
be denoted by D(r,s; Y). When r = s, the Dirichlet integral will be
written simply ©(r; Y). When Y is a plane domain, one has

) (or 55 , or bs
B, 5 1) = Sr<6w ox * oy 6y>d#

where z¢t is Lebesgue measure in Y.

LEMMA. Let X~ be a compact two-manifold-with-boundary and let
its interior, X #+ X, be a Riemann surface. If B, C B, are images
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under a local coordinate in X of concentric open disks and if S is
harmonic on the closed ‘‘anmulus’” (B, — B,)~ C X, then there exists a
function w, and when S has a single-valued congugate, there exists
another function v, such that
(i) they are harmonic on X — By,
(ii) their differences with S have harmonic extensions from B,— B,
to B,,
(iii) they are bounded on X — B, by their extreme values on the
boundary of B,,

(iv) O, T; X — B) = + Saﬂo Tdv* for every function T, C' on
X — B,; and

(v) ®u,H; X — B) =+ SaBoudH * for every function H harmonic
on X — B,.

Proof. By definition of a two-manifold-with-boundary, every bound-
ary point of X~ is contained in a Jordan curve one of whose comple-
mentary domains in X is simply connected. By the Osgood-Caratheodory
extension of the Riemann mapping function, there exists a homeomor-
phism of this domain’s closure onto the closed unit disk, a homeomor-
phism which is analytic on the domain itself and which sends an arc
of the boundary of X onto an arc of the unit circle. Thus, it is no
restriction to suppose that each component of the boundary of X is
an analytic Jordan curve, which in turn makes it possible to form the
“double’” of X—. (Of course, when X~ is contained in some larger
Riemann surface Y this argument does not imply that the boundary of
X is analytic *n Y, but only analytic relative to the coordinate system
of X itself.)

Let X* denote the double of X—; there is then an analytic homeo-
morphism, a reflection, R of X* onto itself which leaves the boundary
of X pointwise fixed and which sends X onto X* — X—. Let B = R(B,),
Bf = R(B;) and S*=S(R™"). Both S and S*, by hypothesis, have
single-valued harmonic conjugates on the annuluses B, — B, and By — B,
respectively. Since X* is a closed surface, this condition is needed to
warrant the conclusion that a function v*, harmonic on X* — (B, U Bj),
exists such that v* — S and v* — S* have harmonic extensions to B, and
B respectively. Moreover these conditions make v* unique up to an
additive constant since the only functions harmonic on a closed surface
are the constants. Therefore v*(R) — v* is not only constant but is
zero because R leaves the (non-empty) boundary of X pointwise fixed.
This implies that v* is bounded on X* — (B, U BY) by its extreme values
on the boundary of B, alone, for they are related by the reflection R
to those on the boundary of BF. Of course the normal derivatives of
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v* vanish on the boundary of X, also because of the relation v*(R)—v*=0
and the fact that, on neighborhoods of points of the boundary of X, R
is literally a reflection. Thus, if v denotes the restriction of v* to
X~ — B, then (i), (ii) and (iii) have been proved, and (iv) is a conse-
quence of the Green’s formula. This use of the ‘‘double’’ of X is due
to Koebe [8].

To construct %, one applies the existence theorem of Schwarz (for
open surfaces) with boundary values being the constant zero. Properties
(i) and (ii) are then immediate; (v) is a consequence of the Green’s
formula and the boundary values of %, and the latter implies (iii) also.

It is now possible to prove the main theorem.

THEOREM 2, PART 1I: Euxistence. Let X be a Riemann surface, let

B and B be images under a local coordinate in X of an open disk and

its boundary respectively, and let S be harmonic on B. A mnecessary

and suffictent condition that S dS* = 0 s that there exists a real func-
8

tion v
(i) which is a potential function, on X, whose singularity is S,
(i.e., which is harmonic on X — B and whose difference with
S has a harmonic extension to B~).
(ii) which is bounded on X — B by its extreme values on S,
and
(iii) for which dv* =0 on 80X, i.e.,

S wdv*:f@(w,v;X—-—B)—Swdv* =0
Ax B

Jor every function w, C' on X — B~ and continuous on the
closure.
If S is am arbitrary harmonic function on B and tf X is open, there
always exists a potential function, u, on X, whose singularity is S,
which has property (ii) and
@iv) for which u =0 on 08X, i.e.,

S udw*=@(u,w;X——B)——Sudw*=0
X B
for every function w harmonic on X — B.

THEOREM 2, PART II: Uniqueness: When v exists there then also
exists a function r, harmonic on B, for which d(S — r)* =0 on B;
whether or not v exists, there always exists a function s, harmonic on
B-, for which S —s =0 on B. The functions v and u are determined
uniquely up to an additive constant, among all potential functions on
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X whose singularities are S, by their respective properties (iii) and (iv)
as the functions for which:
(v) The quantity \ (S — r)dw* +S dw* is minimized by w = v
among all func%ions w, harmo%c on X — B.
(vi) The quantity \ wd(S — s)* + Saxwdw* s minimized by w=u
among all functions w harmonic on X — B.
In each case the minimum values are SS(S — r)dv* and L ud(S — s)*
respectively.

Proof. Let B = B, and let B, be concentric with B, such that S is
harmonic on (B, — B;)~. Let {D,} be an exhaustion of X such that
(B)~ c D,, i.e., {D,} is a sequence of domains, the union of which is
X, each with compact closure and with boundary consisting of section-
ally analytic Jordan curves. By the lemma, there exists a potential
funetion u,, on D, whose singularity is S, which vanishes continuously
on the boundary of D,, and is bounded, by its extreme values on g,
on D, — B,. Let @ is a point in B, and let a, be the value taken at
@ by the harmonic extension to B, of u, — S. If {a,} is an unbounded
sequence let {u,} be replaced by {u, — @,}. By Theorem 1 the sequence
{u,} is uniformly bounded on each set D, — B, and so contains a sub-
sequence which converges uniformly on each set D, — B, to a function
% which then inherits properties (i) and (ii).

NoTteE. When each u, is the Green’s function of D, with pole at
@ then a, is called the principle part of u, and the sequence {a,} is
necessarily monotone increasing. By use of Harnack’s theorem one sees
that {a,} is bounded above if and only if w is the Green’s function for
X. This characterization of the Green’s function’s existence (the con-
vergence of a sequence of principle parts) was first discovered by Koebe
in his proof of the so-called uniformization theorem [9], when X is simply
connected.

By (v) in the lemma, one may establish the following relations, once
%, has been extended continuously to X — D, to be constant there:

D(u, H; X — B) = lim,, ®(u,,, H; X — B,)
3.1) = lim, ®(u,, H; D — B,)
- lim,,,S w,dH* = SﬁudH*.
B
This establishes (iv) here. Note that the additive constants a,, should
they be present, do not have any effect, for they disappear in the inte-

grand of the Dirichlet integral.
If S does have a single-valued harmonic conjugate, i.e., if

SdS* ~0
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then the corresponding functions v, certainly exist, by the lemma, and
so therefore does v by Theorem 1. Moreover

D, T; X — By) = lim, D(v,, T; X — B,)
(3.2) = lim, ®(v,, T; D — By)
- 1im,,§ Tdv,* = SBTdv*,
B

as required by (iii). In (3.1) and (3.2), one needs to know that the
partial derivatives of u, and v, will converge to those of # and v. Con-
versely, given (iii), one may choose w = 1 and obtain

de*=0.
B

Since v — S has a harmonic extension to (B~ and therefore has a
single-valued harmonic conjugate there, it follows that

S d(v — S)* =0,
B8
whence
S dS* = 0
B

It is worth observing that the choices 7' = v and H = u lead to the
conclusions

D(u; X — B) = Ludu*, and

3.3)
D(w; X — B)) = Lvdv*.
Thus both % and v have finite Dirichlet integrals over X — B,. More-
over, according to (iii) v has the property that D(v, T; X — B,) is finite
even for functions 7 such that &(T; X — B,) is not finite. A similar
remark holds for w.

Using the notation

3.4) D(w; X — By = Sﬁwdw* + Sa wdw*
X
for harmonic w, with the above observations, one may verify that
(3.5) S udu* = 0 and S vdv* =0,
ax ox
facts which will be used below.

Let ¢t be a function harmonic on B-. To prove part II one must
establish that the quantities to be minimized in (v) and (vi) exhibit
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quadratic-form properties. For this purpose it is convenient to introduce
the notion of an (S — t)-concurrence function as a function W, C’ on
X — B for which

w + (S - t)XX—B—

is continuous on a neighborhood of 8. (Of course, X, denotes the char-
acteristic function of Z.) If w belongs to the class & of all functions
C’ on X — B~ and continuous on the closure, then w determines an
(S—t)-concurrence function, denoted by Wj_,, by the rule that W,_,=w
on X — B~ and W,_, is, on B~, the harmonic function determined by
the boundary values w — (S — t). Thus, every Wj_, is harmonic on B~.

If y is a potential function on X whose singularity is S and w is
an arbitrary member of & then

D(Yei Yoo = Woii B) = — | (0 — w)dly — (S — )",
(3:6) {D(Yioii Yooy = Wo X— B) = | @ — wdy” + || = w)dy”, and
Yoy Yoo = Woris 1) = | 0 = wias = 9* + |, 0 — wi.

9x

If w is a member of the class 57 of all functions harmonic on X — B,
then

D(Yos, Yoo = Wi B = — | (0 — (S = )dly — w)",
(3.7) {D(Ysss Yoo = Woois X— B) = | ydy —w)* + | yd(y — w)*, and
D(Ysss Yoo = Wiy 1) = | (8 = Byl — w)* + | vdy — wy.

These relations are consequences of the Green’s formula and the facts
that every W,_, takes, on 3, the values w — (S —%) and w according as
one approaches B from B or from X — B~ and the difference of two
(S — t)-concurrence functions is C’ on all of X. Therefore

The Dirichlet-variation ®(Ys_,, Ys_, — Ws_,; X) vanishes in each
of the following cases:

(a) when y =v and w —y =0 on 8 and on 60X,

(b) wheny=vand t=17r

(¢) when y =u and d(w — ¥)* =0 on B and on 98X, and

(d) when y =u and t = s.

3.8)

Cases (a) and (c) are immediate, whereas (b) and (d) are consequence
of (iii) and (iv), and the properties of » and of s.

The quadratic form character of the Dirichlet integral makes it easy
to verify that
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D(a,a — b; Z) =0 if and only if

(8.9) Db; Z) — Da; Z) = Db — a; Z).

Since D(b — a; Z) is non-negative the vanishing of the Dirichlet-varia-
tions in (3.8) are equivalent, respectively, with the following:

@) D(Vs_y; X) = D(W,_,; X) for all w in & for which w—v=0
on B and on 90X,

d)y  D(Vs,; X)=D(Ws_,; X) for all w in &

) DUs_; X)=D(Ws_; X) for all w in 5~ for which
d(w — u)* =0 on B and on 80X, and

@ DUy X) = D(Ws_; X) for all w in 7.

(3.10) A

In each of these cases, D(b—a; Z) =0 implies that b — a is constant, which
establishes the uniqueness claims. The extremal properties stated in (v)
and (vi) are derived from the inequalities (b)’, and (d)’ by expanding both
sides. In general, when w is in 57,

@(Ws-t; X) = @(Ws—z; B) + (Ws—m X — B)
- —Sﬁ(w—(S—-t))d(w—(S——t))* + Lwdw* + gaxwdw*

(3.11) —+| wd(s—t)+| (S—t)w | (S—tas—ty*
+S wdw*.

X
In (a)’, the first and third terms, above, are common to both sides; in
(b)' those terms both vanish since d(S—7)*=0 on 5. In (c)’ the second
and third terms, above, are common to both sides, and in (d)’ these
become zero because S —s =10 on 5.

The extremal properties of (a)’ and (c)’ are of no interest because
any two of the harmonic functions involved must differ by a constant.
Whereas v and 4 were shown to solve (b)’ and (d)’ by use of (iii) and
(iv), they were shown to solve (a)’ and (c)' automatically. Hence any
other of the competing functions also solves (a) or (c), whence the
competing functions all differ from w (or ») by constants.

It remains only to verify the existence of » and s. By the Poisson
formula there is a function s, harmonic on B,, given by the boundary
values S. Since S — s =0 on the boundary, B, of B,, it may be con-
tinued across the the boundary by reflection. Therefore, s is harmonic
on (B,))~ because S is harmonic on (B, — B;)~. When S is the real part
of a complex function S + 4T analytic on (B,)~ then in a like manner
one may construct a function ¢, harmonic on (B,)~, which agrees with
T on the boundary. Since B, is a disk, ¢ is the imaginary part of a
complex function 44t analytic on (B,)~. Since T'— ¢t =0 on the bound-
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ary of B, and is conjugate to S—r, it follows that d(S— »)* =0 on the
boundary of B, also, as required to complete the proof.

The evaluation of D(W;_,; X) in (8.11) relies upon the assumption
that w is harmonic on X — B so that the Green’s formula may be used
there. This restriction makes it possible to phrase (v) in a compact
form, though it does cause that statement to be incomplete. However, the
supply of functions; harmonic on X — B is sufficiently ample to make it
possible for the existence of v to be proved by a direct approach to the
extremal problem (v) rather than by exhaustion. (Indeed, except for
the restriction to harmonic functions, this is exactly how Weyl’s
existence proof was accomplished, for he minimized the Dirichlet integral
of all (S — 7)-concurrence functions.) This fact makes one suspect that
it may be possible to prove the existence of % by a direct approach to
the extremal problem (vi). I will discuss this possibility in another
paper.

From (3.9) and the expansion in (3.6) it is clear that

(312) Dy, X —B) = Dw; X — B) = Sﬁwdw* ¥ S wdw*

ox

for every w harmonic on X— B for which w=y on 8 and on dx. Sario
[14, p. 354] has discovered that, when y = v, the requirement ‘“‘w =y

on 0X’’ may be replaced by the requirement “g dw* = 0’ which is of
B
course equivalent with ‘| dw* = 0’’, and (3.12) continues to hold. He
9x
uses this fact to show that the existence of v implies S dS* =0, whereas

B
in the present discussion property (iii) is used for this purpcse as well
as to characterize v uniquely up to an additive constant. The function
v is Sario’s ‘‘principal function P°,.”” By (iii), when y = v, the relation
“w =1y on 08X’ holds for every C’' function w, so that Sario’s condition
“\ dw* = 0"’ is not necessary, for the extremal property (8.12) itself.

Thz fact that (3.12) holds for all w which agree with v on S regardless
of their behavior ‘“‘at infinity’’ was known to Hilbert in 1909 [4, vol.
3, p. 78].

The existence of v was announced first by Hilbert [4, vol. 3, pp.
73-80] and fully proved first by Koebe [6]. Its extremal property (v)
was discovered and proved by Weyl [20]. The existence of u with
property (i) was proved first by Sario [13]. Properties (ii), (iv) and (v)
for w are new, as well as their unique determination of u.

The results given here may be generalized along the lines of Sario’s
linear operators [14, 15] by consideration of more general domains for
the singularity function S and of extremal properties involving other
combinations of the quantities appearing in (v) and (vi). Alternatively,
once the existence of potential functions with an arbitrary local singul-
arity has been settled (as in the present theorem 2) one may build a
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sequence of potential functions each with local singularity in one of a
sequence of ‘‘localities’’ and then combine them with coefficients which
force convergence of the resulting series. Such a technique was first
propcsed by Koebe [10] in his proof that every open surface is conform-
ally equivalent with a continuation manifold (needed to fill a gap in his
first proof of the so-called uniformization theorem); a more detailed
version was given by Stoilow [18, p. 59-60].
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