
DISCONJUGACY OF A SELF-ADJOINT DIFFERENTIAL
EQUATION OF THE FOURTH ORDER1

JOHN H. BARRETT2

Introduction* In a recent paper [10] W. Leighton and Z. Nehari
investigated oscillation properties of solutions of self-adjoint differential
equations of the fourth order

(r(x)y'T + (Q(x)vΎ + V{x)v = 0

with particular attention to the cases where the middle term is missing,
r(x) > 0 and p(x) does not change sign. In the present paper one of
these particular cases

(1) {r{x)y")" - V{x)v = 0

(r(x) and p(x) positive and continuous on [a, oo)) will be pursued further
with the object of paralleling the known theory of second order equation

( 2) (r(x)y'Y + p(x)y = 0

with positive and continuous coefficients (e.g., see [2] and [12]). With only
occasional minor modifications the terminology of [10], together with the
fundamental properties of (1) established there, will be assumed
throughout this paper. One point of departure is the distinction between
"disconjugacy" and "non-oscillation" as the author has used them pre-
viously [2] for equation (2) in discussions which will be extended here
to the fourth-order equation (1). It will be said that equation (1) is

(i) dίsconjugate if no nontrivial solution has more than 3 zeros on
[α, oo) and, hence, no conjugate pairs exist on [α, oo) in the sense of
Leighton and Nehari [10],

(ii) oscillatory if there is a nontrivial solution with infinitely many
zeros on [α, oo).

(iii) nonoscillatory if every nontrivial solution has at most a finite
number of zeros on [α, oo).

Recently, W. J. Coles [5] has developed Wirtinger-type inequalities in
relation to the higher order equation

Received October 20, 1959.
1 This work was sponsored by the Office of Ordnance Research, U. S. Army, Contract

DA-04-495-ORD-1088 with the University of Utah. Presented to the Amer. Math. Soc, Janu-
ary, 1960.

2 Member, Mathematics Research Center, U. S. Army, Madison, Wisconsin for the 1959-
60 academic year.

25



26 JOHN H. BARRETT

(r(x)yim)Ym) + (-l)m+1p(x)y = 0 (m=l, 2, 3, .)

by use of his Riccati systems [4] and in this discussion are included
various sets of two-point boundary conditions, one of which is analogous
to the well-known focal-point conditions for the second order equation
(1) (see [2], [12] and [13]).

Again following the second-order discussions [2], associate with (1)
its "reciprocal" equation [10, p. 369]

(1*) (V'ΊΦ))" - (VΦ))y = 0

as was done for (2) with

(2*) (VΊP(X)Ϊ + air(x))y = 03.

Note that y(x) is a solution of (1) if, and only if,

. = r{x)y"{x)

is a solution of (1*). Throughout this paper, the subscript " 1 " on a
solution will stand for the leading coefficient times the second derivative
of the solution.

In the first section known second-order definitions and theorems will
be listed, which will be shown to be true almost verbatim for the fourth
order case in the second section. The third section contains results fol-
lowing from Wirtinger-type inequalities, which are the fourth-order
special cases of the above-mentioned results of Coles, and an extension
of the eigenvalue discussion of Leighton and Nehari. The last section
contains Coles' general theorem with minor modifications, as utilized in
the preceding sections.

1. The second*order case. Consider equation (2) with the stated
conditions on its coefficients [2].

DEFINITION 1.1. If a nontrivial solution of (2) satisfies the two-point
boundary conditions y(a) = y(b) = 0, a < 6, then the smallest such number
b is designated as ηλ(a) and is called the first (right) conjugate point of
α. If no such solution and number b exist then equation (2) is said to
be disconjugate.

DEFINITION 1.2. If a nontrivial solution of (2) satisfies y(a)=y'(b)=0,
a < 6, then the smallest such number b is designated by fJt^a) and it is
said that a is the first (left) focal point of & = μx(α). The first two
theorems are almost trivial for (2) but their counterparts for (1) require
some proof, as is seen in the next section.

3 Previously utilized by Leighton for boundedness theorems in [8].
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THEOREM 1.1. Ifη^a) exists then so does μλ(a) and a<μL(a)<η1(a).
Furthermore, if (*) denotes the same notation for the reciprocal equa-
tion (2*) then the existence of η^a) implies, also, the existence of /^*(a).
In other words, if either η^a) or η*{a) exist then both of μx(a) and μΐ{a)
exist.

THEOREM 1.2. If μ^a) does not exist then for every solution y(x) of
(2), for which y(a) = 0 and y'{a) > 0, it follows that y(x)>0 and y'(x)>0
on (a, oo).

THEOREM 1.3. [2, p. 554] // μ^a) exists and I (l/r)=oo then r]x{a)

exists. Furthermore, for any solution y(x) of (2), for which y\b) = 0,

y(b) Φ 0, a S. b, it follows that y(x) has a zero on (b, oo).

This theorem is due to Hille for r = 1 and was utilized by Nehari

[12]. It is noted that disconjugacy of (2) implies the non-existence of

μλ(a), if Γ(l/r) = oo. Recall (e.g., [2]) that if ί~(l/r) < oo then μx{a)

can exist even though rj^a) does not—in particular, when \ p — oo.

(1/r) = oo and \ p—co then η^a) exists and,

in fact, equation (2) is oscillatory (for this result p(x) may change sign).
The well-known relation of the focal-point problem to quadratic func-

tionals4 was reiterated recently by W.T. Reid [13], when he gave a concise,
self-contained development with applications to new oscillation criteria of
(2).

THEOREM 1.5. [2, 13]. // the number μ^a) does not exist then the
quadratic functional

(3) Ilu; b] = \\r(u'Y - pu>)

is strictly positive for every b > a and every function u(x) such that
u(x) is absolutely continuous, uf 6 L2(a, b) and u has a zero of at least
order one at x — a. This conclusion can also be stated as a Wirtinger-
tγpe inequality

(V2<

2. The fourth-order case. Consider the equations

(1) (ΦW)" - p(x)y = 0 ,
4 For the general classical theory see Morse [11] and for the theory for singular func-

tionals see Leighton [9].
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(r(x) and p(x) positive and continuous on [α, co))f and

(Γ) {y"iv(χ)" - y[r(χ) = o .

The following conjugate point definition is that of Leighton and Nehari

[10].

DEFINITION 2.1. If a non-trivial solution of (1) satisfies the two-point
boundary conditions

( 5 ) y(a) = y'(a) = y(b) = y'(b) = 0, a < b ,

then the smallest such number 6 is designated by Vi(a) a n d * s called the
first (right) conjugate point of α. Recall from [10] that such a number
exists if (1) has a nontrivial solution which has double zeros at a and
%(α), is non-zero on (α, ̂ i(α)) and any essentially different (linearly in-
dependent) solution of (1) has at most 3 zeros on [α, %(α)].

DEFINITION 2.2. If a nontrivial solution of (1) satisfies

( 6 ) y(a) = y\a) = Vl(b) = y[(b) = 0, a < 6,

(recall ^ = rι/")

then the smallest such number b is designated by ^(a). The solutions
of (1) which are particularly useful in the following analysis are those
whose Wronskian at x — a is

( 7 )

By [10, Lemma 2.1] all of y, y', yx and y[ for y = U, V, u and v are
positive on (α, α>).

LEMMA 2.1. [10] If y(x) and z(x) are solutions of (1) then

S[y; z] = yz[ - zy[ - yfzλ + z% = C, a constant.

In [10] the non-self-adjoint form of the following is established and
utilized in establishing conjugate point (oscillation) theorems.

LEMMA 2.2. If y(x) and z(z) are solutions of (1) such that S[y; z]=0
and y(x) Φ 0 on I a [a, oo) then W(x) — yz' — zyf satisfies the second-
order self-adjoint equation

(8 ) (rW'ly2)' + (2y1/yd)W = 0 on I.

y = U(x):

y = V(x):

y = u(x):

y = v(x):
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Note that if y > 0 and y[ > 0 on I (such solutions exist for any such /)
both coefficients in (8) are positive and the results of the first section
apply. The following is an example of the importance of (8):

LEMMA 2.3. [10. Th. 3.11] // y(x) is a solution of (1) having at
most a finite number of zeros then (1) is oscillatory if, and only if, (8)
is oscillatory.

The present discussion will be concerned with relations between the
last two solutions, u(x) and v(x), defined by (7), since every solution of
(1) having a double zero at x = a can be expressed by

y = yλ(a)u(x) + y[(a)v(x) .

As in [10], note that in order for any nontrivial solution of (1) to have
both a double zero at x = a and at x — b (i.e., satisfy boundary conditions
(5)) it is necessary and sufficient that

( 9 ) σ(x) = u{x)v\x) - u'{x)v{x)

vanish at x — b. Furthermore, ηx(a) (of Definition 2.1) is the smallest such
b > a. Observe further that in order for a nontrivial solution of (1) to
satisfy the conditions (6) it is necessary and sufficient that

(10) ρ{x) = uλ{x)v[(;x) - u[{x)vλ{x)

vanish at x = b. The stage is now set for the verbatim fourth-order
analog of Theorem 1.1.

THEOREM 2.1. // 7)x(a) exists then so does μλ(a) and a<μ1{a)<y]1(a).
Furthermore, if (*) denotes the same notation for the reciprocal equation
(1*) then ηλ(a) implies, also, the existence of μ*(a).

Proof. Let Z(x) be a solution of (1) having double zeros at x = a
and x = Ύ)x(a) and positive in (a, ^i(α)). There exist inflection points
xλ < x2 of y = Z{x) on (α, rj^a)) such that Z"{xλ) = Z"(x2) = 0 and Z"<0
on (xlf x2). Recall that u(x) is the solution of (1) which satisfies

u(a) = w'(α) = u[{a) = 0, uλ(a) = 1 .

By use of a fundamental technique of [10], since {Z"\u")f must change
sign on (x19 x2), say at x = b. There exists a number λ such that the
solution y = Z(x) — Xu(x) satisfies the boundary conditions (6) and
a</^(a) 5Ξ 6 < ^i(α)5. For the second part consider the pair of solutions
U, u. Since S[u; v] = 0 then σ(x) = wy' — τra' is a solution of

5 This result may also be established easily by means of an indirect argument using
equation (8i) following.
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Zf\'+*ha = o and (<*)'+ *hσ = 0 on («,«).
u / u \ v J v

Note that x = α is a singular point. Similarly, S[{7, w] = 0 and σ1(x) =
ΪTM/ — uU' is a solution of (8') and

(8") (ψy+ψLσi = o on

Finally, S[£7, F] = 0 and <72 - t /F ' - VU' is a solution of (8"). Since
σ(a) = 0 = 0(7]^ = σ^a) and σ2(a) > 0, σ'2(a) — 0, then simple comparison
techniques give that σx has a zero xx on (α, %) and that σ2(x) has a zero
x2 on (α, α?i) c (α, ̂ ) . Because of the relationship between (1) and (1*)
it is easily seen that the smallest such number x2 is actually μΐ{a) and
the theorem is proved.

While Theorem 1.2 is not true for (1) a similar theorem does hold.

THEOREM 2.2. If μλ{a) does not exist then there exists a solution
y(x) such that y(a) = y'{a) = 0, y(x) > 0, y'(x) > 0 yx(x) > 0 and y[(x) < 0,
on (α, oo).

The proof will be accomplished by two lemmas concerning the ratios
involving the particular solutions u(x) and v(x) of (7).

(11) λ0 = ujv, \ = u'\v\ λ2 = ujv19 λ3 = u'JvΊ .

LEMMA 2.4. // μ2(α) does not exist then

λ0 > λi > λ2 > λ3 > 0 on (α, oo) .

Proof of lemma. That all \ are positive is obvious. Also, if Lemma
2.2 is applied to (1*) and its solutions uλ and vλ then p(x), defined by
(10), satisfies

(8J (pΊpulϊ + 2uρlu\ = 0 on [α, oo)

viy + 2vp/vl = 0 on (α, co) .

Note that x — a is not a singular point of the first equation of (8X).
The following useful relations are derived by routine calculations:

n*\ / PΊv = -~rσ'
(*-*) jλΊ M- τiv Vi ί(rσ')' = 2τ

where

(14) τ(x) — u% — t X = uv[ — vu[ ,

the latter identity following from the fact that S[u; v] = 0.
Since ^(α) does not exist and ρ(a) = 1 then p(x) > 0 on [a, oo). Also,
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p'(a) = 0 and, hence, integration of the first equation of (8X) gives
p\x) < 0 on (α, oo). Therefore, σ'(x) > 0 and σ(x) > 0 on (α, oo). In
order to show that τ(x) > 0, recall that (p'lp)' = — 2τ and from the
second equation of

2τ\v\ = 2vρjvl — 2v[ρflpv\ > 0 on (α, oo) .

Therefore, all of the differences (12) are positive on (α, oo).

LEMMA 2.5. If ^(a) does not exist then λ0, Xλ and X2 are decreasing
functions and λ3 is an increasing function on (a, oo).

Proof of lemma. Simple calculations yield

(14) λ{ = - a\v\ X[ - -τlφ'f, λj = -p\u\, λί - pτl(v[Y

from which the result follows immediately.

To complete the proof of Theorem 2.2, let λ* be a positive number
such that

XQ(x) > X£x) > X2(x) > λ* > X3(x) on (α, oo) .

Then y(x, λ*) = u(x) — X*v(x) satisfies the required conditions.
An example of (1) for which μλ{a) does not exist is (e~%xy")n—e~2xy — 0

for which direct calculations show that p(x) > 0 on (α, oo). This example
should be compared with the similar one for the second-order case [2].

S oo

(1/r) = oo then ηλ{a) exists.

Proof. In addition to the identities (12), (13) and (14) note that

(15)

\ — λ2 = rσf/vv1

χo-χ3 = τlvv[ (16) .

Λi — ^3 — T'/V'V!

τf = (̂ Ίo + τu^\ux

τ" = — p — pσ or
r

( w ' ) w + 2pσ = 2^/r.

and that τ(x) satisfies the second order self-adjoint equation with posi-
tive coefficients:

(17) ( - £ — V + 1 — ( U + gg-V = 0 on (α,oo).
Wu'u'J 2Vu'u[\ruf u'J

Assume that the theorem is not true, i.e., (1) is disconjugate. Thus

σ(x) > 0 on (α, oo) and since \ (u2/r)=oo, Theorem 1.3 (second part) may

b l i dbe applied to



32 JOHN H. BARRETT

(8') (rσ'lu2)' + 2u1σ/u3 = 0 on (a, oo) .

to obtain that σ\x) > 0 on (a, oo). Hence ρ\x) < 0 and p(x) has only
one zero, namely μx{a), on (α, oo). Since

(τ/uY = -σu'Ju2 < 0 on (a, oo), lim(τ/^) = — > 0 ,

r(a) = τ'a) = 0 and τ"(α) > 0 .

Then τ{x) can have at most one zero on (α, oo). Suppose first that such

a zero x — ty exists. Then τ(x) > 0 on (a, tλ) and τ(x) < 0 on (tlf oo).

Note that I ι/u'u[ = oo and since (17) is disconjugate, Theorem 1.3

guarantees that its solution τ(x) has only one point x = t[ on (α, ί j where
τ' = 0 and τ' < 0 on (ί{, oo). The first equation of (16) yields that
a < μι<t[< ίj.

On the half-line (ίx, oo) equations (12), (14) and (15) yield

\(x) > X0(x) > X2(x) > λi(a?)

λί < 0, X'o < 0, λ̂  > 0, λj > 0 .

Because of the above monotonicity there exists a positive constant λ* such
that on (t19 oo),

Let 2/(α;) = u(x) — λ*v(^), a solution of (1). Then y(x) > 0, y'(x) < 0 and
y"{x) < 0 (since yx < 0) on (ί^ oo), which is contradictory information.

Therefore, τ(x) > 0 on (α, oo) and by Theorem 1.3, τ\x) > 0. Thus
on the half-line (μ19 oo):

X0(x) > XL(x) > XΆ(x) > λa(a?)

λj < 0, λj < 0, λ̂  > 0, λ̂  > 0 .

As above there exists a positive constant λ* between \ and λ3 on (μly oo).
For y(x) — u(x) — X*v(x) on the interval (μu oo):

y(x) > 0, y\x) > 0, ^(α?) < 0 and y[(x) > 0

which is contradictory, using that I (1/r) = oo.

S oo poo

(1/r) — oo and \ pu\ — oo then rj^a) exists and,
in fact, equation (1) is oscillatory.

The crucial point of the proof is the following which follows im-
mediately by application of Theorem 1.3 to equation

LEMMA 2.6. // I pul = oo then μλ{a) exists.
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S CO

pu\ — oo implies that μx{a) exists which, to-
(1/r) = oo and Theorem 2.3 gives that y]i(a) exists. Since

for any aλ > α, ^ ( α j exists, then by [10] equation (1) is oscillatory.

Because of the monotonicity of u(x) and uλ(x) it follows that

(1/r) = oo and I p = oo then (1) is oscίl-

Further corollaries are obtained by a more careful examination of
the properties of u(x) and its derivatives. Integration of (1) and con-
sideration of the initial conditions for u(x) yield

(18) uλ{x) = 1 + l\pn) and u(x) = l\ujr) ,
α a

where the Riemann-Liouville notation is used for the iterated integrals.
For a < x0 ^ x < oo it follows that

and

Mr) > ul(x0) \~(llr(x))\hllr)Ίdx

S r ~ Γ a; -12

pul > p(x) 1 + u(x0) Γp dx
XQ J XQ L XO -J

= Γ p + 2%(a;0) Γ (p(x) (ί2p)dx + %2(x
Jx0 Jx0 \xo /

COROLLARY 2.4.2. If\ (llr(x))dx= oo and \°°p(x) (ϊ2p)2dx=oo then

(1) is oscillatory.

x Cx\

Note that for a < x0 < xλ ^ a? < oo, Γp ^ (^ — α^n p-^oo as x—>oo and

the following result of Nehari and Leigh ton follows.
COROLLARY 2.4.36. [10, Th. 6.8] If r{x) ^ m αraZ (1) is nonoscillatory

S oo

x2p(x)dx < oo.
In connection with the above oscillation theorems it is appropriate

to list two known theorems insuring nonoscillation.

Theorem [10, Th. 6.12] If P(x) = ΐp and Γ(P/r) < oo then (1) is
X J

non-oscillatory.
Theorem [10, Th. 6.11] If Γ l / r < oo and [°x2p(x)dx < oo then (1) is

J Jx

non-oscillatory.
6 Also, a special case of a more general result for fourth-order systems by Sternberg

and Sternberg [14].
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3. A n eigenvalue problem, a n d Wirtinger-type inequalities. Leigh-
ton and Nehar i have shown [10, Th. 6.6 and 6.7] t h a t equation (1) is
disconjugate on [α, oo) if, and only if, t h e least eigenvalue λ(6) of t h e
' "conjugate-point" problem

(ry")" - Xpy = 0, y(a) = y\a) = y(b) = y'(b) = 0 .

satisfies λ(6) > 1 for all b > α. F u r t h e r m o r e , if equation (1) is discon-
j u g a t e on [α, oo) t h e n I4[w; 6] ^ 0 (see equation (25)) for all w(x) of class
D"{a, b) e L2(a, b) which satisfy w(a) = w\a) = w(b) = w\b) = 0. Finally,
in t h e spirit of [12] t h e y obtained a number of nonoscillation theorems
by tak ing special examples of such w(x).

Consider here t h e " focal-point" problem as for t h e second-order case
in [2, 12].

(19) (ry")" - Xpy = 0, y(a) = y'(a) = y,{b) = y[{b) = 0 .

For each 6 > a let X^b) be the least eigenvalue and y = z(x) be a cor-
responding eigenfunction. Integration by parts gives

(20) ( V = \(b)[r(z"Y .

If there does not exist a number μ^a) then λ = 1 is not an eigenvalue
for any by a and by Theorem 2.2, there exists a solution y(x) of (1) for
which y(a) = y\a) = 0 and y(x) > 0, y\x) > 0, yλ(x) > 0, y[(x) < 0 on
(α, oo). This is but a special case of the general theorem of Coles [5],
as will be seen in the last section, and it follows7 that for every
b > a

(21) ( V 2 < [r(u"Y, i.e., /4[u; 6] > 0
ja Ja

for every function u(x) for which u1 is absolutely continuous, u" e L2(a, b)
and u has a double zero at x — α.

LEMMA 3.1. The number μ^a) does not exist if, and only if, the
eigenvalue λx(6) > 1 for all b > α.

Proof. If μλ(a) exists then for b = /A(α), λ(^(α)) = 1. If μx{a) does
not exist then (20) and (21) yield that λx(δ) > 1 for b > a and the lem-
ma is proved.

By combining the above lemma with Theorem 2.3 it follows that
(recall the special monotone solution u(x) of (1)):

( oo

(1/r) = oo then equation (1) is disconjugate on

7 See concluding statement of section 4.
8 This result has also been obtained by H. C. Howard by means of Rayleigh quotients

in his dissertation at Carnegie Institute of Technology, June 1958; to appear in the Transac-
tions of the American Mathematical Society 96 (1960), 296-311.
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[α, oo) if and only if, λ^δ) > 1 for all b > a and if (1) is disconjugate
then for every b> a

(21) [pw2 < \br(w"Y
Ja Ja

for all w(x) such that w'(x) is absolutely continuous, w" e L2(α, 6) and w(x)
has a double zero at x — a.

S CO

(l/r)=oo the Wirting-
er-type inequality requires a double zero only at x = α while the result
stated at the beginning requires double zeros at both x — a and x = b.

An application of Theorem 3.1 to the reciprocal equation (1*) yields

COROLLARY 3.1.1. If\ p = oo and equation (1*) is disconjugate

then for every b > a

ar p

for the above class of functions w.

4. Higher order equations* The following is the theorem of Coles
[5] which has been utilized several times in the preceding sections. It
should be noted that his proof for the case r = 1 carries over step-for-
step for the following.

THEOREM C. If m is a positive integer; r(x) > 0 and p(x) are both
continuous on [a, b], a < b; and y(x) is a solution of

(22) (r(x)y{m)Ym) - p(x)y = 0; yx{x) = r{x)y{m){x)

such that

ί(-l)mp(x)y(x) ^ 0 b u t ΐ O o n [α, b]

(23) P*» ( w-4 )(c4) ^ 0 (i = l , 2 , . . . , m )

I idi) ^ 0 (i = 0 , l , . . . , m - l )

where
fc4 = 0 or 1 (i = 0 , 1 , , m) such that ΣΓ=o^ is

Ct = /«, A;4 = 0 ^ = ία, fc1+1 = 0 ίc4* = a + b - ct= ία, fc1+1 = 0 ίc4* = a

\ ki+1 = 0 Hf^a
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(24) Pty^-^ix) > 0 on (a, b) and at cf (i = 1, 2, , m)

QiVi^n) ^ 0 on [a, b] and > 0 at df (i = 0,1, , m — 1) ,

and the last inequality is strictly positive if p(x) is not identically zero
on any subinterval of [a, b]. Furthermore, for every b > a

(25) I2m[u; b] = [[r(u™f - (-I)-*™2]
Jα

is non-negative for all functions u(x) such that

-^ix) is absolutely continuous
{m)eL2[a, b] and u{i)(d*_4_x) = 0

(of at least order 1)

for i = 0,1, , m — 1; with I2m = 0 if, and only if, u(x) is a constant
times a solution of (22) which, in addition, satisfies

(27) Qiy
{i)(di) = 0 (i = 0,l, , m - l ) .

Note that the special case in §3 is that for m = 2 and fcx = fc2 = &3 = 0.
For this case, Coles' method reduces to the following: If y(x) is a

solution of (1) such that y > 0 and #' > 0 on [α, b] then by integrating
by parts and completing squares

(V =
Jα

Uy'L y

Using Theorem 2.2 the inequality (21) follows immediately.
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