AXIOMS FOR NON-RELATIVISTIC QUANTUM MECHANICS

NEAL ZIERLER

Introduction. In the approach to the axiomatization of quantum
mechanics of George W. Mackey [7], a series of plausible axioms is
completed by a final axiom that is more or less ad hoc. This axiom
states that a certain partially ordered set—the set P of all two-valued
observables—is isomorphic to the lattice of all closed subspaces of Hilbert
space. The question arises as to whether this axiom can be deduced
from others of a more a priori nature, or, more generally, whether the
lattice of closed subspaces of Hilbert space can be characterized in a
physically meaningful way. Our central result is a characterization of
this lattice which may serve as a step in the indicated direction, although
there is not now a precise sense in which our axioms are more plausible
than his. Its principal features may be described as follows.

Suppose that P is an atomic lattice, define an element to be finite
if it is the join of a finite number of points, and suppose that the unit
element is not finite, but is the join of a countable set of points. Suppose
for the moment that

(F) The lattice under every finite element of P is a real (or complex)
projective geometry.

Then one additional axiom, which appears to be particularly mild from
an operational viewpoint, is sufficient and necessary for us to show that
P is isomorphic to the lattice of closed subspaces of a separable, infinite
dimensional real (or complex) Hilbert space.

Of course, (F) is not taken as an axiom, but is deduced from more
primitive assumptions. This part of the development follows well-known
lines, but the structure of P (and its set S of states) permits us to give
it a rather simple form. For example, in order to conclude that the
lattice under every finite element of P is a projective geometry, we need
make, in addition to the atomicity of P, only the following three assump-
tions: P is not a Boolean algebra; the lattices under any pair of finite
elements of the same dimension are isomorphic; a certain weak (and
rather intuitive) form of the modular law holds under finite elements
(Theorem 2.1).

In a preliminary chapter we examine the interrelation of a number
of regularity properties which a pair P, S satisfying a slight refinement of
Mackey’s basic axioms might have, and show that a few of the more
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plausible properties imply all the others (Theorem 1.1).

This work is a modification of part of a thesis submitted to the
Department of Mathematics of Harvard University in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

1. Events and states: preliminaries. Let P be a partly ordered set
with least and greatest elements 0 and 1 respectively. If the greatest
lower bound or least upper bound of elements a and b of P exists in P
it is denoted ab or a \V b respectively. Let a —a’ be an orthocomple-
mentation in P; that is, for each a € P, a’ € P and

(1) (@) =aq,

(2) a < b if and only if b < a/,

(3) a' is a complement of a; i.e., a’a and a \VV a’ exist and equal
0 and 1 respectively.

Two elements @ and b of P are said to be orthogonal, a | b, if and
only if a <. Clearly a | b is equivalent to b 1 a. If @ is a set of
pairwise orthogonal elements of P we shall say, for short, that @ is
orthogonal. It is easy to see that De Morgan’s law holds in P: (ab) =
a' \/ b in the sense that if either ab or a’ \V b’ exists, so does the other
and the equality holds.

We assume that P satisfies
(L1) If {a, @, ---} is orthogonal, then Va, exists in P.

It follows readily that a variety of sups and infs exists in P: e.g.,
b'e¢’,ba’ and ba'Va if b1 c and a <b; if b,<b, < -.. then Vb, =
b, V bbl V bbh\ e

Consider the following three properties for P.

(W) a <b implies b = ba’ V a,

(W1) a b and ba' =0 imply a = b,

(W2) a=cand bd | ¢ imply (a V b)c = a.

LEmMmA 1.1, If (W) holds then a L b implies b = (a \ b)a'.
Proof. a=b'so b =ba'vVaby(W)yandb= (b'a' Va) = (aV dba’

LemmA 1.2. If (W) holds and a,b and ¢ are pairwise orthogonal,
then (a Vv b)(a V ¢) =a and (a \V b)a V ¢) = b.

Proof. b=a', b=c¢ imply b <a'c¢’ so a’'¢’ =a’c’¥ v b. Then a =
al@aVvevd)=(@aVbdbayveyVb by Lemma 1.1
= (a V b)a'c't’ v b)Y = (a Vv b)a'c’) = (a V b)(a V c).

t That is, (a V b)c exists and is equal to @. In general, when x exists a priori but y
may not, the assertion y = x is understood to include the assertion that y exists.
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Since b = (a \V b)a’ by Lemma 1.1 and b <¢', b =bc'" = (a V b)a'c' =
(a Vv b)a V ¢).

LEmMmA 1.3. (W), (W1) and (W2) are equivalent.

(W1) implies (W). Suppose a <b. Then a V ba’ < b holds trivially
and b(a Vv ba') = b(a'(ba’)’) = ba'(ba’) =0 so b =a V ba’ bv (W1).

(W) implies (W2). If a <c and b | ¢, then ca’, @ and b are orth-
ogonal so a = (& \ b)(a V ca’) Lemma 1.2 (since (W) holds) = (a \ b)c
by (W).

(W2) implies (W1). Suppose a < b and ba’ =0 Then b | b’ so, by
(W2), a =(a VvV b')b = (ba')b =00 = 1b = b.

P is said to be weakly modular (relative to the given orthocomple-
mentation) if it satisfies any and hence all of (W), (W1) and (W2). We
assume now that P is weakly modular and, borrowing a traditional term
from the theory of probability, we call its members events.

Two events a,, @, are said to commute or to be simultaneously
measurable if there exist pairwise orthogonal events b, b, and ¢ such
that a, = b, V ¢. The set of all events which commute with all other
events is called the center ¥ of P. If & = P, P is said to be com-
mutative or deterministic. It is an easy consequence of Lemma 1.2
that ¢ and b commute if and only if ab, ab’ and a'b exist, a = ab \/ abd’
and b = ab VvV @’b, and hence that P is deterministic if and only if it is
a Boolean algebra.

LEMMA 1.4. Suppose ab and ab’ exist and a = ab \/ ab’. Then a
and b commute.

Proof. a' = (ab\Vab) = (ab) (ab’) = (ab)'(bVa') = (ab)’b while b = (ab)'b
holds trivially. On the other hand, if '’ = ¢ and b = ¢ then (ab)’ = a' = ¢
so (ab)’b = ¢. Hence (ab)’b = a'd and so b = (ab)’b \VV ab = a'b \/ ab.

COROLLARY. If a and b commute, so do a and b'.

Proof. The statement of the lemma is symmetric in b and b'.

LEMMA 1.5, Suppose P is a lattice. Then P is a Boolean algebra
if and only if ab = 0 tmplies a | b.

Proof. 1If Pisa Boolean algebra and ab=0, thenal =a=a(b\/ b') =
ab Vv ab =ab so a <b'. Conversely, for any a and b, a(ab)’b =0 so
a(ab) = b by hypotheses. Then a = abV a(ad) = abV a(ab)'d’ = ab\/ ab’
since b < (ab)'.

If we interpret the weakly modular lattice P as the logic of an
abstract physical system,? a < b means ‘‘a implies b’ and &’ is the event

2 Cf. [2].
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“not @”’. If @ L b, it is natural to say that a and b are ‘“‘mutually
exclusive’’—a implies not b and b implies not a—and in this case the
question of the simultaneous occurrence of a and b is completely settled.
If, however, ab = 0 but a and b are not orthogonal, no experiment exists
for the system whose outcome can indicate that @ and b have both
occurred even though a and b are not mutually exclusive. According
to Lemma 1.5, the absence of this uncertainty is equivalent to the
commutativity of P.

Digression. It may be shown that the notion of determinacy is
further characterized in the following three ways (the statements depend
on definitions which appear below). We suppose given a system of states
and events &7 P.

(i) Let X denote the real linear space of signed measures on P generated
by & P is deterministic if and only if X is a pre-L-space in a
certain natural sense (see [4]).

(ii) Define an observable, as in [7], to be a function A from the Borel
subsets of the real line R to P such that A, =0, A, =1, A; | A,
if ENF = ¢and Ays, = 3 A, if E; N E; = ¢ for 1 # j; A is bounded
if A; = 1 for some bounded Borel set E. Given z € X (see (i) above)
and a bounded observable A4, let f,., denote the Borel measure on
the line: p, () = 2(A;) and let L, denote the functional on X:

L, (x) = Sm Ay, 0). The set Y of all such L, is partially ordered

as a subset of the dual of the partially ordered linear space X. P
is deteministic if and only if Y is a lattice.

(iii) Suppose P has a unit. Then P is deterministic if and only if every
pair A, B of observables is simultaneously measurable in the follow-
ing intuitive sense: there exist an observable C and Borel functions
«a and B from R to R (depending on A and B) such that 4 = a(C)
and B = B(C) (where, by definition, a(C); = Co—1m)-

A function f from the weakly modular partially ordered set P to
the closed real unit interval is said to be a state for P if f(1) =1 and
f is countably additive in the sense that whenever {a;} is orthogonal,
fVa) = > f(a). It is easy to see that if f is a state and {b;} is an
increasing (decreasing) sequence of events with sup (inf) b, then f(b;) — 1 (b).

Now suppose there exists a set & of states such that
(D) a =b if and only if f(a) < f(b) for all f in &

Of course, if a =< b and f is any state, f(a) = f(b) — f(ba') = f(b).
We observe that
El. If f(@)=f(®) for all f in S a =0,

E2. For each a € P there exists b € P such that f(b) =1 — f(a) for all
f in &7; there exists ¢ € P such that f(c) = 0 for all f in &/

E3. Let {a, a,, ---} be a sequence of elements of P such that ¢ # j
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and f e . imply f(a;) + f(a,) = 1. Then there exists ¢ € P such
that f(a) = > f(a,) for all fe &~

Indeed, E1 is immediate from (D) and in E2 we need only set b = o/,
¢c=0. In E3, f(a,) £1— f(a,) = f(a}) implies a; < a} by (D) so the {a;}
are mutually orthogonal and we may set a = Va,.

Suppose, on the other hand, that we are given a set P (without
any a priori structure) and a set . of functions from P to the closed
unit interval satisfying E1-E3. The elements b and ¢ of E2 are unique
by El1 and are denoted @' and 0 respectively and we let 1 = 0’; the
element a of E3 is also unique by E1 and is denoted >'a,. Let a partial
ordering be defined in P by (D); evidently 0 and 1 are the least and
greatest elements of P and a — @' is an orthocomplementation. We shall
show that the orthocomplemented partly ordered set P is weakly modular
and &¥ is a collection of states for P (which trivially satisfies (D)).

Let {a;} be orthogonal, let I, I,, --+ be a partition of the positive
integers and let b, = X;e;,0, where 3 denotes the sum of the a; in the
sense of E3 . It follows at once from the fact that the sum of a con-
vergent series of nonnegative numbers is unaffected by a rearrange
ment of its terms that the b, are pairwise orthogonal and >b;, = >a,. As
a particular case we have,

LemMmA 1.6. If a,a, --- are paitrwise orthogonal and b 1 a; for
every 1, then b 1 Sa,.

LEMMA 1.7. If a,, @y, ++- are pairwise orthogonal, then Sa, = Ya,.

Proof. Clearly a = Sa;,=a, for all j. If b=a, for all , a, L b’
so a 1 b by Lemma 1.6; i.e., b = a.

Now suppose ¢ <. Then a | b’ so a + b’ exists by E3 and equals
a Vb by Lemma 1.7; hence ba’ = (a \V V') exists. Since ba’ 1 a, ba' \V a
exists by E3 and Lemma 1.7. Then if fe.%

fba' V a) = f(ba) + fla) =1 — f((ba')) + fl@)=1— OV a) + f(a)
=1—f0) —fla) + fla) =1—f(¥) = f(b)

and it follows from E1 that b = ba’ \/ @, i.e., (W) holds and P is weakly
modular. If {a;} is orthogonal, f(Va,) = f(Za;) by Lemma 1.7 = > f(a,)
and so f is a state for P.

Let P be a weakly modular partially ordered set and let & be a
family of states for P which determines the order relation in P (as in
(D)). The pair &% P will be called a system of state and events, or
simply a system, if it has the following five properties.

E4. (Axiom of separability) Every orthogonal subset of P contains at
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most countably many non-zero elements.
E5. P is a lattice.
S1. &7 is closed under countable convex combination; i.e., if fi, fs, <**
are in . and A, \,, +++ are nonnegative real numbers with 3\, = 1,
then S\ f; € A
S2. If a is a non-zero event, there exists f € &9 such that f(a) = 1.
S3. If f(a) =0 and f(b) =0, then f(a \V b) = 0.
The following series of lemmas, culminating in Theorem 1.1, develop
a number of regularity properties that systems enjoy; interrelations among
the properties are exhibited in accompanying remarks.

LEMMA 1.8. Suppose P 1is separable (i.e., satisfies E4). Then if
Q ts a monempty chain in P, a sequence {a,, a,, ---} of elements of @
may be found such that Va, = sup Q; in particular, sup Q exists in P.

Proof. Let @ be a nonempty chain in P and let T be the set of
all events of the form ab’ where a € Q and b < a. Let {c;] be a maximal
set of pairwise orthogonal non-zero elements of 7T which exists by Zorn’s
lemma and is countable by E4. Say ¢; = a,;b; where a,€ Q, a, < a, < +--
and b; < a; and let ¢ = Va,. Suppose there exists b € Q such that b £ a.
Then since b < a;, a; < b holds for all ¢ since @ is a chain. Hence
a < b and the non-zero event ba’ belongs to T and is orthogonal to all
the ¢; contrary to the maximality of {c;}.

A cut in P is a subset of P which contains all lower bounds of the
set of its upper bounds. If @ < P, we denote by @ the smallest cut
containing Q. Thus, for ae P, a={be P:b=<a} and for Q < P,
Q=Nad:Q < a The mapping Q@ — @ is evidently a closure operation
in the power class <z (P) of P (see [1]); hence the set P of all cuts in
P is a complete lattice under inclusion.

LEMMA 1.9. If P is a lattice and every chain in P has a sup in
P, then P is a complete lattice.

REMARK. If P isalatticeand {0} S P, Vb, = Vb,V -+ \VV b), i.e.,
P is o-complete.

Proof. Suppose Q@ S P, let Q, be a chain in @ and let b = sup Q..
If @ € P such that Q S @, then Q, =@ so b < a, i.e., be Q. It follows
now from Zorn’s lemma that @ contains a maximal element b. The
assumption that P is a lattice clearly implies that @ is a sublattice of
P and so if ae€Q, aVvVbeQ. Then by the maximality of b in @,
aVb=>bsoa<b;thus, @ < bandb=supQ. Dually, infQ = (supa’ : a € Q).

For Qc Plet Q°={fe &:f(a)=0forall aecQ} and if T & .&¥
let T° ={a € .&7: f(a) =0 for all fe T}. Clearly @ = Q°° and if @, S Q,,
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then Q¢ < Q?2, and similarly for the subsets of <~ The first relation
implies Q° & Q°°° and the second applied to the first yields Q°°° = Q°;
thus Q° = Q°°° and similarly, T° = T°°°. A subset H of P or of .&“ such
that H = H°° is called an annthilator, and the mapping H— H° is
a one-to-one inclusion inverting correspondence between the annihilators
in <#(P) and those in <Z(<5”). In this notation, 83 is: a®° N b° = (a V b)°.
It is easy to see that if &4 P has any one of the following three pro-
perties, it has the others.

(4) a°° < b°° implies a < b,

(5) b° S a® implies a < b,

(6) if f(a) =1 whenever f(b) =1, then b = a.

LemmA 1.10. If E5, S2 and S3 hold for & P, so do (4)-(6).

Proof. Suppose bo S a°. Then 5° =b°Na®° = (a Vv b)° by S3. If
aVb=+b, then (a Vbbb =0 by (W1) so, by S2, there exists fe &
such that f((a vV b)) =1. Then fe€b° so fea® and f(a VvV b) =0 by
S3. But fle vd)=f((aVvbdp)=1,s0aVb=> a=b must hold.

LEmMMA 1.11. Suppose P is a separable lattice. Then P is a com-
plete lattice and Q S P implies there exists Q, S Q with at most countably
many elements such that sup @, = sup Q.

Proof. P is a complete lattice by Lemmas 1.8 and 1.9. Let Q be
a nonempty subset of P and let ¢« = sup®. Let T denote the set of
all joins of countable subsets of Q. If 7T, is a chain in T, its join is
obtainable as the join of a countable subsets of T, by Lemma 1.8 and
hence belongs to 7. Hence, we may use Zorn’s lemma to extract a
maximal element a from 7T, and then, clearly, a = sup Q.

REMARK. The converse is also true. Indeed, suppose {a,} is orthogo-
nal and a is its join; by hypothesis @ = Va,, for appropriate «;. If
a ¢ {a}, then a, | a by Lemma 1.6. Since a, < a by definition of
a, a, =0,

We consider now the general form of S3:

(7) If a is the sup of the subset @ of Pand f(b) = 0 forallbe@,
then f(a) = 0 (equivalently: Q° = a°).

It is easy to see that if E5 and S3 hold, so does (7) whenever @ has
countably many elements.

LemMmA 1.12. If E4, E5 and S3 hold for <% P, so does (7).

Proof. Let Q < P, a =sup@ and let fe Q°. By Lemma 1.11 we
may choose a sequence {a,} = @ such that @ = Va;letb, =a, V +++ V a,.
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Then b, < b, < -+, f(b) = 0 imply f(Vbd)) = f(a) = 0.

An event a is said to be a carrier of the state f on P if f(b) =0
is equivalent to b | a; if a carrier exists for f it is clearly unique and
is denoted a,. Evidently, if f is a state with a carrier, f(b) = 1 if and
only if a, < b, and f° = a/°° = a.

LEemMMA 1.13. Suppose P is a complete lattice. Then if &7, P
satisfies (7), it also satisfies
(8) Every fe ¢ has a carrier in P.

Proof. a, = (supf°).

REMARK 1. Conversely, if P is a complete lattice and & P satisfies
(8), then (7) holds. Indeed, if @ < P and a = sup @, let f € Q°. Then
b=aj; for all be @ so a < a; and hence f € a®, ie., Q° = a°.

REMARK 2. (8) is equivalent to the following: Q S P, feQ°, f(a)=1
imply there exists b < a such that f(b) =1 and b | Q. For if (8) holds,
we may take b = a, while, conversely, given f, observe that since f(1) =1,
the hypothesis implies the existence of b such that f(b) =1and b | f°;
clearly b = a,.

LemMMA 1.14. Suppose & P satisfies (4)-(6) and (8). Then it also
satisfies
9) Q@ = Q°° for every subset Q of P.

Proof. Q°° = (a}:f e Q° by definition and (8). But @ Sa} for all
fe@eso @={Na:Q<a) = (Na,:feQ°=Q°°. On the other hand,
b e Q°° implies Q° = Q°°° = b° while Q = @ implies a®° < Q°. Hence
a® S b° so b<a by (5). Thus, Q°° S @ so Q°° = Q.

REMARK. If & P satisfies (9), it also satisfies (4)-(6) and (7). Indeed,
(4)-(6) are immediate. To prove (7), suppose @ € P is the sup of the
subset @ of P. Then @ = Q = Q°° by (9) so Q°°° = Q° = a®°.

LEMMA 1.15. Suppose &% P satisfies E4, E5, S1,S2 and (8). Then
(10) Ewery mnon-zero event is the carrier of some f € &

Proof. We may use the conclusion of Lemma 1.11. Assuming
a # 0, it follows from S2 that a'° = ¢; let b = Va,:f e a’®. Since
a,<a for all fea®, b<a. If ab # 0, choose g € & with g(ab’) = 1;
then 0 = g((abd’)’) = g(a’ V b) = g(a’) so g € a’° and a, < b by definition of b.
On the other hand, g(b’) = g(ad’) =1 implies a, < b’ so a, = 0. Since 0

cannot be the carrier of a state, ab’ = 0 must hold and so a = b by (W1).
Choose {f3, f, *++} S @’° such that a = Va,,; fo = f1/2 + f,[2* + - - - belongs
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to & by S1. Then fy(a) =1 so a,, < a; but, clearly, fi(a,) =1 so

a,, =<a, for 1=1,2,.-- and @ =a,, =a,. Hence a=a, and the
proof is complete.

REMARK. If &4 P satisfies (10), it also satisfies (4)-(6), for suppose
a®° € b°°. Now a =b holds trivially if b =1 so suppose b+ 1 and
choose f € .&“ in accordance with (10) such that a, = b'. Then @ S a°° =
b°° =a/°° =a,=b so a <b.

A state f on P such that f(a) = 0 implies a = 0 is said to be a unit
for P. It is easy to see that if P has a unit, it is separable.

LEMMA 1.16. If &4 P satisfies (10), &7 contains a unit.

Proof. fe.&” such that a, =1 is a unit.
We have proved, in particular:

THEOREM 1.1. Let &4 P be a system of states and events. Then
P is a complete lattice and the sup of any infinite family of its ele-
ments is obtainable as the sup of a countable subfamily. Furthermore,
& contains a unit for P, and the pair &% P has the following properties.
(6) If f(a) =1 whenever f(b) =1, then b < a.
(7)) If Q< P and f£(b) =0 for all b e Q, then f(supQ) = 0.
(8) Every fe & has a carrier in P.
(9) Q= Q°° for every Q< P.
(10) Ewvery non-zero event is the carrier of some f € .

2. The model for non-relativistic quantum mechanics. We shall
show that certain further constraints on a system . P imply that P is
isomorphic to the lattice of closed subspaces of a separable infinite di-
mensional Hilbert space.

We recall that a covers b means that @ > b and a = ¢ > b implies
@ =c. A point is an element which covers 0 and P is atomic if each
of its elements is the join of points. We shall call an event finite if
it is the join of a finite number of points and let P, denote the set of
all finite events. Suppose now that .52 P is a system satisfying

(A). P is atomic; 1¢ P,.
Let (a) denote the lattice under a; clearly (@) is weakly modular
relative to the orthocomplementation b — ab’. We assume

(M). Let a € P, and suppose b, c and d are elements of (a) with d <¢
and bc = 0. Then (d V b)c =d.?

3Ifd=<cand b lec (dVbe=d by weak modularity (cf. Lemma 1.3); thus, (M) asserts
that, under finite elements, be = 0 bears a certain resemblance to b 1 c.
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LEmMMA 2.1. If a is finite, (a) is modular.

Proof. Let d,b and ¢ be elements of (a) with d <¢. Then
d Vv be < ¢ and b(be)'e = 0 so writing b = be v b(be)’ (by weak modularity)
and letting d \ be, b(be)’ and ¢ play the roles of d,b and ¢ of (M)
respectively in the last of the following equalities, (d \V b)e = (d V (be V
b(bc)))e = ((d \ be) \/ b(be))e = d V be .

REMARK. This result is valid for an arbitrary orthocomplemented
lattice L; that is, if L has the property attributed to (a) in (M), it
obviously satisfies (W2) of § 1, hence is weakly modular (see Lemma 1.3),
so the proof applies, and L is modular.

LEMMA 2.2. Suppse a >b. Then a covers b if and only if ab’ is
a point.

Proof. Suppose ab’ is a point and @ = ¢ > b. Then 0 < ¢b’ by (W1)
so ¢b' < ab’ implies ¢b’ = ab’. Hence ¢ =c¢b' Vb=ab' Vb=ua, ie., a
covers b. If ab’ is not a point, ad’ > ¢ > 0 for some ¢ e P and then
a=bVvab =bVabe Ve>b\Ve>bsoa does not cover b.

COROLLARY. Let a € P. The chain 0 = a, < a, < @, < ++- 18 Mmaxi-
mal in (@) of and only if aa'_, is a point for 1 =1,2, -+ and Va; = a.

LemMaA 2.3. ([1, pp. 66, 67]) Let a € P, and suppose every orthogonal
set of points in (a) is finite. Then if b=<a and {a, ---, a,} and
{by, <<+, b} are two maximal orthogonal sets of points in (b), m = n.

LEMMA 2.4. ([1, p. 66]) Let a e P, and suppose b, c and d are
elements of (a) such that b covers d,b and ¢ are mot comparable and
d <ec. Then b\ ¢ covers c.

For a € P, let dima = —1 + min {n: a is the join of # points} and
let P,={aeP,:dima =1}, i=—1,0,1,--.. Clearly, P_,= {0}, P, is
the set of points and P, = U P,.

Suppose there exists a € P, such that (a) contains an infinite orthogo-
nal set {b;};z, of points, and assume that #n = dim a is a minimum for a
with this property; clearly n > 0. Let a -, @, be points with join a.
Since dima, VV +++ V @,_, = n — 1, Lemma 2.3 implies the existence of
orthogonal points ¢,, --+,¢,_; such that ¢,V ++- V ey =gV =+ V Gy
Then a, covers 0 and is not comparable with a,V +++ \V @,_, S0 @ =
ayV s+ Va,,Va, covers a,\V +-+ V a,_, by Lemma 2.4 and hence
¢ =ala,V +++ V a,,) is a point by Lemma 2.2; clearlya = ¢, \V +++ V ¢,
and the ¢; are orthogonal. Now ¢, #+ b,, for otherwise ¢,V ++- V¢, =
b, V b, VV --- contrary to the choice of ¢ with minimum dimension. Hence
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¢ \V b, covers ¢, so d,=(c,V by)c, is a point. For ¢=1,2, -+ let
di=(co VbV e VD)e, VbV e Vb ). IfEb; VbV oo Vb,
d; = 0 while if not, ¢, \V b,V +++ \V b; covers ¢, \V b, \V «++ \V b,_, by Lemma
2.4 so d; is a point. Since all the d, are orthogonal and lie under ac;,
all but a finite number must be 0, since dimac, =n — 1 < dima. Since
Vd; = ac;, exactly n of the d; are points by Lemma 2.3 and we assume
without essential loss of generality that d,, ---,d, ; are points. But
thena =acg Ve, =dyV 2o+ Vduy Veg=0bV +++ Vb, V¢, Since c
is a point not comparable with b, \/ -+ \V b, ;, a covers b, \V +++- V b,,
and so e = a(b, -+ b, ;) is a point. But b, < e for © = n and so all but
one of these b, must be zero. This contradiction completes the proof of

LEemMMA 2.5. If a s finite, every orthogonal set of points in (a) is
finite,

COROLLARY. If a s finite and {a,}’-, is an orthogonal set of points
wm (@) with join a then n = dim a.

We call the elements of P, lines, of P,, planes, and use the following
notation: if a e P, (a);={d <a:dimb=1}, 1 = —1,0,1, ---.

We make the following assumption of homogeneity:
(H) If @ and b are finite elements of the same dimension, then (a) and

(b) are isomorphic.

LEMMA 2.6, Suppose P contains a pair of distinct points a,, b,
such that the line a, \/ b, contains no third point. Then P is determin-
1stic.

Proof. (a,\V byby is a point distinet from b, so is equal to a, by
hypothesis and hence a, | b,. It follows now from (H) that if @, and
b, are any two distinct points, then a, | b,. Hence if @ and b are events
with ab =0, a = Va,:a,€ (@), < Ab[:b, € (b), = (Vb :b, € (b)) =0 so
a | b and P is deterministic by Lemma 1.5.

We assume
(ND) P is not deterministic.

COROLLARY. Ewvery line contains at least three distinct points.

Lemma 2.7, &= {0, 1}.

Proof. Suppose a € 7 with 0 < a < 1. Then there exist points b,
and b, such that b, =< a and b, < a’. Let ¢ be a point in b, \V b, distinct

from b, and b,. Then ¢ = ca \V ca’ so either ¢ < a or ¢ < a’ since ¢ is
a point. But the former implies that b, < @ since then b,V b,=b, V¢ =< a
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and similarly the latter implies that b, < a’; hence the assumption 0 <
a < 1 is untenable.

We have shown that for a € P;, (a) is an orthocomplemented, modular
lattice of finite dimension with trivial center and at least three points
on each line. Thus, we have (see e.g., [1, Theorem 6, p. 120]):

THEOREM 2.1. Let &4 P be a system satisfying (A), (M), (H) and
(ND). Then the lattice under every finite element of P is a projective
geomelry.

It follows from (H) that there exists a division ring D such that a
coordinatizing division ring* for any finite (a) is isomorphic to D. We
shall make use of the natural metric o for P: p(a,b)=sup |[f(a)—f(b)|: fe .

LEmMMA 2.8. Orthocomplementation is continuous in (a) for any
a € P. That is, if {b.} C (@), b € (a) and b, — b, then ab, — ab’.

Proof. Given ¢ > 0 choose N so that n > N implies that o(b,, b) < e.
Then if fe & and n > N,

¢ > |f(b) —fO)| = 1A — 1) — 1 —F0a)]
=[fO) = fO) ] =1f0aVa)—fbaVa)l
= |f(Va) + f(@) — f(bla) — f(a)| =[f('a) — f(ba)] .

Thus, o(ab;, ab’) < ¢ and the result follows.
We assume now ,
(C') If a is finite and 0 = ¢ =< dim e, (@); is compact.

REMARK. It seems reasonable to suppose that there exists ¢ > 0 so
small that if the probabilities of occurrence of two events b and c differ
in every state by less than ¢, then b =¢, i.e., b and ¢ are operationally
identical. The completeness of (a); is clearly weaker than this opera-
tional assumption. The assumption that (a);, in addition to being complete,
is totally bounded, may be paraphrased as follows: for each ¢ > 0 there
exists a finite set {b,, ---, b,} of elements of (a); such that given any b
in (a); and f € &° the probability of occurrence of the event b in the
state f differs from the probability of occurrence of one of the b, in f
by an amount less than e.

LEMMA 2.9. Let a be a finite event of dimension at least two.
Let 0<1, j<dima, let {b,}cC(a), {c.} C(a) with dimb, =1 and
dime, = j for all n. Suppose that b, —b and c¢,— ¢ where b and c
are in ‘‘general position,”’ i.e., dimb V ¢ = min (dima, ¢ + 5 + 1). Then
b,V ¢,— bV ¢ and, dually, b,c, — bec.

¢ [1, Theorem 15, p. 131].
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Proof. {b,V c,} clusters at some d < a by (C'); assume for con-
venience that b, \V ¢, — d. Let ¢ > 0 and choose N so that n > N implies
o(,, b) < ¢e/2 and pb, V ¢, d) < /2. Then if f(b)=1 and n > N,
f@)+¢2>fb, Ve, =fb,)>1—¢/2s0f(d) >1—¢. Hence f(d) =1
and so b < d by (6) of Theorem 1.1. Similarly ¢ =d so bV ¢ =d. Since
dim d < max,dimb, VV ¢,dimbd V ¢, b V ¢ = d must hold. The dual follows
from Lemma 2.8,

COROLLARY. Let a € P,. Then, in (a), the lattice operations are
continuous in both variables simultaneously.
We have therefore

LEMMA 2.10.° D is a locally compact division ring.
We now assume
(Co) For some b e P, and real interval I there exists a continuous non-
constant function ¢t — a, from I to (b).

REMARK. Postulate (Co) may be obtained from the following ‘‘intui-
tive’’ assumptions. There exist a one-parameter family L, of mappings
of .&¥ on .&¥ (describing how the states change with time (regarded as
a real parameter)—corresponding to certain assumptions concerning the
dynamics of the system (see [6, 7])) and a state f such that, letting a,
denote the carrier of L,(f), a, is continuous, non-constant and remains
in some finite (b) for all ¢ in an interval I.

For convenience assume I =[0,1], let n =dimb, m = dima, It
follows at once from the continuity of a, and the compactness of (b),,
that dima, = m for all te I. Suppose m > 0. Without essential loss
of generality we assume that a, #+ a, for ¢ > 0 and choose a point ¢ < a,
such that ¢ £ a, for (again, for convenience) ¢t > 0. Let d =c¢ V ai.
Choose 6 > 0 such that 0 < ¢ < 8 implies p(a,, @;) < 1/2. Then for such
t, a,a; = 0, for otherwise there exists f e . such that f(a,a)) =1 so
fla,) =f(@}) =1. But then |f(a) — f(a)|=[f(a) — 1] <1/2 implies
f(ay) >1/2, a contradiction. Hence, taking 6 = 1 for convenience, da, = d,
is a point for all ¢ (for d, = 0 by a count of dimension while ala, =0
implies dim da, < 0). Since d, = ¢ and d, # ¢ for t > 0, d, is not constant,
while it follows from Lemma 2.9 that d, is a continuous function of ¢;
in case m = 0 we set d, = a,. Again by continuity and without essential
loss of generality, we can find a point e® disjoint from {d,},e; and
hyperplane A® such that (e® Vv d,)h? = d®, which is automatically
continuous, is not constant. Similarly, if dimhA® =% —1>1, we can
find e”eh™ disjoint from {d"} and 2® = h™ with dim 2® = n — 2 such
that d = (¢® Vv dM)h*® is non-constant in some subinterval of I. Con-
tinuing in this way, we arrive finally at a continuous non-constant function

5 See Kolmogorov [5].
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d™ from some subinterval of I to a line A in (b). Then for a sub-
interval J of I, {d{™},c, omits a point p of A™. But D is homomorphic
to 2™ with p removed and hence contains a connected set, the image
of {d{™},c, under such a homomorphism. Since a locally compact division
ring is readily seen to be either connected or totally disconnected we
have

LeMMA 2.11. D is connected.

It follows now from Pontrjagin’s theorem that D is the real, complex
or quaternion division ring.® We assume henceforward that the real or
complex case has been singled out, e.g., by the assumption of simple
ordering on the one hand or algebraic closure on the other, the quaternions
having been set aside by postulating commutativity for D, i.e., that
Pappus’s theorem holds under finite elements. Turning now to the rep-
resentation of P itself, we shall need the final postulate
(C) For each 7 =20,1, ---, P, is complete.”

LEMMA 2.12. Let L and A be complete weakly modular lattices and
let L,(4,) be a subset of L(A) such that every element of L(A) is a join
of elements of Ly(4,). Suppose further that ¢ is a mapping of L, onto
A4, such that
(1) a L bif and only if P(a) L @(b).

Then @ can be extended to an isomorphism of L onto A.

Define 8: L — 4 by 0(a) = V@(c) : ¢ € [a] where [a] = {b < a:b e L.
Clearly 0 preserves order and 6| L, = @. The lemma is proved in the
following steps:

(2) 60(a)) = 0(a).

(83) a < b implies f(a) < 9(b).

(4) Let A be a subset of [a] such that a =sup A. Then 6(a) =
sup @(b) : b e A.

(5) O(a v b)=06(a)V 6(b).

(6) 6 is one-to-one.

(7) 07 preserves order.

(8) 0 is onto.

The proofs are as follows.

(2) Ifbelalandc e [a], P(b) < @(c) by 1) sod(a) = Veb):bela] =
Ap() :cela] = (V) : ¢ € [a] = b(a)'.

(8) If a <b, there exists ¢ # 0¢[ba’]. Then @(c) L ®(a,) for all a, € [a]
by (1) so ¢(c) L 6(a). Clearly @(c) =< 6(b) and f(a) = 6(b) so f(a) <
o(b).

(4) Let a=supp®d):be A; clearly a < 0(a). If ¢ e L, with o(c) e
[6(a)a’] then ¢ | b for every be A by (1) so ¢ L a. Hence @(c) <

6 See [8] for a unified derivation of the classification of locally compact division rings.
7 Cf. the remark following the statement of postulate (C’).
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f(a’) < 6(a)’ by (2). Since @(c) = 0(a), ¢ = 0 and hence f(a) =
by weak modularity.

(5) Let A=[a]U[b]. Then supA =a \V b sofb(a\ b)=supp(c):ce Al
by (4). Now if ce A, @(c) = 6(a) or ¢(c) < 6(b) so p(c) < (a) Vv 0(b);
the opposite inequality is immediate.

(6)and (7). If a £bthen b <a\Vbso )< b(a\Vb) by (8)=0(a)\VOob)
by (5) and hence 6(a) £ 4(b).

(8) Let we 4 and let A = {p7'(B):8 €[a]}. Then, by (4), 0(sup A) =
VB:Bela]l =a.

For each a € P, we choose a distinct Euclidean space H, over D of
dimension 1 + dim a and an isomorphism @, of (@) onto L,, the lattice
of subspaces of H,. Assuming n = dima >0, we wish to choose a
scalar product for H, so that the orthocomplementation ®»,b — ¢,ab’ which
is induced in L, by that in (a) coincides with the one induced by the
scalar product. First of all, there exists an involution ¢ of D and
non-zero numbers (i.e., elements of D) v, ---,v, such that 77 =1,

" oxya? =0 implies all x; = 0, and if b € (a), and @b = [(x,, + -+, ,)]
then @.ab’ = {(y,, ++ -, ¥.) : 2yv:x7 = 01.5 In the real case, 0 = 1 is the
only automorphism; we shall show that ¢ is continuous, hence is either

1 or conjugation in the complex case, and the value 1 is excluded, for

otherwise (7,2, (—v'), 0, ---,0) would be self-orthogonal. Then all

the v, must be positive real numbers and the desired scalar product is

(,2) = XYz

Let b and ¢ be orthogonal points in (a), and choose x, ¥ in H, such
that ¢,b = [x], »,c = [y]. Let \,, be a sequence of numbers with \,, — 0
and let b, = ;[ + N,y]. Then b, —b so (b ¢)b,, — (b ¢e)b = ¢ by
Lemma 2.8 and we may assume that (b \/ ¢)b), # b holds for all m. Then
a sequence f, of numbers with g, — 0 is determined by: @.,(b V ¢)b!, =
[tz + y]. Since b 1 ¢, D.(tn; + Y)V(%; + Npy)” = 050 0 = 1, > 7,27 +
A Swivyy? and it follows from the fact that f, — 0 and Sy 747 # 0
that A, — 0. Thus, ¢ is continuous at 0 and hence, by its additivity,
is continuous everywhere, and the proof is complete.

We assume now, in accordance with the foregoing, that each H,
has been provided with a scalar product such that ¢,b | @,c for b, ¢ in
(@) if and only if b 1 ¢. If a <b e P;, ¢, = PP, is clearly an orthogo-
nality preserving isomorphism of L, in L,. It is well known that there
then exists an isometric transformation +r,, of H, in H,, unique up to
multiplication by a number of absolute value one, such that if v € H,,
Poe [V] = [Yrsev]. We shall show that the ’s may be chosen consistently,
i.e., so that
15) a < b < c implies Yo = VPe\Pog.

We establish a one-to-one correspondence a —a, between the elements

8 [2, Appendix]. [(wo, - -+, ®n)] denotes the 1-dimensional subspace of H, generated by
the element (%o, - - -, %n).
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of P, and the ordinal numbers less than an ordinal ¢ such that a<pg
implies dim a, < dim az. Thus, in particular, a, = 0; it is understood
that all ordinals «, 3, « -+ which occur lie under ¢ and, where no confusion
can result, we shall write “‘a’’ for “‘a,’”’. In particular, we let a8 rep-
resent (the index of) a,as. Let v < & and suppose that 4 has already
been defined so that (15) holds for ¢ = a, with @ <v. Now choose «
such that a, < a, and dim @, — dim @, = 1; we call such an a ‘“‘maximal’’.
Fix +,, arbitrarily; then if a, < a,, Vy, is defined as Vo, o ,. If B is
a second maximal element, and assuming dima, > 1 (i.e., dim H, > 2),
for otherwise there is nothing to prove, aB + 0 and we define +r, 5z by
Yy wp = Yy ePreas. Now let 7 be any ordinal with a, < a, and let 3, ¢
both be maximal such that a, < a; and a, < a.. Assuming that dima, = 3,
we shall show

(16) Yy gy = YyeYren (B, € maximal, a, < ag, dima, = 3).

But if (16) holds for 7 = Be then, by the inductive hypothesis, it
will hold for arbitrary 7, for then wr, pfrg =V gV peVrge n ="y e Ve peVpe.n =
Yy e ,. To prove (16) in the case 7 = Be observe that vry sy . =
Vy.aVa,apVap.ape = Vy.08Vap.ape = Vy.pV8.apVap.age = Vy.p\V8.ape = Vy.6\V8.8:V 62 ape-
Similarly—interchanging B and e—ry s \Vru ape = Vry.eVe pePrge ape- 1N other
words, Yry Ve ge = Yry gYrg ge ON Yrge upHop: and since aBe # 0 (by our assump-
tion that dim a, = 3), this equality holds on all of Hg. and (16) is proved.
Thus, if B is maximal and a, < ag, VY, is unambiguously defined by:
Yrym = Yy e 1f @, < a; < a, choose B maximal with a, < as and
then ry, = \ry gWg.n = Yy gVre sYrs.n = Yy 5954, completing the proof that
4r as extended to all v,7 with @, < a, satisfies (15) providing that
dima, = 3. We begin the induction and complete the proof by ‘‘con-
structing’’ all 4., with dime¢ < 2 in the following way. Let A; denote
the set of all a < ¢ for which dima, =%, 1 =0,1, --- Let B4, let
B, ={Be A, :B < B} and make the inductive assumption that 4, and
s (and consequently +r,,) have already been consistently defined when-
ever Be B, ve A, ae A, and a, < az <a, For all ve A, such that
ap < a,, define 5 arbitrarily and then, choosing a € 4, with a, < ag,,
define yrg o bY Vry.0 = Yy P80 if Yy, has already been defined for some
v e A, with a, < a,—i.e., if a, <ag<a, for some B e B;; otherwise
define vrg , arbitrarily and set vr, , =y 5\0g .« for all v € A4, with a, < a,.
This procedure evidently extends +r consistently to all v, 8; B, & and
7, « such that v e 4,, @ € A, and a, < ag, < a,. It then follows induc-
tively—beginning with B, = ¢—that +» may be consistently defined for
all 4., such that ¢ < ¢ and dimc¢ < 2.

Now let H be a separable, infinite dimensional Hilbert space over
D, let L be its lattice of closed subspaces and let {v;} be a complete
orthonormal set in H. Let {a;} be a maximal orthogonal subset of P, which
exists by Zorn’s lemma and is countable by E4 and (A4), and for each ¢
let u; be a fixed unit vector in H,. Let ae P, let we H, and define
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Ni(u) = ("l"uVui.au’ '\l"avai,a.zui) ’
Su = Z)’i(u)vh
) ={&u:u e H} .

Thus, the domain of N; and & is Usep, Hi that of 6 is P, and their
ranges are in D, H, and the set L, of one dimensional subspaced of H
respectively. We shall show that @ is one-to-one, onto and that 6 and
0 preserve orthogonality. Hence by Lemma 2.12, 6 can be extended
to an isomorphism & of P on L. Then f6-' will be a state for L and
the characterization of &7 is given by the™

Theorem of Gleason. ([5]) Let ¢ be a state on the lattice L of closed
subspaces of the separable real or complex Hilbert space H of dimension
at least three. Then there exists an orthonormal basis {x;} for H and
nonnegative real numbers \; with S\, = 1 such that if @ is the projec-
tion on M e L, (M) = SM(Qux;, ;).

Each L, for a € P, becomes a metric space under the definition:
distance (M,, M,) = sup {| o(M,) — w(M,) | : @ a state for L,}. An immediate
consequence of Gleason’s theorem is that @, is an isometry of (a) on
L,.

LEMMA 2.13. Let a € P, we H,. Then ||&ul| = |lu].

Proof. For n=1,2,.--let b,=aVa,V ---Va, Then if 1=
1=,

>\’z(u) = (‘IpaVai.au’ "P’av%,a!ui)
= (‘P\bn,uval‘}"av%.auy ‘P‘bn,av(zt‘;l"av%,aiui)

n
= (Yo,.0%, Vo0, W) SO 21 M) [P = | Vo,.ath I*
&
=|| u||* since the Yru,,.0,4; are orthonormal in H, and 4, . is an isometry.

Since £ is linear, we assume without essential loss of generality that
[[u||=1 and suppose that, contrary to the assertion of the lemma,
[éu|] = (i I M) |)Y* = 6 < 1. Then, in particular, (Yrs,,,0%i)7=1 MUSE
fail to be a basis in all but a finite number of the H, , so, for con-
venience, we assume b, >a, \V .-+ \V a, for all = and let ¢, = b,al-+-al;
evidently, ¢, e (b.),. Let w, = ', MWy, o, let @, = [V, 4 — w,]]
and let y, = (Yo, .4 — w,)a;*. Clearly a,—1V1—§& and y,€ @y,
Then if n > m,

Yns Vo 0,Um) = Q100 (Yo, U — Wy Pry U — Ay W)

® For the convergence of éu, see the proof of Lemma 2.13.
10 1t follows then from Sl and S2 that & contains all states for P.
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azla;tl(” ?bn.au ”2 - (wm 1z[”lgﬁ.a,l'b) - (‘P‘bn.aus "P‘bn,bmwm) + (wm \l"bwbmwm))
= araz(1 = S l) = Sl + )
- a;la;g<1 _ ﬁm@_»l;‘v =1.

i=1

Thus, given ¢ > 0, we may choose N so that n > m > N implies ¢ >
1 — Yn, Vo, .0,Yn) = distance ([¥,], [V, Yn]) = 0(Ca, €n). Then, in virture
of (C), there exists a point ¢ in P such that ¢, —c¢. We shall complete
the proof by showing that ¢ | a,; for all 7 contrary to the maximality
of {a;}. Indeed, if fe.&” with f(a;) =1 and n >4, then ¢, 1 a;, and
if n is chosen so large that o(c,, ¢) is less than a preassigned ¢ > 0,
fle) < flc,) +e=c¢, ie., f(¢c) =0s0 ¢ 1 a; by (6) of Theorem 1.1 and
the proof of Lemma 2.13 is complete.

COROLLARY 1. Let a and b be points. Then 6a | 6b if and only
if a 1 b.

Proof. For we H,,, let nu = 2i(Pavovag.avolhs Vavovag.aWi)Vie Clearly
7 is linear and if ¢ = @;l,Ju] and

w = c—\lla,,’.cuy 77“ = Z(\b'aVb\/al‘cVai"PcVai,cwy "I’avbvai.cVatl‘l"cva.t.atui)lvi

= Z(\l"cv%,cwy 1)l’c\/ai.ai/"[/i) v, =Ew ;

clearly 0c = [pu]. Hence |[|[pu|| =||éw| = ||w]|| = ||%]|| so 7 is an isometry
and then letting 0 # % € ®,.,a, 0 # v € P,ub, @ 1 b if and only if u | »
if and only if 7u | 7v if and only if 6a | 6b.

COROLLARY 2. 6 18 one-to-one.

Proof. If 6a =0b and ce (b'), ¢ L. b so fc 1 6b by Corollary 1,
fc | 6a by our assumption and then a < ¢ by Corollary 1. Hence
a= AN :ce @)= (VYc:ce (b)) = b by postulate (A). Similarly b < a,
so a = b.

COROLLAY 3. Let b, <b, < +++ be a chain of finite elements and
suppose Yy, € H, with ||y, | =1 such that givenm € > 0 there exists N
such that m > m > N implies ||Yn — Vo, 0 Ynll <. Let ¢, = Pp[Yal
Then the sequence of points {c,} converges to a point ¢ in P.

LEMMA 2.14. 0 s onto.

Proof. Let Me L, v=Ypw; a unit vector in M. Letb,=a,V -+ Va,,
Wy = 21 MiVo,.0Wis Yn = Walllw,|| when w, 0 and ¢, = Pial¥al. It
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follows at once from Corollary 3 above that there exists ¢ € P, with
¢c,—c. Let d,=c¢cVb, and let y be a unit vector in H, Now
(Vra,, 0, Yns Va,c¥) tends to a limit 1 with |7|=1and |[vyrs, 5 Y — e,y ]| —0.
Hence, by Lemma 2.13, £y, — £7y. Since &y, — v is obvious, &y = v,
f0¢c = M and the proof is complete.

0 is one-to-one from P, onto L, by Corollary 2 of Lemma 2.13 and
the preceding lemma. Furthermore, 6a | 6b if and only if a 1 b by
Corollary 1 of Lemma 2.13 and so we may apply Lemma 2.12 to obtain

THEOREM 2.2. Suppose the system &, P satisfies the following eight

postulates:

(A) P tis atomic; 1 ¢ Py,

M) If a is finite and b, ¢ and d are elements of (a) such thatd < ¢
and be = 0, then (d V b)ec = d.

(H) If a and b are finite elements of the same dimension, then (a)
and (b) are isomorphic.

(ND) P is not deterministic.

(C) If a is finite and 0 <1 < dima, (a); is compact.

(Co) There exists a continuous, non-constant function from an interval
of the real line to the lattice under a finite event.

P) If a is finite, Pappus’s theorem holds in (a).

(C) For each 1 =0,1, -+, P, is complete.

Then P is isomorphic to the lattice L of closed subspaces of a separ-
able, infinite dimensional Hilbert space over either the real or the com-
plex field in such a way that the orthocomplementations in P and L
correspond.
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