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1. Introduction and Main theorem. Though sequences of countably
additive measures have been investigated by many authors, comparative-
ly little attention has been paid to finitely additive measures in general.
The main purpose of this paper is to give a generalization of a classical
convergence theorem to the case of finitely additive measures and its
improvement.

Let <5$ be a tf-complete (infinite) Boolean algebra with the unit J.
9ft is the class of finitely additive measures on & with bounded vari-
ations, that is, real valued functions / i on ^ with the following proper-
ties:

sup I pt(E) | < OD , fjt(O) = 0

and

fi(E U F ) + fJt(E f l f ) - ft(E)

for every E, F e £$. We shall call elements of 9ft simply measures.
Under the ordinary addition and scalar multiplication, 9ft is a linear
space. Moreover it is a universally continuous semi-ordered linear space
[6] (=a conditionally complete vector lattice [2]) under the order re-
lation: v ^ ft means v{E) ^ fJt(E) for every E e &m The symbols V
and A will denote supremum and infimum in 9ft respectively. We shall
write ft+ = jM V 0, ft~ = ( — ft) V 0 and | ft | = ft V (—ft), then ft = fi+ — pr
and \ fi\ = ft+ + ft". For each subset © of 2ft its orthogonal complement,
i.e., {j"| |jw| A I v| = 0 for every v e @} will be denoted by &1. We
quote some results from the theory of vector lattices (see [6] chap. I).
@ is called normal, if @ = (&1-)1. Any orthogonal complement is normal.
Every normal subset is a direct summand, that is, 9ft = @ 0 @x (in
linear order sense). Thus each normal subset @ determines a linear
lattice homomorphism of 9ft onto @ which makes @ invariant. Following
[6] §5 this homomorphism will be denoted by [@], that is,

+ /9i;) = a[@]/i + /3[@]v (a, y8 real) ,

V v) = [@]JH V [@]v ,

and [@]jM = // is equivalent to ft e @. When @ = ({v}-1)1 where {v} con-
sists of a single measure v, the linear operator [@] will be denoted
simply by [v], ft is said to be absolutely continuous with respect to vy

Received June 2, 1960.

395



396 TSUYOSHI ANDO

if I v I (E) —> 0 implies /^(i?) —* 0. It is known that this is equivalent to
the relation \y\fi = ft. A measure ft is called countably additive, if
I p> I (\Jk=iEte) < S?=i I A* I (Ek) for every sequence {Ek}. The set of counta-
bly additive measures is normal. It will be denoted by S. Following
[8] we shall call measures in S 1 purely finitely additive.

A classical convergence theorem of countably additive measures can
be formulated as follows (see [7]):

Let {fjtk} be a sequence of measures such that limk^o/ik(E) exists and
is finite for every E e &. If every [ik is absolutely continuous with
respect to a fixed countably additive measure v, then the function
fi(E) = \im.k^oo [jtk(E) is also a measure absolutely continuous with respect
to v, and the sequence has the following uniform absolute continuity:

I v I (JE7) —> 0 implies sup \fit\(E)-*0.

We shall prove the theorem without assumption of countable addi-
tivity. Since, as stated before, absolute continuity can be expressed in
terms of [@] the following theorem will give a more complete answer.

MAIN THEOREM. If lim^^fik(E) exists and is finite for every Ee ^ ,
then the function pt{E) == imi^^^TciE) is a measure, and for each nor-
mal ©

lim [&]fJLk(E) = [&][Ji(E) for every E e & .

Moreover the sequence {[@]/*fc} has the following uniform absolute conti-
nuity:

v(E) —* 0 (for every v e S ) implies sup | [@]/^ | (E) —> 0 .

2. Proof of Main theorem. In connection with uniform absolute
continuity we begin with some lemmas.

LEMMA 1. Let {fik} be a sequence of measures with the property:

(*) lim p(Ek - # , ) = <)

for every monotone sequence {Ek} where

p(E) - sup I fik I (E) .

Then for each sequence {Fk} and e > 0 there exist two sequences {Gk}
and {Hk} such that

( 1 ) Gk = Fk U Fk+1 U • • • U Fj{k) for some j{k) ,
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( 2 )

Proof. Since the sequence FkJ == Ui=»^ (i = &) *s monotone (for
each fixed &), by property (*) there exists a sequence {j(k)} of positive
integers such that j(k) ^ i(& + 1) and

p(Fki - FfcJ(fc)) ^ s/2* for i

We define the desired sequences by

Gfc = Ffc>jU) and fl* = fl Gt

Then (1) and (2) are trivially satisfied. As to (3)

=

This completes the proof.

REMARK. Likewise we can choose

< 1') Gk = FR n FK+1 n • • • n ^ (

u — FitJ{i))

= e.

j and {Hk} as follows:

for some j(k) ,

( 3') />(#* - G.) ^ e A; = 1, 2,

LEMMA 2. For cray non negative measures v and \JL

where the infimum is taken over all the sequences {Eh} such that
UJCEJC C E and lim^oov(£ r - Ek) = 0.

Proof. First remark that limfc^co[^]/^(£r
A) — [^]i«(£r) for every such

sequence, because [v\[x is absolutely continuous with respect to v. Since

[v]fjt(E) = inf jsup [v]fjt(Ek)\ g inf jsup
I A; J I k

(because 0 g [v][i ̂  //), the function ^(E) defined by the right side of
(4), is a measure with the property: [v\[x ̂  [ix^ [i. If it is proved that
/*! itself is absolutely continuous with respect to v (i.e. [v][*i = /^), by
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the order-preserving property of [v] we have

Ml* = M(MAO ^ M A = A ^ Mi">

that is, [v]// = /^. Now suppose that fa is not absolutely continuous
with respect to v, then there exist a sequence {FK} and e > 0 such that

(5 ) v(Fk) ^ l/2fc and ^(Ffc) > Se k = 1, 2, . . . .

Since condition (*) is evidently satisfied for single fa, Lemma 1 guarantees
the existence of {Gk} and {Hk} with the properties (1), (2) and (3) (with
fa instead of p). From (1), (2), (3) and (5) it. follows

fa(Hk) = fa(Gk) - fa(Gk - Hk) ^ ft(F») - ftiG* - Hk) ^ 2s i.e.

By the definition of fa there can be chosen a double sequence {EkJ}
such, that

U Ekj dHk^ Hk+1 , Km v(Hk - Hk+1 - Ekj) = 0 ,
( 7 ) i i—

sup M ^ i ) ^ A(fl* ~ fl*+i) + £/2fc fc = 1, 2, • • • .

Writing D3 = \JUiEkj, it follows

consequently we have

(8 ) lira viH, -D,) = 0,

because by (5) and (1)

v{H%) £ v(Gt) £ ± v{F})
jj=t j-i

On the other hand, on account of (2), (6) and (7)

£ ± fa(Hk - Hk+1)
k=i k

=

that is,
sup p.{D}) ^ /^(H,) - e .

3

Taking (8) into consideration, by the definition of fa.

fa(Hx) g sup fi(Ds) S fa(Hx) - s .
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This contradiction establishes the assertion.
We shall reduce a proof of Main theorem to the case of a concrete

Boolean algebra. The simplest tf-complete (infinite) Boolean algebra is
the class ^Y* of all subsets of natural numbers. Phillips proved a special
case of our Main theorem when & — ̂ f \ The following Lemma due
to him is essential.

LEMMA 3 (Phillips). Let {<pk} be a sequence of measures on ^K.
If \imk^<pk(A) exists and is finite for every A e <yf^, then

lim <pk{{k}) = 0
fc->oo

where {k} is the set consisting of single k.

This is a slight modification of [1] p. 32 Lemma.
Up to this point the ^-completeness of & has not been used, how-

ever in the following Lemma it plays a decisive role.

LEMMA 4. If lim^^ fik(E) exists and is finite for every E e &',
then sup*; | ytk \ (I) < oo and (*) is satisfied.

Proof. As proofs of two assertions are similar, we confine ourselves
to the proof of (*). Supposing that (*) is not satisfied, we can choose
a sequence {Ek} and e > 0 such that E1dE2d • • • and

\fik\(Ek+1-Ek)>2s k - 1 , 2 , . . .

(taking a subsequence of {[ik} if necessary). Since in general (see [8])

there exists a sequence {Fk} such that

Fk c Ek+1 - Ek and | ftk(Fk) \ > s k = 1, 2,

Writing <pk(A) = /^(U;e J^) for A e ^ (here the (/-completeness of &
is necessary), we obtain a sequence of measures on ^V~ with the proper-
ty: \\mk^<pk{A) exists and is finite for every A e ^". Then Lemma 3
shows that f*k(Fk) = <pk({k}) - ^ 0. This contradiction establishes the
assertion.

With these preparations we are now in position to prove Main
theorem.

Proof of Main theorem. Since supfc \f*k\(I)< °° by L e m m a 4, t h e
function [x{E) = Wm^^fjtJ^E) is a measure. Considering the sequence
{[ik — ta} instead, we may assume [x = 0. Define
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It is not difficult to see that v is a measure and [&]fik = M/^ fc = 1, 2, • • •
(see [6] § 5), hence we may also assume [©] = [v], and we shall prove

lim [v]fik(E) = 0 for every E e ^ .

By Lemma 2 for each J57 there exist sequences {Ckj} and {DkJ} such that

U Cw c E , U ^ c £ ,

lim v(.E - Cw) = lim v(E - Dk)) = 0 ,
j-*OO J-»OO

lim ^+(CW) = [i»K(B) ,

and

lim f£i(Dtj) = [v]ft(E) fc = 1, 2, • • • .

Since

y(£7 - Cs, n Dkl) £ v{E - Cw) + v(^ - i?w) ^ 0

by Lemma 2 we obtain

mt(Etj) £ lim fit(Ct}) = [v\

where Ek3 = Cfcj n I>fcJ, similarly

lim //fc(Sfcj) = [v]fiu(E) k = 1, 2,

Writing Ffcj — H L i ^ ^ the similar arguments show

lim v(E - FkJ) = 0

and

lim /i?(F4i) - [y]i"?(JS7) i = 1, 2, • • •, fc „

and similarly for \pt). By a diagonal method we can find a subsequence
^} of {Fkj\ such that

v ( S - F«) < 1/2* i = 1,2,

and

lim ^(F,) - M^+(F) fc = 1, 2,

and similarly for {/̂ }̂. Since condition (*) is satisfied by Lemma 4,
there exist sequences {Gk} and {Hk} with the properies (I'), (2') and (3').
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On account of (1'), by the similar way as above, it is not difficult to
see that

lim nt(G5) = [v]pt(E) fc = 1, 2,

and similarly for {fa}, hence by subtraction

( 9 ) lim fik(Gj) = [v]ME) fc = 1, 2, •

On the other hand, for each a > 0 (*) and (2') guarantee the existence
of n = n(e) such that

/ ( ^ -Hn)^e for j ^ rc ,

consequently by (3')

(10) I MHn) - MGJ) I ̂  ^ - Hn) + p{H, - 6,) ^ 2s for j 2> n .

Then from (9) and (10) it follows

I fik(Hn) - [v]ftk(E) I = l i m I fik(Hn) - fr(Gj) \ ^ 2 e fc = 1 , 2 , • • • .

Since lim^0Oi«A.(iif7l) — 0 by hypothesis, combining this with the above, we
obtain Hm^[v]fJtk(E) ^ 2s. The arbitrariness of e implies limfc_oo[v]^fc(£

r) =
0.

Next we shall turn to a proof of the second assertion. Here we
may again assume [@] = [v]. First remark that the sequence {M/4}
satisfies (*). Given a sequence {Fk} with the property: v{F1c) < l/2fc k —
1,2, •••, applying Lemma 1 to this sequence and flV]/^}, for any e > 0
we can find sequences {Gk} and {H^} with properties (1), (2) and (3) (with
p(E) = supfc I [v]^ I (E)). Since (*) and the absolute continuity of every
Mi"* (with respect to v) imply p{Hk) - ^ » 0, we obtain ^mi^^piF^ ^ 2s,
because

p(Fk) £ p(Gk) g ^(ff.) + p(Gk - Hk) £ p(H>) + 2e k = 1, 2, . . . .

The arbitrariness of e establishes the assertion.

REMARK. When &f is moreover complete, our Main theorem can
be deduced from a result of Grothendieck [3] by the following way. By
means of the theory of Boolean algebra, & can be represented by the
class of open-closed subsets of a compact Stonian space Q. Then by
the natural way 9Ji may be considered as the dual of the Banach space
C(Q) (the space of continuous functions on Q with the supremum norm).
Grothendieck proved that if [ik is (7(5111, C(£?))-convergent, then it is also
a(%R, 9ft')-convergent, where 2J1' is the dual of 9JI and o( • • •) denotes
the weak topology. Since every operator [@] is a(3Ji, 9Ji')-continuous,
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the first part of our Main theorem follows immediately. The second
part is also stated there.

3. Corollaries. An immediate corollary (which is a direct generali-
zation of the classical theorem in question) is as follows.

COROLLARY 1. Every normal set of 9ft is sequentially complete
under the weak topology defined by &'.

Let {Ex} be the set of all atoms in & and

<$ = {ft e 8 11 pt I (EK) = 0 for every Ek} .

Then 3̂ is normal. A modification of a recent result of Kaplan [5] § 9
shows that the closure of 21 with respect to the topology in question
coincides with 3̂ © 8 1 . In this regards, the following special case of
Corollary 1 is of some interest.

COROLLARY 2. The set of purely finitely additive measures is
sequentially complete under the weak topology defined by &.

4* Sequences of purely finitely additive measures. In connection
with Main theorem a question arises whether ftk - ^> 0 implies | fik | -^> 0.
When sup^efiSS/̂ i?) > 0, for every E e ^ , Halperin and Nakano [4]
proved that the property "ftk e 8 , f t -^> 0 implies | fik |^^> 0 " is equival-
ent to the atomicity of ^ . We shall treat this problem in 81 , namely,
does [J.k—^0 (all ftk being purely finitely additive) imply | / ^ | - ^ > 0 ?
The answer is negative.

THEOREM. There exists a sequence {fjtk} of purely finitely additive
measures such that

lim fjtk(E) = 0 for every E e &

but

Proof. As in § 2 we shall reduce the proof to the case & =
Banach (see [1] p. 83) proved that there exists a positive measure <pQ

on ^ invariant under translation, that is, g>0(I0) — 1 and

0 ^ <pJ(A) = <P*(TA) for every A e ^V

where IQ is the unit of ^ and TA = {j + 11 j e A}. We define a
sequence {q>k} recurrently by the formula

<pk+1(A) = <pJA n U Bk+1J) - <PJA n U



CONVERGENT SEQUENCES OF FINITELY ADDITIVE MEASURES 403

where

Bkj = {i I i = i mod 2*} .

From the arguments in [4] it results

(11) lim <pk(A) = 0 for every A e <yV~

A;->oo

but

\cpk\ = cpQ ft = l, 2, •••
Let {JFJ be a sequence in & with the property

(12) U F * = I and F f c nFj = 0 (fc =£ i) .
A;

On account of the representation theorem of Boolean algebra (see [6]
§ 8; [2] Chap. X) there exists a sequence {vk} of two-valued (say 1 and
0) measures on & such that

8kJ k,j = 1,2, ••• .

We construct the desired sequence {fik} from {<pk} and {vk} by the formula:

fik(E) = cpk{A)

where A = {j\ v5(E) = 1}. From (11) and (12) it results

lim (ik(E) = 0 for every E e & .

but I //* I = fi0 k = 1, 2, • • •. There remains to prove pure finite additivity
of fik. For this purpose it is enough to prove it for fiQ only. Invariance
of <p0 under translation shows

3) - <PQ({J}) - <Po({i\) = ftW) i, i = 1, 2, • • •

hence

^ o ( ^ ) - g ^ o ( ^ ) ^ i"o(/) - 1 i, fc = 1,2, . . .

finally

th{Fs) = 0 i - 1, 2, . . .

Since ^0(-^) = 1> this implies pure finite additivity (cf. [8] § 4).
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