
ON CERTAIN NON-LINEAR OPERATORS AND
PARTIAL DIFFERENTIAL EQUATIONS

GERTRUDE I. HELLER

1. Introduction and summary. Consider a partial differential equa-
tion

•SS=£? - ' « • ! ' • ' = °

with boundary conditions of the type

(1.2)
dy2i

dlu

_ d2iu
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i = 0,l,

By means of a Fourier sine-series expansion with respect to one of the
independent variables, say y,

sin

TZ Jo
) sin (ny)dy

there corresponds to the system (1.1), (1.2) an infinite system of ordinary
differential equations in the Xn's

(1.4) dX1 ?-, X&), = 0

with the boundary conditions

(1.5)

where

(1.6)

- - (7(1/) sin
«=o ^ Jo

—
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sj sin (iy),
i

2 isj"1 cos (ii/), • • •, 2. s- sin (iy), y, t) sin (ny)dy .

Disregarding for the moment all questions of convergence of the
series and permissibility of term by term differentiation and integration,
the two systems (1.1), (1.2) and (1.4), (1.5) are equivalent; so that a
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496 GERTRUDE I. HELLER

partial differential equation has thus been reduced to an (albeit infinite)
system of ordinary differential equations.

D. C. Lewis [1], has put this method on a rigorous basis for second-
order differential equations of the form

( L 7 ) - ®(du du v v A

with boundary conditions of the type

u(0, t) = U(K, t) =
(L8) u(y,0)=f(y) f- = g(v)

where the functions / , g and 0 are assumed to satisfy certain conditions
which are stated below. Lewis constructs a system of solutions Xn(t)
of the infinite system of the type (1.4), (1.5) corresponding to (1.7),
(1.8) and proves that the function

u(y, *) = S Xn(t) sin (ny)
n—l

is (in a certain generalized sense) a solution of (1.7), (1.8).
Following a suggestion of D. C. Lewis to generalize his result, the

present paper does so by applying his method to operators in Hilbert
space.

After introducing the notation and definitions of § 2, we establish
in § 3 some results concerning solution of the equation Tu = 0 where T
is a (non-linear) operator in Hilbert space. T is of the form T — L — SN
where L and N are linear, and S satisfies a Lipschitz condition—with
respect to a "partial norm," which assigns to an element of the Hilbert
space a real-valued function rather than a real number.

Sections 4, 5 present, as applications, Lewis' theorem and some
existence theorems for non-linear higher order partial differential equa-
tions of the form

dt2 9_

\ ^̂ m"rfc dtm+lc~ldy dt^dy™ dtm+lc /

We will conclude this introduction by restating Lewis' result for
later reference:

THEOREM (D. C. Lewis). Let 0(p1,p2,u,y,t) be a real-valued func-
tion defined and uniformly continuous in y and t in a domain Q =
(Pi, P2J u> V> t) 11 u I ̂  h, 0 ^ y ^ 7T, 0 ^ ^ ̂  r}. Suppose there exists a
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positive constant 6 such that

(1.9) I 0(p19 p2, u, y, t) - 0(p19 p2, u, y, t) \

< 0[\ p1 - px I + I p2 - p21 + I u - u |]

for \u\^h, \u\^h, 0 ^ y ^ n, 0 ^t ^ r .

Let f(y)y g(y) be defined on 0 ^ y ^ TZ; let f(y) moreover be differ-
entiable and let the Lebesque integrals

\'if'(y)Ydy, \'[g(y)Ydy
JO Jo

exist and be :g 3h2l£7z2 and suppose that /(0) = f(n) = 0.
Then there exists a positive a rg r such that the differential equation

dt2 dy2 \dt7 dy ;

has a unique solution u(y, t) in the generalized sense explained below,
defined for 0^y^7c,0^t^a, which satisfies the boundary conditions

(1.11) u(0, t) = u{n, t) = 0 , u(y, 0) = f(y) , ^

By solution in the generalized sense is meant that (in the domain
0 ^ y ^ 7T, 0 <^ t ^ a) u(y, t) is continuous, the first partial derivatives of
u exist almost everywhere, and there exists a sequence of functions
un(y, t), each of class C" for 0 ^ y ^ n, 0 g t ^ a such that

lim un(y, t) — u(y, t) uniformly in y and t on (0 g y ^ 7r, 0 ^ ^ <;)

n-»oo J o \ 0 £ S J

dy dy
uniformly in ^ on (0 < ^ < a)

dy / Jdt dy

2. Notation and definitions* Greek and small latin letters denote:
real numbers; real-valued functions; and elements of Hilbert space, func-
tion spaces, and measure spaces. Capital latin letters denote subsets of,
and operators defined in, these spaces. The symbols e , c , U , n , {#!•••}
resp. have the usual meanings: element of, subset of, union, intersection,
the set of elements X for which • • • holds, resp.

The abstract space considered here is a complete and separable
Hilbert space H over the field of real numbers. The inner product of
two elements u, v of H will be denoted by (u, v); the norm of u by \\u\\.
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If un is a sequence of elements of H, converging (in the norm) to an
element u of H, that is, if limw_oo||w — un\\ — 0, then we denote this
by un —> u. Hue H, and p is a positive real number, then Cp(u) de-
notes the closed /0-neighborhood of u: Cp(u) = {v\\\v — u\\^ p}.

Let I be any measure space (a set with a completely additive, non-
negative measure ft defined on some <r-ring of subsets of / ) , with finite
total measure o\ fi(I) = a < oo. Let L\I) have the usual meaning of
the set of real-valued functions defined and square-summable on I. Two
such functions / , g which are equal almost everywhere (everywhere with
the possible exception of a set of measure zero; in notation, p.p.) are
identified and considered to represent the same element of L\I); thus,
strictly speaking, the elements of L\I) are not functions but equivalence
classes of functions.

The scalar product and norm in L\I) are defined in the usual way:

(2.1) (/, g) = \fgdfi

(2.2)

By / „ - > / we shall mean l i m ^ | | / - / n | | = 0; by / „ - > / (p.p.) we
shall mean, as usual, that for almost all t e I, lim^oo fn(t) = /(£); by
f*—*f uniformly p.p. we shall mean that fn(t) converges to f(t) uni-
formly on a subset of I whose complement has measure zero.

If / e L\I) and a is a real number such that f{t) S a (p.p.) then
a is said to be an essential upper bound of / . The essential maximum
of f(t), denoted by e.m. / , is defined as the greatest lower bound of the
set of all essential upper bounds of / . With this notation, fn-+f uni-
formly p.p. if and only if e.m. | / — fn\—»0.

DEFINITION 2.1. By a partial norm on H we shall mean a map Z
from H to L\I), with the following properties:

2.1.1. For every u e H, Zu is a unique element of L\I) which is
nonnegative almost everywhere on I: Zu ^ 0 (p.p.);

2.1.2. For any u,v e H we have Z(u + v) ^ Zu + Zv (p.p.);
2.1.3. For any u e H and real number a, Z(au) = \a\Zu (p.p.);

2.1.4. Z is isometric: for any u e H, \\Zu\\ — \\u\\\ i.e. [ (ZufdfJt =

I N II2.
Note that when I consists of a single point with measure one, then

the partial norm Z reduces to the ordinary norm || || of H.
Throughout §§2 and 3 we shall suppose a fixed partial norm Z.

DEFINITION 2.II. The Z-norm, denoted by || \\e, is defined on H as
follows. If u € H, then \\u\\z = e.m. {Zu). If a sequence of elements
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un e H converges to u e H "in the i?-norm," i.e. if || u — un \\z —> 0, we
denote this by un > u.

Note that the Z-norm is not always finite, but otherwise satisfies
all the conditions of a norm: || u \\z = 0 if and only if u = 0, || u + v \\z ^
II u \\z + \\v \\z, and if a is any real number then || au \\z — | a | • || u \\z.
This Z-norm, of course, defines a metric, and hence a topology, on H.
The following remarks discuss the relation of the two topologies deter-
mined on H by its two norms.

REMARK 2.III.1. If un—
z—>u then it is easily seen that un-^u.

REMARK 2.III.2. If un—>u, then there exists a subsequence unjc of
un such that Z(u — unj —> 0 (p.p.). For, if un —* u then || Z(u — un)\\ =
11^ — un\\—>®> and then by a well-known theorem there exists a subse-
quence unjc such that Z(u — unj6) —> 0 (p.p.)

REMARK 2.III.3. The Z-norm makes H a complete metric space.
That is, if lim^^oo || nn — u^ \\z = 0, then there exists a unique element
16 such that un -^-> ^.

To see this, first note that lim^^oo \\un — uk\\ — 0 and hence ^n is
a Cauchy sequence (with respect to the "ordinary" norm). Then, by
the completeness of the space H (again with respect to the "ordinary"
norm), there must exist a unique u e H such that un —> u.

Then, by Remark 2.III.2. there exists a subsequence un]c such that
Z{u - unj) -> 0 (p.p.) as k -> oo. Clearly, by 2.I.2.,

Z(u - Uj) ^ Z(u - unj) + Z(un]c - uj) (p.p.) .

Letting j and k go to oo, we get lirrij^Ziu — u5) — 0 (p.p.). To show
that the convergence is uniform p.p., note that

Z(u — Uj) S Z(u — uj+JC) + Z(uj+1c — Uj)

^ Z(u — uj+IC) + sup Z(uj+l — Uj) (p.p.)
1 = 1 , 2 , . . •

for j = 1, 2, • • •, k = 1, 2, • • •. Let t ing fc —> oo, we get

Z(u — t&j) ^ sup Z(uj+l — Uj) (p.p.)

and hence

II w — ̂  |U = e.m. Z(% — ̂ ) ^ sup e.m. Z(uJ+l — %)
2=1,2,...

= S U P \\UJ+1 - Uj\\z .
Z = l , 2 . . . .

B u t s u p \\uJ+l — Uj \\z—>0 as i—> oo, so || w — Uj \\e—* 0 .
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REMARK 2.III.4. \\u\\ g l/7F||w||j (where a is the total measure
of I); for

= || Zu || = l u 1 u

REMARK 2.III.5. If c is a nonnegative real number and u,v e H
are such that Zw ^ c#y (p.p.), then || u \\ ̂ c\\v ||; for || w ||2 = i (Zufdft ^

2 |M| 2

REMARK 2.III.6. If u, v are any two elements of H, then by 2.1.2.,
Zu ^ Z(u - v) + Zv (p.p.); or Zu - Zv S Z{u - v) (p.p.). Also, by
2.1.3., Zv - Zu ^ 2fa - w) = Z(w - v) (p.p.). Hence

I Zu - Zv I ̂  Z(u - v) (p.p.).

We conclude this section with a brief review of some of the standard
terminology in operators, linear manifolds, etc.

By an operator T in H is meant a mapping which assigns to each
element u of a certain subset of H, a unique element Tu of H. The
domain of definition of T is denoted by D(T); the raw#e of T, that is,
the set of elements Tu, is denoted by R(T); the nullspace of T, that
is, the set of elements u e D(T) for which Tu = 0, is denoted by <yV"{T).

If T, Tlf T2, • • • are operators and a is a real number, then the
operators aT, Tx + T2, :Z\T2, l im^T,, are defined as follows:

D{aT) = - a(Tu) ;

= {u\ue D(T2) and T2u e

uef\ D(Tn) and limZ)(lim Tn) =\

(\imTn)u = lim (Tnu) .

ists} ,exists

The graph G(T) of an operator Tis the subset of H x H consisting
of all ordered pairs of the form (u, Tu) with u e D(T). If the operator
T2 is an extension of the operator Tx (that is, if JD(jT1)cD(Tr

2) and
T1u=T2u for M e D(TO—in other words, if G{T2)(Z.G{T2)), then we
denote this by TxcT2.

If T is an operator in H and A is a subset of D(T), then TA de-
notes the set {Tu \ u e A}.

An operator T is called linear if D(JT) is a linear manifold (a set
A is a linear manifold if u,v e A implies that au + bv e A for any real
numbers a and 6) and if, for any u,v e D{T) and real numbers a and
6, T(au + bv) = aTu + bTv—in other words, T is linear if and only if
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G(T) is a linear manifold in H x H.
A linear operator T is said to be closed if its graph G(T) is a closed

subset of H x H; that is if given a sequence of elements u19 u2, • • • of
D(T') such that un~>u and Tun—*v, it follows that u e D(T) and

Let T be a linear operator with the property that, whenever a
sequence of elements un e D(T) converges to zero and Tun converges
to some element v, then v = 0. It is easily seen that under these con-
ditions the closure of G(T) in H x H is again the graph of a linear
operator, call it T. It is clear that T is the smallest closed linear ex-
tension of T (smallest in the sense that any other closed linear ex-
tension of T is an extension of T).

If A is a subset of H, then the intersection of all linear manifolds
containing A is itself a linear manifold, this is called the linear span
of A and is denoted by [A], If A and B are two linear manifolds, then
the linear span of their union, [4 U B], is easily seen to be simply the
set {u + v I u e A, v e B). If the two linear manifolds A and B are
disjoint (i.e. their intersection AnB contains only the zero element),
then the decomposition of an element of [A U B] as a sum u + v with
u e A, v e B is unique; in that case the linear span [A U B] is also called
the direct sum of A and J5, written as A 0 B.

If A and B are disjoint linear manifolds, then the projection of
A 0 B onto A along B is the linear continuous operator P defined by:
D(P) = A 0 B; if u 6 A, ve B, then P(u + v) = u. Note that P is
idempotent: P2 = P.

If A is a closed linear manifold, then the orthogonal projection onto
A is the projection of H onto A along the orthogonal complement of A
(that is the set {u \ (u, v) = 0 for all v e A}).

A linear operator T is said to be reduced by a closed linear mani-
fold G if PT c TP, where P denotes the orthogonal projection onto G.

3. On the solution of Tu = o for certain nonlinear operators T.

THEOREM 3.1.

3.1.1. Let L be a linear operator, A a linear manifold <zH such
that D(L) = A®^T(L).

3.1.2. Suppose there exists a constant 7 such that for any u e A we
have (Zuf ^ 7\\Lu\\2 (p.p.)

3.1.3. Let S be an operator in H. Suppose there exists a constant
a < 1/P, where F = max (7, a), such that for any u, v e D(S) we have
Z(Su - Sv) ^ aZ(u - v) (p.p.)

3.1.4. Let <t> be an element of D(S) n ^V{L).
3.1.5. Suppose there exists a set BaH with the following proper-

ties:
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3.1.5(a). 0 e B c D(S) and S(B n Cp(0)) c R(L), where p =
r || S01|/(1 ~ a/"1) (CMM* Cp(0) = {w 11| w - 01| ^ >̂});

3.1.5(b). 1 / ueH, un e B f] D{L) n Cp(0) /o r w = 1, 2, • • • and
^n——• u9 then u e B;

3.L5(c). If u e B n Cp(0), Su = Lv, and v - 0 e A, tAen i; e B.
Then there exists a unique solution u of the system

(3.1) (L - S)u = 0 and u - 0 e A .

27m solution u will belong to Cp{4>) n -B.

Proof. Let Q denote the projection of D(L) onto A along ^f^(L).
That is, D(Q) = D(L); Hue D(L), then we know there exist unique
v e A and w e ^"{L) such that u — v + w; we define Qw = v.

Let i£ denote that right inverse of L whose range R{K) = A. That
is, D(K) — R(L), LK = the restriction of the identity operator / t o R(L),
and KL = Q. Clearly, if is linear.

Now note that the equation

(3.2) u = c/> + KSu

has exactly the same solutions as the system (3.1). For, suppose first
that u satisfies (3.2). Then u-$ = KSu e R{K) = A. Also, <f> e ^K(L) c
D(L); further KSu e R(K) = Ad D(L); hence by the linearity of L,
u = 0 + i£S^ 6 i)(L) and Lu = L$ + LKSu. But L<£ = 0; and since
LKczI, LKSu = Su. Thus (L — S)w = 0 and % satisfies (3.1). Con-
versely, let u be a solution of (3.1). Then Su = Lu e R(L) = Z)(if) and
JKBto = iiTLw = Qu = u — </>. Thus u satisfies (3.2).

We shall prove the theorem by showing the existence and uniqueness
of solutions to equation (3.2). We shall prove the existence by the
method of successive approximations.

Define a sequence of elements of B n Cp(<£) fl D(L) as follows. Let
u(0) = 0. Clearly u{0) e Bf] C9(4>) n JD(L). Supposing that for n ^ k, u{n)

is defined and is an element of B f] Cp(<p) n -D(I/), let u{k+1] = 0 + XS^(fc).
Clearly, ^(*+1) is well-defined, for ^(Jfc) e B n CP(0) c 2)(S) and Su{Jc) e

S(B n CptfO) c i?(L) = D(if). Also ^(fc+1) - 0 e B(X") - A and L^(fc+1> =
L0 + LKSu{1c) = SU{16), hence by 3.1.5.(c) u{k+1) e B. Further, using 3.1.2,
3.1.3, Remarks 2.III.4 and 2.III.5, and the definition of p in 3.1.5.(a), as
well as our inductive assumption,

- 0 | | = ||KSu™ || ^ T / T ^ H S U ( & ) II ̂  TIISw«> II
(fc) - S 0 | | + HS0II) ^ r ( « || w*> - 0 | | + IIS0H)

\\S4>\\) = p .
Thus u(A;+1) is an element of B n Cp(0) n D(L).

So we have now a sequence of elements u{n) of B f] Cp(0) D
satisfying
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(3.3) u{0) = 0 , u{n+1) = 4> + KSu{n) w = 0 ,1 , 2, • • •

Clearly, using again 3.1.2,3 and Remarks 2.111.4,5, as well as (3.3),

= || K(Su{n) - Su{n-1])

^ a r ii ̂ (w) — w w - i } ii
By induction on n this yields

Since a/7 < 1 it follows that u{n) is a Cauchy sequence. Further, since

- u[n)) = ZiKSu^ - KSu^-v) rg T / T ^ H S ^ * - " - W ^ l l

/ * - " - W ^ l l (p.p.) ,

it is clear that lim^,^^ ||%(fc) — u{n) \\2 — 0 and hence by Remark 2.III.3
there exists a unique u e H such that Z(u — u(n)) —> 0 uniformly p.p.

Then it follows from 3.1.5(b) that u e B. Obviously, u e Cp(</>).
Hence by 3.1.5(a) Su e R(L) = .D(1<Q. Further,

KSu[n) || ^ T II Su - Su{n) || ^ aF \\ u - u{n) \\ ,

hence KSu{n) —* ift?w. Now taking the limit as w —> ̂  on both sides of
the second equation in (3.3), we get u = 4> + KSu. Thus % satisfies (3.2).

We must still show that the solution of (3.2) is unique. Suppose,
on the contrary, the existence of two solutions u, v. Then u — v =
K(Su — Sv), and hence

|| u - v || - || K(Su - Sv) || ^ r || Su - Sv II ̂  ar II ̂  - v II .

But aP < 1; hence it follows that || u — v || = 0 and u = v.
This completes the proof of Theorem 3.1.

THEOREM 3.II.

3.II.1. Let L, N be linear operators, A a linear manifold such
that D(L) - A © ^T(L). Let D(L) c D(N).

3.II.2(a). Suppose there exists a constant 7 such that for any u e A
we have (ZNuf ^ Y | | I / ^ | | 2 (p.p.).

3.II.2(b). Suppose there exists a constant ft such that for any
u e D(N) we have Zu ^ fiZNu (p.p.).

3.11.3. Let S be an operator in H. Suppose there exists a constant
a < l / / \ where F — max (7, a), such that for any u,ve D(S) we have
Z(Su - Sv) ^ aZ(u - v) (p.p.).

3.11.4. Let <j> be an element of ^T(L) n D(SN).
11II.5. Suppose there exists a set BdH with the following proper-

ties:
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3JI.5(a). </>eBczD(SN) and S(NB n Cp(Ncf>))dR(L)f were p =
r\\SN4>\\Ki-ary,

3.II.5(b). / / u,ve H, un e D(L) n B and Nun e Cp(N</>) for n =
1 , 2 , • • •, u n —^—> % a n d N u n —^-> i ; , £ / ^ w % e B c m d JVw = v;

3.II.5(c). If u e B, Nu e Cp(N<f>), SNu = Lv, and v — </> 6 A, *fcen

2%ew £ftere e<mte a unique solution u of the system

(3.4) (Z, - SN)u = 0 and u - <f> e A .

This solution u will belong to N^CpiNfy n B (i.e. M6 e CP(N<I>) and u e B).

Proof. From 3.II.2(b) and Remark 2.III.5 it follows that, for any
u e D(N), \\u\\ ^ /3\\ Nu ||. Hence if, for some u, Nu = 0, then u = 0.
Hence JV has a unique inverse iV"1, defined on the range of N.

It is now easily seen that the system (3.4) is equivalent to the
system

(3.5) (LN-1 -S)v = 0 and v - N<j> e NA

in the sense that there is a one-to-one correspondence between the so-
lutions of (3.4) and the solutions of (3.5), the correspondence being given
by v = Nu.

We wish to prove that the system (3.4) has a unique solution. We
shall do this by showing that L1 = LN~\ A1 = NA, S, <P = N<f>, B1 - NB
satisfy the conditions of Theorem 3.1. Then we can apply that theorem
and this will give us the existence and uniqueness of solutions of (3.5),
which we have seen to be equivalent to the existence and uniqueness
of solutions to (3.4).

Now we must show that L1, A1, </>\ B1, as defined in the preceding
paragraph, and S, satisfy the conditions of Theorem 3.1.

3.1.1. Clearly, L1 is linear. Also, A1 is a linear manifold contained
in D{U). Further, A1 and ^ f (L1) are disjoint. For, suppose u e A1 n
<yl/\U). Then u = Nv with v e A, and Lv = LN^Nv = Uu = 0. Thus
v e i n ^js-(L); but by 3.II.1, A and ^V{L) are disjoint, and hence v =
0. But then u = Nv = 0. Thus A1 and ^/'{L1) are indeed disjoint, and
since they are both subsets of D{U) it is clear that A1 © ^(L1) c D{U).

We must still show that D{U) c A1 © yK*(U). Let u be any ele-
ment of D{U). That is, w e DiLN-1). Then iV"1 % e D(L) = A © ^ ( L ) .
Hence there exist v e A , w e ^(L), such that iV"1^ = i; + w. Then
u — Nv + JVw; clearly iW e JVA = A1, UNw — LN~lNw — 0, or Nw e
^f/~(U). Hence ^ e A1 © ^// (L1), as was to be proved.

3.1.2. If u e A1; then N'1 u e A and hence by 3.II.2(a)

{Zuf - (ZNN-'uf ^ 7 || LAT-1^ ||2 = 7 || L1^ ||2 (p.p.) .
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3.1.3. is clearly identical with 3.II.3.
3.1.4. By 3.H.4., LV1 - LN^Nc/y = L<t> - 0, so 01 6 ̂ ( L 1 ) . Also,

<p = N4>e D(S).
3.1.5(a). By 3.II.5(a), <f> e Ba(SN). Hence ^ = N<f> e NB = J31; if

ue B' = NB, then iV-1^ e J5 c D(SJV) and hence w e DiSNN-1) c D(S)
and so B1czD(S). Also, by 3.II.5(a) again, SiB1 n W1)) = S(NB f)
CP(N<j>)) c 22(L). Further, R(L) c i2(Z/), for if u e R(L), then w = Lv for
some v e D(L) c D(iV) (by 3.II.1.) and so u = LN~xNv = L 1 * e i2(Lx).

3.1.5(b). If %eff, ^ e f f n £>(!/) n (CP(^) for n = 1, 2, • • • and
t ^ - ^ t t , then iV"X e D(L) n B and, by 3.II.2(b)

Z(N~'un - N-'u*) S /3Z(un - uk) (p.p.)

and hence limni]b̂ oo II N-1^ — Ar~%fc \\z = 0.
Hence by Remark 2.III.3. there exists a unique element v e i? such

that N-Xun —^ v. Then it follows from 3.II.5(b) that v e B and Nv =
u; hence u e NB — Bl as desired.

3.1.5(c). If u e B1 n Cp(^), Su = L1^, and v - <p e A\ then AT-% e 5 ,
iViV-H6 e CP(iW>), SNN-'u = LiV"1^, and v - N&Q NA or N~'v - <j> e A.
Then by 3.II.5(c) iV"1^ e 5 and hence v 6 NB = B1, as was to be proved.

This completes the proof of Theorem 3.II.

THEOREM 3.III.
3.III.l(a). Let L, N be linear operators, A a linear manifold such

that D(L) = A © ̂ \L). Let D(L) c D(N).
3.III.l(b). Suppose that if un e D(L) for n = 1,2, • • •, un —• 0, and

Lun —> v, then v = 0. TTms ^e re exists a smallest closed extension L
of L; let Lr denote the restriction of L to D(L) n D(N).

3.III.2(a). Suppose there exists a constant j such that for any
u e A we have (ZNuf <: j \\ Lu ||2 (p.p.).

3.III.2(b). Suppose that there exists a constant /3 such that for any
•u e D(N) we have Zu ̂  /3ZNu (p.p.).

3.111.3. Let S be an operator in H, with D(S)Z) R(N). Suppose
there exists a constant a < l / / \ where V = max (7, a), such that for
•any u,ve D(S) we have Z(Su — Sv) ̂  aZ(u — v) (p.p.).

11III.4. Let <fi be an element of ^/~(Z/) n D(SN). Suppose there
exists a sequence of elements 4>n £ ̂ "{L) such that N<fin -—> N(j>.

11III.5. Suppose there exists a set BdH with the following proper-
ties:

3.III.5(a). ^ e B c D(SN) and S(NB n Cp(N<j>)) c R{U), where p =
r\\SN4>\\Kl-aT);

3.III.5(b). If u,ve H, un e D(N) for n = 1, 2, • . . , un ~^-> u and
Nun -^-> v, then u e D(N) and Nu = v; if in addition un e D{U) fl B
and Nun e CP(N^) for n = 1,2, • • •, then u e B;

3.III.5(c). If ue B, Nue Cp(Ncf>), SNu = L'v, and v - $ e A' =
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{w I there exists a sequence of elements wn e A such that wn—>w and
limn_>oo Lwn exists}, then v e B.

Then there exists a unique element u with the following property:

/q n\ There exists a sequence of elements un e D(L — SN) such
that Nun -^—> Nu and (L — SN)un —> 0; and u — $ e Ar.

This unique "solution" u will belong to N^CpiNfi) n B (i.e. Nu e Cp(N<f>)
and u 6 B); if in addition u e D(L), then u is a solution of (3.4).

Proof. First we shall show that Z/, A\ N, S, <f>, B satisfy the hy-
potheses of Theorem 3.II.

3.II.1. Clearly L' and iVare linear. It is also clear that A! c D{V).
Further A! and ^\L') are disjoint. For, suppose u e A' C\ ^(Lf).
Then, since u e A', there exists a sequence of elements un e A such
that un —>u and linv^Li^ exists. But u is also in ^/"(Z/), hence
\imn^Lun = L'u = 0. Now by 3.III.2(a),(b), and Remarks 2.111.4,5,

\\un\\ti/3\\Nun\\^/3r\\Lun\\.

Hence un —• 0 and so u = 0. Thus A! and ^f^(U) are disjoint, and it is
now clear that A! 0 ^y\Lf) c D{U).

We must still show that D{U) c A' 0 ^K(Lf); that is, that any
element of D(L') is also an element of A! 0 <yf/ (U). Let u e D{U).
Then there exists a sequence of elements un e D(L) such that un —> u
and limn_ooL%n exists. (In fact, Lun—> L'u). Let vn — Qun, where Q
again denotes the projection of D(L) onto A along ,yi/~(L). Since ŵ e A,
we have (again from 3.III.2(a),(b) and Remarks 2.III.4, 5)

\\vn - vt || ĝ 0 | | Nvn - Nv* || ^ fir\\Lvn - Lvk \\ .

Thus vn is a Cauchy sequence. Let v = lim^^oo .̂ Then L?;w = Lun - • L'^;
hence v e A', and I/^ = L'u; this last means that u — v e ^j/\L'). Hence
u 6 A! 0 ^^(L'), as was to be proved.

Obviously, D(L')czD(N).
3.II.2(a). Let % e A'. Then we know there exists a sequence of

elements un e A such that un —> u and Lun —> Z/w. By 3.III.2(a),

ZiSTK - O ^ i / T || Lfe - uk) || (p.p.)

and hence limntI._oo|| N(un — uk) \\z = 0. Also by 3.III.2(b), Z(un — uh) g
/3ZN(un — uh) (p.p.) and hence also limw>fc_oo|| (un — uk) \\z = 0. Then by
Remark 2.III.3. there exist two unique elements u0, v such that un —^—»%
and NUn—^v. Then by Remark 2.III.1., ^ w ^ ^ 0 . But ww—> ;̂ hence
ô = u. Also, by 3.III.5(b), v = JVw, and so Z(JV% — iV ŵ) —> 0 uniformly

p.p. Then, by Remark 2.III.6, \ ZNu — ZNun\-*0 uniformly p.p., or̂
ZNun -> ZNu uniformly p.p. But by 3JII.2(a),
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ZNunsVT\\Lun\\ (p.p.),

hence

ZNu g vT l im || Lun || =n |

The remaining assumptions of Theorem 3.IL are obviously satisfied.
Hence there exists a unique solution u of

(3.7) (U - SN)u = 0 and u - 0 e A' .

We now want to show that % satisfies (3.6). Clearly there exists a
sequence of elements vn e A such that vn-*u — <t> and Lvw —> L'w. Now
let un = vn + 4>n (see 3.III.4). Then

ZN(u - un) = ZN(u - v n - 0n) ^ ZiV(u -$-vn) + ZN(<I> - </>n) .

By 3.III.4., N(<f> — <f>n) — -̂> 0. Also, u — 4> — vn e A'; and hence, as we
have seen in the preceding paragraph,

ZN(u -<f>-vn)S VT\\ L'{u - $ - vn) || = VT\\ L'u - Lvn \\ ;

thus also N(u — <f> — vn) -^-> 0. Hence it follows that N(u — un) —^-> 0.
It now follows from Remark 2.III.1. that Nun—>Nu; and from

3.III.3. and Remark 2.III.5. that SNun — SNu. Hence (L - SN)un ->
{U — SN)u = 0. Thus u does indeed satisfy (3.6). It is clear that if,
in addition, u e D(L), then u satisfies (3.4).

We must still prove the uniqueness of "solutions" of (3.6). Let u, v
be two such "solutions." Thus, u — 0 e A', v — <£ 6 Ar, and there exist
sequences of elements un, vn e D(L — SN) such that Nun — -̂> Nu,
Nvn -^-> Nv, (L - SN)un -> 0, and (L - SN)vn -> 0. By 3.III.3.,

Z(SNun - SNuk) S aZN(un - uk) ;

and hence by Remark 2.III.4., SM^W is a Cauchy sequence. Thus
lim^oo SNun exists. Clearly then, since (L — SN)un —> 0, lim^co Lun

exists. But from 3.III.l(b) and the definition of 1/ (see also the defi-
nition of f in § 2) it is then easily seen that lim^^ Lun = Uu.

Let Q again denote the projection of D(L) onto A along ^(L).
Then u — cf> — Qun e A' and hence by 3.III.2(b), Remarks 2.III.4, 5, and
3.II.2(a) for L' (proved above),

II u - $ - Qun || ^ 131| N(u - 4> - Qun) ||

g pr || L'(% - 0 - QO I! - /sr ll Uu - Lun \\.

Thus, Qun —> u — 4> and JVQt6n —• N(u — ̂ >). Similarly Qvn -+v — 4> and
JVQvB —*JV(v — </>). Hence Qun — Qvn —>u — v. Also, N[un — Qun —
{vn - Qvn)] -> 0. But by 3.III.2(a), 3.III.3, and Remarks 2.II.4, 5.



508 GERTRUDE I. HELLER

II N(Qun - Qvn) || ^ r || L(Qun - Qvn) ||

= r || L(un - Vn) II ss r
+ || (L - SN)vn || + || SNun - SNvn

g r [||(L - SiVKII + \\(L- SN)vn||]

|| + || (L - SN)vn ||]

+ ar II JV(«M - Q«n - (vn - Qvn)) ||

+ ar\\N(Qun-Qvn)\\.
Thus,

M - Qvn) || ^ i
1 ^ r {r[|| (L - SiSTK || + || (L - SN)vn

Now the right hand side of the above inequality —> 0 as n —* °o, hence
N(Qun - Qvn) — 0; then by 3.III.2(b), Qun - Qvn -> 0. But w - v =

(Qun — Qvn), so u = v. This completes the proof of Theorem 3.III.

THEOREM 3.1 V.

3.IV.0. Let Gi G2, • • • be a sequence of pairwise orthogonal closed
linear manifolds whose direct sum is H. Let Pn denote the orthogonal
projection onto Gn. Suppose that the partial norm Z and the subspaces
Gn are related as follows: for any u e H,

(Zuf = ± (ZPnuf (p.p.) .
w = l

3.IV.l(a). Let L, N be linear operators, A a linear manifold such
that D(L) = A © ^ r ( L ) . Let D(L) c D(N).

3.IV.l(b). Let L and N be reduced by each Gn, n = l,2, •••
(PnL c LPny PnNd NPn). Suppose that PnA a A, for n = 1,2, -•-. Sup-
pose that ^(L) n Gn is closed, for n = 1, 2,

3.IV.2(a). Suppose there exists a constant y such that for any u e A
we have (ZNuf ^ y\\Lu\\2 (p.p.).

3.IV.2(b). Suppose there exists a constant (3 such that for any
u e D(N) we have Zu ^ fiZNu (p.p.).

3.IV.3. Let S be an operator in H, with D(S) Z) R(N). Suppose
there exists a constant a < 1/r, where F = max (7, o), such that for
any u, v e D(S) we have Z(Su — Sv) S ccZ(u — v) (p.p.).

3.IV.4. Let (/> be an element of ^j/~(Lf) n D(SN), where U denotes
the restriction of ^n=iLPn to D(££=1LPn) D D(N); suppose that
S?=i-MfW> - ^ N4> as n -> co.

3.IV.5. Suppose there exists a set B e H with the following proper-
ties:
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3.IV.5(a). <f>eBaD(SN) and SNBaR(L') (where U is defined
in 3.IV.4);

3.IV.5(b). If uyv e H, un e D(N) for n = 1, 2, • • •, un —z—+ u and
Nun — -̂> v, then u e D(N) and Nu — v. If in addition un e D(U) n B
and Nun e Cp(N</>) for n = 1, 2, • •., where p = r\\SNcf>||/(1 - a.r), then
u e B.

3.IV.5(c). If ue B, Nu e CP(N4>), SNu = L'v, and v - <£ e A! =
{u I u e D(U), and Pnu e A /or n = 1, 2, • • •}, £/̂ w v e B.

Then there exists a unique u e B satisfying

/o o\ u — 4> e A' cmcZ £/&ere exists a sequence of elements
une D(L - SN) such that Nun -?-> iVu araZ (L - SN)un -> 0.

Proof. We first show that L', A', AT, S, </>, 2? satisfy the hypotheses
of Theorem 3.II.

3.ILL The operator L' (see 3.IV.4) is the following: D(U) =
{u\u e D(N), Pnu e D(L) for w = 1, 2, • • •, and ^=1LPnu exists}, and
for any u e D(U), L'u = ^n^iLPnU. It is easily seen that U is linear,
reduced by each Gn9 n = 1, 2, • • •, and that L c L'. Also, J9(I/) c D(N).

The set A' (see 3.IV.5(c)) is given by A! = {u \ u e D(N), Pnu e A for
n — 1, 2, •••, and 2^i£Pw^ exists}. It is easily seen that A' is linear;
and of course Af c D(L').

A' and ^yj/\Lf) are disjoint, for suppose u 6 Af n ^K(L'). Then,
since u e A', Pw^ e A for w = 1, 2, • • •. On the other hand, Uu = 0;
hence PWL'^ = LPW^ = 0. Thus Pnu e Af] ~4^{L) for n = 1, 2, • • • Hence
Pw^ = 0 for w = 1, 2, • • • and so u = Y^=iPn^ = 0.

From the last two paragraphs it follows that 4'© t /// '(iv')cD(L').
We must still show D(Z/) c A' © ^r(U). To see this, let u be any
element of £>(!/). Then for n = 1, 2, • • •, Pwu e D(L) - A © ^T(L) (by
3.IV.l(a)). Hence there exist elements vn e A, ww 6 ^//"(L), such that
Pw^ — vn + wn. Clearly, since any projection is idempotent, Pnu = Plu —
Pnvn + Pnwn\ Pnvn 6 A by 3.IV.l(b), LPnwn = PnLwn = 0 or Pw^w e ^"(L).
But the representation of an element of A © *yK ^^ a s a s u m of a n

element of A and an element of ^f^(L) is unique, so Pnvn — vn and
Pnwn - wn. That is, vnf wn e R(Pn) = Gn. Further, by 3.IV.2(a),(b),

k \ / fc

^/3ZN(

But u e D(L'), so Ytn=iLPnu converges and hence limw,fc_«, || ^
•0. Hence limn,s_ || £?=»*, IU = HmK,s_ || AT(Ef=^i)IU = 0. Then^ by
Remark 2.III.3., there exist unique elements v, v' such that ^=1Vi z > v
and N ZUM -J~* V. Clearly v = Sf-i^. By 3.IV.5(b), v e D(N) and
iW = v'. Also, Prev = P^Uv, = P^iPM = ZUPnPiVt = Pnvn = vneA,
and ^=1LPnv = J^n=iLvn = ^n=iLPnu = L'u; thus, v e A' and L'v = L'u,
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or, u — v e ^V\l!\ Hence u e A! 0 ^ / (I/), as was to be proved.
3.II.2(a). Let u be an element of A'. Then Pnu e A and hence

(ZNPnuf ^7 (I LPnu |

Applying 3.IV.0 and 3.IV.l(b) gives

(ZNuf = £

(p.p.).

(p.p.) .

Now note that PnLPnu = L P ^ = LPn^, so LPnu e R(Pn) = Gn. Also
L'u = S iPn^l hence LPnu = PWL^. Therefore

Thus,

(p.p.)

as was to be proved.
It is immediately seen that the remaining conditions of Theorem

3.II. are satisfied. Hence we can apply that Theorem and obtain the
existence of a unique solution u of

(3.9) (1/ - SN)u = 0 u-<f>e A' .

We shall now prove the equivalence of (3.8) and (3.9). Suppose
first that u satisfies (3.9). Let un = £?=iity- Clearly un = J£=1Prf> e A
and hence, by 2.1.2, 3.IV.0, 3.IV.l(b) and 3.IV.2(a),

ZN(u - un) g ZN(u

(P.P.)

Thus from 3.IV.4. it follows that Nun > Nu. Also we know from
Theorem 3.II. that the only solution of (3.9) belongs to BczD(SN);
hence by 3.IV.3. and Remark 2.III.5., it follows that SNun->SNu..
Therefore

lim (1/ - SN)un = lim Lun - lim SNun = L'u - SNu = 0 .
n—*oo n-+oo n-*oo

Hence u satisfies (3.8).
Conversely suppose u e B to be a solution of (3.8). Thus, we sup-

pose that u — <f> e A', and that there exists a sequence of elements
un 6 D(L - SN) such that Nun —̂ -> iV% and (L - SN)un -> 0. From
3.IV.3. and Remark 2.III.5. it then immediately follows that SNun—+-
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SNu; hence also Lun->SNu. Note that by 3.IV.5(a) SNu e SNB c R(L');
hence there exists v e D{U) such that SNu = Uv9 and, since we have
seen that D(L') = A' © ^(L1), it is clear that we can choose v so as
to belong to A!. Then, letting Q denote, as usual, the projection of
D(L) onto A along ^

#(*; - Qun) ^ /3ZiV(7; - QwB) rg / 9 I / T " | | L ' I ; -

and hence by Remark 2.III.4., Qun—>v. Further

Pk(u - v) = lim Pk(un - Qun) .

Now un — Qun e ^V(L), so PJun — Qun) e ^y{L) n Gfc. Hence, since by
S.IV.l(b) ^~(L) n G* is closed, Pk(u — v) e ^K (L) n G&. Hence, since
•w — v e D{N), u — v e ^fs"(L'). Thus we now have two decompositions
of the element % of D(L') as a sum of an element of A' and an element
of ^V{L'): u = (u — 0) + 0 = v + (w — v). But we have seen that
D(U) = A' © ^>V(Lf), so this decomposition is unique and hence u — 4> =
v. Hence, (1/ — SN)u = L'(t6 —- <£) — SATu = Z/v — SJVU = 0, as was to
be proved.

This completes the proof of Theorem 3.IV.

4. Applications. In this section we shall apply the results of § 3,
specifically Theorem 3.IV., to non-linear partial differential equations of
the form

/ /"\9. r\9 \ vn.

,t)

'' dt^dy™ ' 0t'n+*-1 ' '

, - ^ , w, !/, «dtlc'1dym ' dtm+lc~2 ' ' dy

(the partial derivatives of u that are permitted to occur on the right
hand side are di+juldtldy3 with j S m and i + j ^ m + k), where 0 is
a real valued function of ((m + l)(m + 2))/2 + k(m + 1) + 2 real vari-
ables, continuous in the last two (y and t), and satisfying a Lipschitz
condition in all the other variables, in a domain defined by \u\^h,
0 ^y ^ n, 0 ^t £T.

We are interested in solutions u(y, t) of (4.1), valid for 0 ^ y ^ 7r,
0 ^ t ^ a* ̂  r, which satisfy the initial conditions

(4.2) d%

dtj

and the boundary conditions
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(4.3) a d2iu d2i+1u
v=o dy,24+1 = a

d2iu
v=o dy2t

d2i+1u
dy,21+1

= 0
y=x

(1 ^ 2% + 1 S m)

Under certain conditions, we shall obtain results on the existence
and uniqueness of solutions, in a certain generalized sense, of the system
(4.1), (4.2), (4.3). Before we give a precise definition of this, it will be
useful to introduce the following notation.

DEFINITION 4.1. A real-valued function u of one or two variables,,
defined on some domain R, is said to be of class Sq on R if and only if

(a) u is of class C"2"1 (all derivatives up to order q — 1 exist and
are continuous) on R;

(b) all derivatives of order q exist almost everywhere on R and are
of class L\R) (see § 2),

(c) all derivatives of order q — 1 are absolutely continuous on R
(if u is a function of two variables, say y and t, this will mean that
these derivatives are absolutely continuous functions of y for almost all
values of t).

DEFINITION 4.II. A real-valued function u(y, t) of the two real vari-
ables y and t, defined on a domain Rv = {(y9t) \ 0 ^ y g n, 0 ^ t S o\
is said to be of class T$ on R^ if and only if

(a) u is of class Sq on i?^;
(b) for almost all y on the interval (0 ^ y ^ iz) it is true that

d^/dy1 (considered as a function of t alone) is of class Sp~l on the interval
(0 ^ t ^ a), for i = 0 ,1 , • • • , ? .

Note that for p ^ q, Tq
p = Sa.

Now let us define what we mean by a "solution in the generalized
sense."

DEFINITION 4.III. A real-valued function u(y, t) of the two real
variables y and t, defined on a domain R* = {(y, t) \ 0 S V ^ tf, 0 ^ £ ^ tf}
for some positive a ^ r, is said to be a solution in the generalized sense
(abbreviated as G-solution) of the system (4.1), (4.2), (4.3), if and only
if the following conditions are satisfied:

4.III.1.
(a) u is of class TT+k on Ra;
(b) u satisfies (4.3);
(c) u satisfies (4.2).
4.III.2. There exists a sequence of functions u\y,t)y u\y,t), •••,

such that
(a) each un is defined and of class T2

2r+fc on R^
(b) each un satisfies (4.3) for (1 ^ 2i + 1 ^ 2m + fc);
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(c) d%un

dtl

2m + k - 1;
di+ju

e S3m+fc-i-1 on the interval (0 ^ y ̂  n) for i = 0 ,1 ,

- = 0 uniformly on JRO- for ( i ^ m — 1, i +

m -V k — 1);

—a—%— _ _ 0 — u \d = Q .f j . £ on (0 <

* ^ tf), for i ^ m;

(f) lim ("(Ti l (— - — ) ^ " - * ( - £ ^ l , . . . ,«- , y. t)ldydt = 0.

THEOREM 4.1. Le£ m > 0, A; ̂  0, 6e arbitrary but fixed integers.
Let X = {(m + l)(m + 2))/2 + fe(m + 1).

4.1.1. Let 0(p19 p2, • • •, px, y, t) be a real-valued function of (X + 2)
real variables defined, continuous in y and t, and satisfying a Lipschitz
condition with Lipschitz constant 6 in the first X variables, on the
domain Q = {(plf • • •, pk, y, t) \ 0 ^ y ̂  TC, 0 ̂  t ^ z] where h and z are
positive constants {Lipschitz condition in the p/s: if 0 ^ y f£ TC, 0 ̂  t ̂  z,
then I ( P ^ , - - - , P x , y , t ) - 0(p19• • •, pk,y, t)\ S 0[\px ~ px\ + • • • + |p x - px|]).

4.1.2. Let there be given 2m + k real-valued functions fo(y),
fi(v)f —•>f2m+jc-i(y), each fi(y) being defined and of class S2™**'1'1 on
the interval (0 ̂  y g K). Let

S xr r12m±lc-l-if -\2

— dy .
oL dv2mJr1c-l-i J

4.1.3. Let h > i/7r(2m + fc)8c, where c is defined by Lemma 4.III.
Then, for some positive real number a ̂  r, f̂cere exists a unique

G-solution of (4.1), (4.2), (4.3) wi£fc b = 0, on Ra. This solution u will
satisfy \ u(y, t)\ g h on 0 ̂  y fg TT, 0 ̂  ^ ̂  ̂ J.

COROLLARY 4.II. Lewis' theorem, stated in § 1.

Proof of Corollary. It is the special case m = 1, fc = 0, of Theo-
rem 4.1.

Proof of Theorem 4.1. We wish to obtain Theorem 4.1 by an
application of Theorem 3.IV.

We shall take for the Hilbert space of § 3 the space [L^R^f (that
is, the space of ordered X-tuples (ult • • •, uxy of functions ut defined and
of class L2 on R^) where a will be determined later. The subspace
obtained by setting u{ = 0 for i = 2, 3, • • •, X (which space is, of course,
isomorphic to L\R(r) by the natural isomorphism u<—><(u, 0, • • •, 0 » will
be denoted by H1.
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The sequence Gn of pairwise orthogonal subspaces of H is defined
as follows: Gn = {<xx(t) sin (ny), x2(t) sin (ny), • • •, xx(t) sin (w#)> I #*(0 is of
class L2 on the interval (0 ^ t ^ tf) for i = 1, 2, • • •, X}. Since the func-
tions sin (ny) are pairwise orthogonal on the interval (0 5§ y g TT), the
spaces Gw are clearly pairwise orthogonal. We shall use 4>n to denote
sin (ny), normalized to norm 1:

(4.4) j n

The orthogonal projection of H onto Gn, denoted by Pnj is given by

(4.5)

We define the partial norm Z as follows:
11/2O r

It is easily seen that Z is indeed a partial norm on H (see Definition
2.1), and that the Gn's and Z satisfy Condition 3.IV.0 of Theorem 3.IV.

We shall also consider the orthonormal basis for L2(Ra.) consisting of
the normalized cosine functions:

(4.7) iro(y) = _ L , irn(y) = - / A cos (ny) w = 1, 2, • • • .

If t6 is an element of L2(Ra), then it is easily seen that there exists a
u*(y, t)^rn(y)dy = \ w(y, t)<f>n(y)dy

S o Jo
^*(l/» t)^o(y)dy = 0 (p.p.). We now define

0
the operator C/in I/2(i2c) by Uu = %*. [7 is clearly linear and isometric;
hence C7 has a unique inverse U~x on the range of U, which is the class

v(y, t)dy = 0 for almost all t.
0

Roughly speaking, the operators N9 S, L of Theorem 3.IV will be
the following:

— KP(^i(y91), (Uu2)(y, t ) , • • •, ux(y, t ) , y , t),0, • • •, 0)>

L<u, 0, • •., 0> = S£J±- - ^-)\ 0, • •., 0\ .

Let us now define L, S, N precisely.

DEFINITION 4.IV. D(N) = l<u, 0, • • •, 0> u is of class TZ+k on
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u satisfies (4.3) with 6 = 0; and

515

converges, uniformly p.p. to a bounded function, for i + j ^ m + k

and j ^ m, where xn{t) = I u(y, t)4>n(y)dy\.

In that domain N is defined by

dtm+jc dtm^~xdy dtm+]c~2dy2

^ Q™+KU ^ Q*U TT_1 d*u d*u QU

dtdy ' dy2 ' Hi'dtm+k-3dy dt2 dy '

It must still be verified that the above definition is meaningful; that
is, that (p-w+UulWdy**1) belongs to D{U-1) = R{U), for 2j + 1 ^ m,
i + 2j + 1 fg m + k. That is, we must show that

But this is easily seen, for by (4.3)

o dtldy2j+x
_

dt'dy23 dt'ldy2 dy2 = 0

for 2j + 1 ^ m, t + 2i + 1 ^ m + k.

DEFINITION 4.V. D(L) = {<u, 0, •••,0>|% is of class T2
2r+fc on

<%, 0, • • •, 0> e D(AT), % satisfies (4.3) for 2t < 2m, and dluldtl\t=0 e S*™^
on the interval (0 ^ y ^ TT) for t = 0 ,1 , • • •, 2m + k — 1}.

In that domain L is defined by

L<u,0, . . . ,0> = / — ( — - — Y V o , - - - . o V
N x \dt«\dt2 dy2) /

DEFINITION 4.VI.

B = D(N) n {<u, 0, • • . , 0>11u(y, t)\^h (p.p.)} .

D(S) - H
S<ym+ki0, • • •, ^oo> = <@(Wm+jc,o(y, « ) • • • , w o o d / , « ) , 2 / , « ) , 0 , • • •, o >

where wit2J = vi>2j and wit2j+1 = Uvi>2j+1.

DEFINITION 4.VII.
A = {O, 0, • • •, 0>\(u, 0, • • •, 0> e D(L) and

0 , 1 , ••• ,2m + k - 1}.
4.0 = 0 for i =
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DEFINITION 4.VIII. Let r%t) denote the solution of the ordinary
differential equation

(4.8)

which satisfies the initial conditions

(4.9)
dtj for j = 0,1, . . . ,2m + k- 1 .

LEMMA 4.III. There exists a constant c, depending only on m, ar

and k {and not on n) such that

(4.10) en"

for fi = k,k + 1, • • •, 2g + k, i = 0 , 1 , • • •, 2ra + k - 1,

(4.11)
dt"

<; cnm

for // = 0,1, • • •, fc - 1, i = 0,1, • • •, 2m + fc - 1.

The proof of Lemma 4.III. is given in § 5.

DEFINITION 4.IX. f(y,t) = £ r
\*fi(v)4>n(v)dv; * = < / ,<> , . - . , 0 > .
Jo

where awi =

We now wish to show that L, S, JV, A, >̂, B as given by Definitions
4.IV-VII and 4.IX satisfy the assumptions of Theorem 3.IV.

3.IV.0. has already been verified.
3.1 V.I. It is clear that L and N are linear and that A is a linear

manifold. Also, by definition, D(L)aD(N). We shall next show that
L and N are reduced by each Gn.

If O , 0, • • •, 0> 6 D(N), then it is clear that Pn<u, 0, • • •, 0> e D(N);
and

/ dm+ku JJ_I dm+ku

dt dy

Recalling that is zero at y = 0 and at y = n for 2i < m (see
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Definition 4.IV), that <f>n is zero at y = 0 and at y — n9 and that
jdy2 = —n2cf>n, we obtain by repeated partial integration

for 2j ^ my i + 2j ^ m + k

and

for 2j + 1 ^ m, i + 2j + l ^ m + k

Hence, lett ing xn(t) denote \ U(Y], t)4>n(rj)drjf

PwiV<^,0,...,0> =

at

at Ldy

y), o, • • •, o> = iVPM<tt, o, • • •, o> .

Thus iV is indeed reduced by each Gm.
In an entirely similar manner, we obtain that if (u, 0, • • •, 0> e D{L),

then Pn<u, 0, • • •, 0> 6 Z>(L) and

PnL<u,0, . . . , 0 >

, o, • •., o

- L P / M . O , • • • , 0> .

Thus, L and iV are reduced by the Gn's. Obviously, PnA c A. If
(u, 0, • • •, 0> e ^V(L) n G«, then it is easily seen that u(y, t) is (almost
everywhere) of the form x{t]4>n{y), and that x(t) is a solution of equation
(4.8). Hence
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x(t) =
2MgfYjgL W ) .

«=o \ dv t=o/

Conversely it is clear that any element of the form

where the c/s are real numbers, belongs to ^K(L) n Gn. Thus <yV"(L) fl Gw

is a finite dimensional linear manifold, and hence must be closed. This
completes the proof of 3JV.l(b). Of 3.IV.l(a) we must still show that

By definition, A c D(L). A and ^K{L) are disjoint; for suppose
<u, 0, • •., oyeAn^T (L). Then LPW<>, 0, • •., 0> = PnL<u, 0, • •., 0> = 0,

u(y, t)(j>n(y)dy
0

is of the form
2m+k—]

On the other hand, (u, 0, • • • , 0 ) e 4 , so

d*xn

t=o JoV dtl \<t>n{y)dy = 0 for i = 0 ,1 , • • •, 2m + k - 1 .

Hence xn s 0 for w = 1, 2, • • •, and therefore w = 0. Thus
D{L).

We must still show that D(L) c A 0 - ^ (L). Let <w, 0, • • •, 0> e D(L).

Let again a?w(t) = \u(rj9 tyj>n(rj)d7). Define w(j/, t) = Yin=iWn{t)^>n{y) where
Jo

By Lemma 4.III.,

y nu \ d3wn T _

\cnn
"12

which last is finite for I g 2m and Z + i ^ 2m + k, since <^, 0, • • •, 0> 6
D(L). It is now easily seen that O , 0, • • •, 0> e D(L), and of course
L(w, 0, • • •, 0> = 0. Further it is clear that (u — w, 0, • • •, 0> e A.
Hence <>, 0, • • •, 0> 6 A 0 ^ (L). This completes the proof that 3.IV.1.
is satisfied.
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3.IV.2(a). Let <u, 0, • • •, 0> e A. Let

xn(t) = \*u(y, t)Uv)dy , Lit) = - f
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and

Jo

I t is easily seen tha t

— ^ - = \ gw(s) r2w+*T, "" S' ds for i = 0 , 1 , . . . , 2 m + fc -

Hence

(A 12} " ( — 4- w21 r? = £

and

(4.13)
dtl = 0 (i = 0 ,1 , . . . , 2 m + & - 1) .

But #„(£) also satisfies (4.12) and (4.13) and hence xn — rjn. Thus using:
Lemma 4.III., we obtain, for fi — 0 ,1 , •«•, 2m + k — 1,

d xn

dt»
-

3nce

(ZN<u, 0,

I Cm / \ Cv 7 O W 1 I . 1\t

\ b w V ^ / •».

J o Cut

n=i

< V V '

-s)

i JO

at'R.

,0 ,

VII

v/) —

2n2mzx(i

2! l T

-11/2

}UsO 1

oo m i

/ ^ , 0,

^max^-fc-m.-m

n + k—j/ Jinp

V f %j w

• • • , o > | | 2 .

Thus 3JV.2(a) holds with

(4.14) r = <rc*X .

Note that c2X > 1, so 7 > a; and hence F = max (7, a) = 7.
3.IV.2(b). Let <u, 0, • • •, 0> e D(AT). Then

00 m m+k—j

di*

(p.p.).
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Hence 3.IV.2(b) is satisfied with /3 = 1.
3.IV.3. Let u == <um+kt0, • • . , woo>, v = <vTOffcf0, • • •, ̂ 00> be two ele-

ments of D(S). Define u'ijf vf
i3 as follows:

u'i.v = ui.2j v'i,2j = Vi.aj (2 i ^ w, i + 2j g m + k)

(2j + 1 ̂  m, i + 2i + 1 ̂  m + k) .

Then, recalling Definition 4.VI., and our assumption of a Lipschitz con-
dition in 0

(Z(Su - Sv)f = [\Su - Svfdy
Jo

o - ^oo \]2dy

m m+k—j fx

j=0 i=0 JO

v))2 ( p . p . ) .
j i Jo

Thus we have

Z(Su - Sv) ̂  aZ(u - v) (p.p.)

with

(4.15) a=0VrX.

Note that a1 has not yet been determined, and so far a can be any real
number in the interval 0 < a <; r. If we further restrict a to

then we will have aF — ay < 1, and so 3.IV.3 will be satisfied.
3.IV.4. From assumption 4.1.2. and Lemma 4.III. we obtain, for

j ^ m and j + I ̂  m + k

= (2m + AOc* S J o ( ^ _ _ A ) dy <; (2m
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I t is now easily seen that <j> = </, 0, • • •, 0> e D(N). Further,

[ / \ 2-11/2

it S «2(;S anirt(t)) J ^ l / 7T (2m
Thus, recalling 4.1.3.,

<4.17) \f(y, t) I g, l/¥(2m + k)ch < h ,

and hence 4> e B. Also, <£ obviously belongs to . F(L') . We have already
seen that ZN4> is (essentially) bounded; it is easily seen that the con-
vergence of ~^m(ZNPn4>f is uniform.

3.IV.5(a). By Definition 4.VI, BdD(N) = D(SN). Thus, 4>e Ba
B(SN). To see that SNBczR(L'), we shall show that R{L') = H\

i n
u{y, t)$n(y)dy. Let

S o
L(s)r2m+ic-i(t - s)ds and let v = Y^^xn{t)^n{y). Then it is

clear that <vy 0, • • •, 0> e D(^=1 LPn) and that S ?
<u, 0, • • •, 0>. We must still show that <y, 0, • • •, 0> e
that, for j = 0 ,1 , • • •, 2m + fe - 1,

0, • • •, 0> =
. Recalling

we see that for j ^ m and i + j ^ m + k the series

is majorized, term by term, by the series

n = l JO

which of course has a finite sum, namely cVl \ [u(y, tWdydt. It is now
Jo Jo

easily seen that (v, 0, • • •, 0> € D(N) and hence <u, 0, • • •, 0> e R(L').
3.IV.5(b). Let <un, 0, • • •, 0> e D(N) for n = 1, 2, • • •,

(u\ 0, • • -, 0> - ^ u = <um+K.o, • • • , < > ,

and N<un, 0, • • •, 0> - ^ v = <VMH ,,„, • • •, vmy. That is,

(4.18) lim I

+ • • • + 1 ̂ oo^ = 0 uniformly p.p.
Jo J
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+ i (̂ oo — un)2dy = 0 uniformly p.p.

Two things are obvious: first, all %/s are zero except for um+kt0;
second,

(4.20) um+JCiQ = v0Q .

Let wii2j = vit2j and wi>2j+1 = Uvit2j+1. Then (4.19) can be written as

o

(w00 — ^w)2# = 0
0 J

For j < m and i + j < m + k,

uniformly p.p.

which last converges to zero uniformly almost everywhere in t, by (4.21).
Hence

Jo

uniformly p.p. on R^. But then it follows from (4.21) that

S y
Wij+i(V, t)drj (p.p.) ,

0

or,

(4.22) -^pi. = wiii+1 (i < m, i + j < k + m)

Similarly, for j ^ m, i + i < m + fc,
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which converges to zero as n —> °o, by (4.21) and Remark 2.III.1. Hence
we obtain

(4.23) = w

Combining (4.20), (4.22), (4.23) yields

(4.24) w<,

i+1J

'm+k,0

(j ^ m, i + j < m + k) .

dtldyj

Let xn{t) = um+tetQ(y, t)<f>n(y)dy, xl
n(t) = u\y, t)^n(y)dy. Note that,

Jo Jo

for j ^ m, i + j g m + fc, Z = 1, 2, • • •, v = 1, 2, . • •,

Also,

Thus

It £ is any positive number, then by (4.21) there exists an integer le

such that

& A VJ/'IrW •

Since <uh, Of • • •, 0> e D(N), there exists an integer ns such that

-§- (P.P.) .
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Hence

and so the convergence of the series

^ \ • " -1+idtl

is uniform p.p., for j ^ m and i + j ^ m + k. It now follows easily
that u = <%TO+*.o, 0, • • •, 0> 6 D(AT); and by (4.23) Nu = v.

If in addition <V\ 0, • • •, 0> 6 B, then |un(y, t)\ £h and hence obvi-
ously I um+1c>0(y, t) I = I lim^oo un(y, t) \ ̂  h; hence % e B ,

3.IV.5(c). Suppose <w, 0, . . . , 0> e 5 , N<u, 0, • • •, 0> e Cp(AT</>),
SiV<u, 0, • •., 0> = L'<v, 0, • •., 0>, and Pw«v, 0, • •., 0> - <f>) e A for n =
1, 2, • • •. First, note that <v, 0, • • •, 0) e D{U) c D(N); thus in order
to prove that (y, 0, • • •, 0> e B all we must show is that | v(y, t)\ ^h.
Clearly, | v(y, t)\£\ v{y, t) - f(y, t) \ + \f(y, t) |. Now

I v(y, t) - f(y, t)\ = \ j [ - | - K>?, t) - f(V, t)]dy

, 0, • • •, 0> - <t>)

\\ L'<vy 0, • •. , 0> || = i ^ T l l SN<uy 0, •.

[\\SN<u, 0, • •., 0> - SN4>\\ + \\SN4>\\]

^ VTT [ap + || SN</> ||] -
1 — aF

Also we have shown in (4.17) that

\f(y,t)\^V^(2m + k)cS .

Hence

I v(y, t)\ ̂  i / ^ r E M + Vic (2m + k)c8 .
1 — aF

We know that V n (2m + k)cS < fe; hence the problem now is, can
we choose a positive a ̂  r, satisfying (4.16) and

(4.26) VffT H ^ ^ l l ^ fc - i / ¥ ( 2 m + k)c8 .
1 ar

Now, 7 is a constant multiple of a (see 4.14); a does not depend on a
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(see 4.15); while ||SJV<£|| is a continuous function of a, zero at a — 0.
Thus the function

is continuous on 0 ^ a <g r, and #(0) = 0. Hence there certainly exists
a positive a ^ z, satisfying (4.16) and (4.26).

This completes the proof of Theorem 4.1.
In Theorem 4.1. we considered the system (4.1), (4.2), (4.3) with the

restriction 6 = 0. This restriction can be omitted if we restrict the
derivatives occurring on the right hand side of (4.1) to derivatives of
the form di+2juldtldy2j with 2j ^ m, i + 2j ^ m + k. Thus if (4.1) is
replaced by

dku ( d2 d2 Y u
dt* \dt2 dy2

\ d t m ^ ' dtm+JC~2dy2 ' ' df ' dtdy2 J dt2 ' dy2 ' d t ' U ' V '

we obtain

THEOREM 4.IV. Let the conditions of Theorem 4.1 be satisfied,
except that X — (m/2 + l)(m/2 + k + 1) if m is even, and X =
<(m + l)/2 + k + l)(m + l)/2 i / m is odd.

Then, for some positive real number o ^ r £fcere exists a unique
<G-solution of (4.1a), (4.2), (4.3) with arbitrary a and b, on R^.

Proof. The proof runs along the same lines as that of Theorem
4.1, and we shall here merely indicate the major modification necessary
in that proof. This modification consists of replacing (4.4) by

•(4.4a) 4>n = y A sin w(i/ + #„)

where

(4.27) an = 1

5* Proof of Lemma 4.III. Throughout this section we shall use
the standard abbreviations / ' , / " , • • -,/( /x), for df/dt, d2f\dt2,

LEMMA 5.1. Let f(t) be a real-valued function of class C°° on the
interval (0 rg t fg a). Let n be a positive integer. Let x(t) be a solu-
tion of the equation
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(5.1) x"(t) + n2x(t) = f(t)

valid for 0 ^t fS a, and satisfying the initial conditions

(5.2) *(0) = x'(0) = 0 .

Then, for O ^ f g « and ft = 0 ,1 , 2, • • •

(5.3) I a>«"(t) I 5S " s ^ - 2 - J !/-"(*) I + an*-1 sup |/(s) | .
j 0 O^^j = 0

Proof. The proof will be by induction on ft. We first consider the

cases fi = 0 and /* = 1. It is easily seen that

/(s) — sin w(£ — s)ds and x'(t) = 1 / (s) cos w(£ — s)ds.

o n Jo

Hence, for 0 ^ ^ ̂  a

I x(t) I g a— s u p |/(S) I a n d | x\t) | ^ a sup |/(s) | ,
n OSsSa OSsSa

which is exactly (5.3) for p. = 0 and /̂  = 1.
Now suppose that (5.3) has been proved for j« ̂  v ^ 1. Then,

1 + n

= l/(v""(«) - wV?1*-1'̂ ) I ̂  l/'"-11^) I +

^ I / ^ ' W I + w2 [ s r 5 " ' \fU){t) I + a^-2 sup |/(8) 11

^ S V - 1 - ' |/»'(«) I + «%V SUP |/(8) I

which is (5.3) with fi = v + 1. This completes the proof of Lemma 5.L

LEMMA 5.II. Lei / and x be as in Lemma 5.1., except that x(t}
need not satisfy the initial conditions (5.2). Then, for O ^ ^ a and

(5.4) I a^tf) I ̂  ^ I a?(0) | + uT1 \ x'(0) |

§V -1 sup
j = 0

Proof. Merely note that the function x*(t) = a?(it) — #(0) cos (nt) —
M sin (iit) satisfies all the assumptions of Lemma 5.1.

LEMMA 5.III. For every positive integer q and positive real number
a there exist two real numbers c(q, a), d{q, a) (depending only on q andr
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a, and not on n or f) such that, if f(t) is a function of class C°° on
(0 ^ t ^ a) and if x(t) is a solution of

<5.5)

valid for 0 ^ t ^ a,

(5.6) I x^(t) I ̂  w"-« \c(q, af^ d(q, a) sup \f(s)

for 0 ^t ^a and ft = 0,1, • • •, 2q .

Proof. The proof will be by induction on g. If g = 1, then from
Lemma 5.II., (5.6) follows immediately with c(l, a) = 1, d(l, a) = 1 + a.

Now suppose (5.6) proved for q ^ p. Let x(£) be a solution of (5.5)
with q = p + 1. Then #(£) = #"(0 + %2#(£) satisfies (5.5) with q = p,
and hence, by our inductive assumption we have, for j = 0,1, • • •, 2p,

r 2P-I

^ n^3' c(p, a) S
L *=0
r 2P—i

= nJ'* c(p, a) S
L *=0

c(p, a) ( S

, a) sup |/(s) |
J

d(p, a) sup | /(s) |

+
+ d(p,a)suv\f(s)\\

[ 2P-I-1 "I

2c(p, a) E w2ll+1-* I x{i)(0) I + d(p, a) sup \f(s) \ .
Thus we have seen that, for 0 g t <£ a, and i = 0,1, • • •, 2p

(5.7) 10^(£) I ̂  nJ-* \2c(p, a) "Sn2^1

On the other hand, by Lemma 5.II.,

d(p, a) sup \f(s) |

<5.8) x'(0)
/x-2

*-1 sup | flf(8) |

for 0 ^ t ^ a, // = 0,1, 2, • • •. When ft ^ 2p + 2, then the highest
order derivative of g occurring on the right hand side of (5.8) is at most
2p, so that we can apply (5.7); thus, for ft = 0,1, • • •, 2p + 2,

g t!/41 x(0) I +
r 2^+i

"-2-V-* 2c(p, a) £
L * = 0

r 2P+1
n-p 2c(p, a) £ %23)+1

L *=0

d(p, a) sup | /(s) |

, a) sup | |
J
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[(ft a\n^-1 \2c(p, a) 5WP+1-'
L i = Q

+ d(p, a) sup \f(s)\]

^ ^-d*+i)j"(l + 2(2p + 1 + a)c(p, a))
l_ t = 0

+ (2p + 1 + a)d(p, a) sup | /(s) |1 .

Which is (5.6) for q = p + 1 and c(p + 1, a) = 1 + 2(2p + 1 + a)c(p, a}
and d(p + 1, a) = (2p + 1 + a)d(p, a).

This completes the proof of Lemma 5.III.

LEMMA 5.IV. For every positive integer q, nonnegative integer kr

and positive real number a there exists a real number e(q, a, k) (de-
pending only on q, a, k, and not on n) such that, if x(t) is a solution
of

(5.9) J * i f "2 A*
v } dtk

valid on (0 ^ t fg a), then on (0 ^ t ^ a),

g+fc—1

(5.10)

and

(5.11)

^ n»-*-qe(q, a, k)

/ o r [i = k,k ^

/o r ^ = 0 ,1 ,

k

- 1 .

Proof. Applying Lemma 5.III. to xm(t) we get, for (X — k, k + 1̂
-,2q + k, and (0 ^ « ^ a),

2q + k — l

Also, for pt < ky we have, on (0 ^ ^ ^ a)

+ a sup
c

+ a
afc-^ sup I x{k)(t) [

(1, ak)'c(q, a)n~ cw(0) I .
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Thus (5.10) and (5.11) hold with

e(q, a, k) — max (1, afc)-c(g, a) .

Proof of Lemma 4.III. Apply Lemma 5.IV. with q — m and a — a
to the functions r™ of Definition 4.V.
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