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Introduction, We consider a Markov chain {XJ i = 0, 1, • • • with
stationary transition probabilities Pk(t, E) defined on a measure space
{Q, I). All sets discussed in the following will be I'-sets. A set N is
called null if P\t, N) = P(t, N) = 0 for all * 6 Q, and a set S is called
invariant if P(t, S) = 1 for t e S — N where AT is a null set. J?p will
denote the tf-field determined by the invariant sets given the transition
probability P(t, E). A set S is indecomposable if it does not contain
two disjoint non-null invariant subsets. The concept of a strictly sepa-
rable (7-field will be employed, together with the fact that such a tf-field
is atomic. Sc is the complement of the set S.

This paper considers several conditions under which we have a general
decomposition Q — F + J^A* where F is a transient state and the A&
are ergodic, indecomposable state, i. e., defining

n->oo n fc=i

then Ptf, S ^ « ) = 1 for all t e Q, P(t, A«) = 1 for t e Aa, and the A*
are minimal, up to an equivalence. This work may be considered as a
further step in Doob's discussion in [3] on generalizing Doeblin's classical
results. Our results are sometimes generalizations of Doob's work and
other times give slightly stronger conclusions, but replace Doob's assump-
tion of an a priori stationary measure for the process by general condi-
tions in terms of measures.

Theorem 1 is due to Blackwell and is the basis for Theorem 2, the
decomposition theorem, which is proved under the assumption of the
existence of the Cesaro limit P±(t, E) for all t e Q, Eel. Theorem 3
gives Doeblin type conditions in terms of measures implying the existence
of Pi(t, E). Theorem 4 discusses the special case of a priori knowledge
of a a-finite stationary measure for the process. Finally, Theorem 5
gives a countable decomposition when the Cesaro limit is absolutely
continuous with respect to a a-finite measure.

THEOREM 1. (Blackwell). Let P(t, E) be an idempotent Markov
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chain: P(t, E) = \P(y, E) P(t, dy), and let I be a strictly separable

a-field. Then there is a decomposition: Q — F + X«^« of disjoint sets,
satisfying:

(1) P(t, E) = x.(E), teAa

(2) xtt{Am) = l
( 3 ) P(t, F) = 0 , for all teQ.

Moreover, the Aa are indecomposable, and indeed, are even atoms
of jrp.

Proof. See [1], Theorem 6 and 7.

THEOREM 2. Let I be strictly separable. If Px(t, E) (as denned in
the introduction) exists for each t e Q, Eel, then there is a decom-
position: Q = F* -f 2«4? of disjoint sets such that:

(a) P&, E) = x.{E) , teA*
(b) P&, AZ) = x.(AZ) = 1 , teA*
(c) P(t,A:) = l, teA*
(d) Pi(*,S.^*) = l , *e£
(e) 2<7ac/i At is indecomposable with respect to Px and P.

Proof. Determine an indempotent chain by using Px{t, E) as tran-
sition probability, and apply Theorem 1. This yields a decomposition
Q = F + ^aAa. Let F = Ft and define Fi = {t: P(t, F^) > 0} for i =
1, 2, • • • and set F* = Uf=i F{. By induction, we show that P1(t, F%) = 0
for all t and all i. First, Ptf, Fo) = 0 for all t, by Theorem 1. If

Fi) = 0 for all t, then:

= \p(x, Ft)Pi(t, dx) = \ P(x, Ft) Px(tf dx)0 = P&,

which implies that Px{t, Fi+1) = 0 for all t. Thus F* is a Px null set.
Define new sets A* : A* = Aa - Aa • F*. Then Q = HA* + F*. (a),
(b) and (d) follow immediately from Theorem 1 and the definition of the
new decomposition. If teA*:

&, At) P(t, dx) + ^c^P^x, At) P(t, dx)

A*) P(t, dx) = P(t, A*a)

the second integral vanishing since P^x, At) — 0 for x e A%, /3 ̂  a, and
the last since P(t, F*) = 0 for t $ F*. This proves (c). A* is indecom-
posable with respect to Pi by Theorem 1, and hence also with respect
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to P, since a decomposition relative to P is also a decomposition relative
to Pi. The proof is concluded.

THEOREM 3. Suppose for toe Q, there exists a a-finite measure
mt with the following Lebesgue decomposition:

"(*0, E) = \ fn{y)mh{dy) + Kn(t0, E)

where Kn(tQ, E) is the singular part of Pn with respect to mtQ, and the
fn(y) e LX{Q, I, mt). Assume that:

( 1 ) lim Kn(t0, E) = 0

{ 2 ) There is a function f e LX{Q, I, mt) with fn <; / a. e. (mtQ).

Then: Pi(£0, E) exists for all Eel and defines a stationary probability
measure. In fact, the total variation of \ljn X?=iPfc(£o,-) — Pi(£o,-)l tends
to 0 as n tends to oo.

Proof. Let ^/S be the i?-space of all finite measures on (Q, I). A
set K of measures in ^/f is weakly sequentially compact if it is bounded
and the countable additivity of ft on I is uniform with respect to fi e K.
Consider the set {Pn{t0, •) n = 1, 2, • • •}. Let E = £r=i E{. Then, for
any n:

'"(to, E) - P» (̂ 0, g #4J = Pm

= \m Mv) mH (dy) + Kn (tt, ^ Ei

f(v) mtB (dy) + Kn (t0,

Since f(y) e LX{Q, 2, mt), by choosing k sufficiently large, the first
terms can be made as small as desired and for n large enough, the
second term may be made small. Hence, the countable additivity is
uniform with respect to all sufficiently large n.

Consider the operator Tx\p(t, E) x(dt) for x e ^ T . Then TP(t0,-) =
P\t0, •). Let ll(n - 1) (S*=o T*) = A(n). Then by the mean ergodic
theorem in i?-space, {A(n) P(t0, •)} converges in norm if the set {A(n)
P(t0, •)} is weakly sequentially compact. Since the set {Pn(t0, •)} is
weakly sequentially compact, so is the set {A(n) P(t0, •)} and therefore
1M X*=i-P*(to> •) converges to P^U, •) 6 ^ in the strong sense, i. e., in
the norm of total variation, and hence also for each Eel. That P±

defines a stationary probability measure is clear.
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COROLLARY 1. If the set {Pn(t0, *)} is weakly sequentially compactr

then the conclusion of the theorem holds.

COROLLARY 2. The decomposition of Theorem 2 obtains if there
is a class of measures {mt :teQ} where mt satisfies the hypothese for
Theorem 3 for t e Q.

REMARK. If there is one measure which satisfies the hypotheses
for all t e Q, then we obtain a countable decomposition as described in
Theorem 5.

THEOREM 4. Let ${•) be a a-finite stationary measure for the
process and suppose that, if @(H) = oo, then for s > 0 and each t e Q,
there is a set S, S a H, 0(S) < oo and S depends upon H, e, t, such
that Pn(t, H — S) < s uniformly in n. Let, in addition, the singular
component, P(t, n, Q), of Pn with respect to 0 tend to zero for all t e Q.
Then : Px(t, E) exists for all t e Q, E e I, and Px{t, •) defines a pro-
bability measure for each t.

Proof. Consider the space I/i(O, I, 0) and define the map T: g(t) =
\f(x)P(t,dx) which maps LY into itself. We now show | T\x <£ 1 and
I TU ^ 1. If ^\f(x)\0(dx) £ 1, then j \g(t)\ 0{dt) = J | \f(x)P(t, dx)^0(dt}
^ \\f(x)\0(dx) ^ 1 by Fubini's theorem and thus | T\± g 1. If \f(x)\ ^ C
a. e. (0) where C is a constant, let N be such that \f(x) \ > 0 on N,
0(N) = 0. Then:

^ | ( f(x)P(t,dx) f(x)P(t,dx) \ f(x)P(t,dx)

and 0 = 0(N) =\P(t, N) 0(dt) implies that P(t, N) = 0 a. e. (0), say on
Nt, 0(N1) - 0. Then \g(t)\ g C on Ne

u and | TU ^ 1. By the general-
ized point ergodic theorem l im^^tl^ — l)]S*=o (Tkf)(x) exists a. e. (0).
If S is fixed and 0{E) < oo, [p(x, E) 0(dx) = (P(£7) < oo and P(x, S)
e L±(Q, I, 0). Thus, if 0(E) < oo, l/^S*=i^*(«, E) converges a. e. ((P).
If P(x, n, Q) •• n > 0, the proof is the same as Doob's in [3] and the con-
vergence holds everywhere as long as 0{E) < oo. Let 0{H) = oo, and
hold x fixed. A simple approximation arugument yields convergence for
each fixed x. Since convergence holds for all Insets, by a theorem of
Nikodym the limit is countably additive and therefore a probability
measure.

THEOREM 5. Let m be a a-finite measure on I with Pz(t, E) =
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I h(t, y) m(dy). If ^" is the invariant o-field under Px(t, E), then

there is a decomposition:

Q = F + M + Xt + X2 + • • •

where F, M, X{ e ^Pi and:
(a) 0 < m(X{) < co, and E e j ^ P l , E c Xi implies m(E) = m{X%)

or m(E) = 0
(b) m(E) = co and E e ^Plf E Q M implies m(E) = co or

m(E) = 0 .
(c) F is a null set, and m(F) <̂  co
(d) 7%e X; are indecomposable, but M may be decomposable.

Proof. The proof is similar to Lemma 3 in [1], Put the sets
satisfying (a) into equivalence classes by defining two such sets as
equivalent if their symmetric difference has measure zero. Any two
sets in different classes can have only a set of measure zero in common,
and each set has positive measure. If there were an uncountable
number of classes, there would have to be an uncountable number of
disjoint sets of positive measure. By tf-finiteness, Q = 2,f=1 Eif

miEi) > co, and each Et allows the trace of only a countable number
of sets of positive measure. The number of classes is therefore count-
able. Consider S = Q — (X± + X2 • • •) where the X{ are sets of repre-
sentatives, one from each class. Consider the totality of disjoint null
sets in S of measure co. By the same reasoning as above, there are
at most a countable number of them, whose union is also a null set.
Removing this set from S, S now contains a null set of largest finite
measure; remove it also. Let F be the union of all the null sets re-
moved from S. Let S — F = M. If m{M) < co, the related argument
of Blackwell remains unchanged, and we have that m(M) — 0, and
hence M is empty. If m(M) = co, then for E e ^2r

J,1, E c M, either
m(E) = co or m(E) < co. If m(E) is finite, again m(E) — 0. M may
be decomposable into two disjoint non-null sets of measure co.

The following two corollaries examine when the singular M dis-
appears.

COROLLARY 1. If m is a-finite with respect to J^Vl, then the
decomposition in Theorem 5 lacks the term M.

Proof. For then M may be expressed as the sum of disjoint j ^ ^
.sets of finite measure. As shown above, if m(E) < co, E cz M, then
m(E) = 0, and therefore m(M) = 0. Thus M c F.

COROLLARY 2. If there exists a sequence of increasing ^p sets
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of finite measure {H^ such that l i m ^ Hi = M, then the decomposition
lacks the term M.

Proof. m(H{) < oo implies m{H%) = 0

m(lim Hi) = m(M) = lim m{H{) = 0 .

EXAMPLE 1. In [3], Doob considers the following example of a
process with a stationary absolute measure, but which does not satisfy
Doeblin's condition: fl = (— oo, oo), I = Borel subsets of Q, and:

where jO is constant, 0 ^ p < 1.
A stationary measure is the limit:

Without noticing, however, that there is a stationary absolute
measure, we may directly apply Theorem 3 by taking mH to be Legesgue
measure on the real line for each tQ. It is easily seen that the integrand
of Pn(t, A) is uniformly bounded by a measurable function for large n.
In this case, ^V\ consists of the Borel subsets of (— oo, oo). The
regularity of Lebesgue measure implies that the X{ of Theorem 5 dis-
appear, leaving only M — Q = (— oo, oo) and F = the empty set. Our
result is a bit stronger than Doob's, yielding strong convergence.

EXAMPLE 2. If we consider the identity transition operator:
P(tf t) — 1 on Q = [0,1], then we have an example of a decomposition
which is not countable.
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