
IMBEDDING COMPACT RIEMANN SURFACES IN 3-SPACE

TlLLA KLOTZ

l Any sufficiently smooth surface in E3 has a conformal structure
imposed upon it by the metric of the surrounding space. If there is a
conformal homeomorphism between a Riemann surface and some Ck

surface in E3, then the Riemann surface is said to be Cfc imbedded in
E3. We deal below with some aspects of the problem of C°° imbedding
compact Riemann surfaces in E3.

Since every compact Riemann surface of genus zero is conformally
equivalent to the sphere, the problem becomes non-trivial only when
genus g ^ 1. Recently Garsia and Rodemich [4] proved that every
compact Riemann surface of genus 1 can be C°° imbedded in E3. We
therefore restrict our attention compact Riemann surfaces of genus g ^ 2.

2. Before stating the main result, we recall some definitions. For
each fixed genus g ^ 2, choose a fixed compact Riemann surface Rg of
genus g. Then a marked Riemann surface of genus g is an equivalence
class

of pairs, where R is a compact Riemann surface of genus g, and a is
a homotopy class of orientation preserving topological mappings of Rg onto
R. The equivalence

{R, a) ~ (R\ a9)

holds if and only if R and R' are conformally equivalent under a home-
omorphism in the homotopy class a~W. A marked Riemann surface is
said to be Cfc imbedded in E3 if the first member of some representative
pair is Ck imbedded in E3.

It is well known (see, for example, [1]) that the set of all marked
Riemann surfaces of genus g may be made into a metric space in a
natural manner, thereby becoming the Teichmϋller space Tg. We define
Σg c Tg to be the set of all y e Γ ? which can be C°° imbedded in E3.
Note that Σg is never empty.

But then, the conjecture that every compact Riemann surface of
genus g *> 2 is C°° imbeddable in E3 is equivalent to the conjecture that
Σg is both open and closed in Tg.

λ In what follows we deal exclusively
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1 It is in this form that the problem was suggested to the author by Professor Lipman
Bers, to whom we express our gratitude.
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with the problem of showing Σg to be open in Tg. But we succeed in
proving, basically, only the following.

THEOREM. (Σg - Σ°g) is open in Tg.
The set Σ°g c Σg is, fortunately, both small and interesting. But

its definition is most conveniently stated toward the end of the proof.2

3Φ We recall some facts before proceeding to prove the theorem
(see [2]). Let

m = μ(z, z)ip
az

be a Beltrami differential on R, and, thereby, on £S = <(iϋ, α)>. Con-
sider the new Riemann surface Rm defined when we take as new con-
formal parameters homeomorphic solutions to the Beltrami equations

Wj — μwz

on R. It is usual to call

Then m is trivial, written m = 0, if and only if

I &> - &>«* I = 0 (e ) ,

instead of the usual O(e).
It is an important fact that m = 0 if and only if for every holomor-

phic quadratic differential Ω — fdz2 on £f,

(1) . (fl,m)= \[ fμdxdy^Q .

For Wy the space of holomorphic quadratic differentials on ^ , is a com-
plex, linear space of dimension 3# — 3. It follows that By, the space
of Beltrami differentials modulo trivial Beltrami differentials on S^, is
a real linear space of dimension 6# — 6.

Let τ = Sg — 3. Bers has shown that Tg can be made into a Cω

manifold by coordinate mappings

t = (tlf , ί2r) -+ s7tιmL+'"+t*τm2τ

for each y e Γ ? and each basis m19 •• ,m 2 r in B^. It is a trivial
consequence of Bers' work (see § 6 in [2]) that if now

, m = t1m1 + + t2τm2τ + •

where the mlf , m2τ form a basis in By, then the mapping
2 See the last paragraphs of sections 4 and 5.
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( 2 ) t -> &""

has non-zero Jacobian at t = 0 and gives a mapping of some 2τ dimen-
sional ball in E2τ onto a neighborhood of ^ in Γff.

4. Now to the proof of the theorem. Let 6^ e Σg be C°° imbedded
in 2?3 as the surface S. Let δ be a fixed, arbitrarily small patch on S
described in terms of local isothermal coordinates x, y on S by z =
I # + iy I < 2. We seek to describe a family of C°° surfaces S(ί l f , ί2r)
in i£3 which coincide with S except on δ, and which yield imbeddings
of all marked Riemann surfaces in some neighborhood of &* in Tg. To
this end, if the vector ξ describes S in E3, let S(tlf •••, t2τ) be a de-
scribed by the vector

where all (vector valued) coefficients in the power series are C°°(x, y)
and vanish identically outside | z \ < 1, and thereby outside of δ on S.

It follows that the coefficients of the first fundamental form on
S(tu , ί2r) are given by

3=1

But it is well known that S(tu ,£2r) is conformally equivalent to
gm(tv ...,ί2r) w h e r e

and

i//-̂  JL \ 2\ί/ll 5/22/ Π^ ί̂/12

W i , ' t Hτ) — — γ r— / = ,

2(̂ 11 + fe) + vgng22 — g{2

i.e. ^(ίx, , ί2r) Ξ 0 outside | « | < 1. This means that S(ίj, , t2τ)
yields a C°° imbedding in E* of s^m[h> '"'ι^\

Computations show that

= m1 .

Each mό is determined therefore by the choice of the vector φj. We
seek to choose the 2τ vectors φj so that the corresponding mlf , m2τ
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form a basis in By. Then, by the remark closing § 3, the mapping (2)
with m given by (4) is onto a neighborhood of y in Γ3, thereby show-
ing* <£* to be an interior point of Σg.

Note that the {πij} form a real basis in By if there is a basis {Ωk}
in W for which the following matrix of scalar products is obtained.

m1
mT mτ+1 « m 2 r

1

0

0

1

%
. o

( 6 )

Using (1), (5), integration by parts, the vanishing of φj outside \z\ < 1,
and the analyticity fk, we obtain

(mJf Ωk) = -

Γf, for convenience, we set

( 7 ) ψ f c =

then

(8) (ms,Ωk)= \\
J J M < i

Now, choose an arbitrary basis {Ωk} in T7. We will try to choose
the ψj so as to obtain the matrix (6) of scalar products, altering as
necessary our choice of the basis {Ωk} in W. Recall that each φj must
be real, C°°(x,y), and vanish outside of \z\ < 1.

First take φ1 such that (mu ΩJ Φ 0. If there is no such φ1 then,
by (8),

11 ψt φdxdy = 0
J Jl«l<i

for all appropriate choices of φ, i.e. ψλ = 0 in \z \ < 1 so that, by (7),

( 9 ) (έ
\ A,

in I z I < 1. We therefore make an assumption which will be justified
in §5.

ASSUMPTION l. (9) does not hold in | z | < 1.
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Now φ1 may be chosen as specified. If (mu Ωk) = ykf take as new
basis in W ΩJy^ Ω2 — (72£?i/7i), ---, Ωτ — (7A/7i) and call this the basis
{Ωk}. Thus we get the first column of (6). But now take ψ2 such that
(m2, Ω2) Φ 0 and call (m2, Ωk) = 7*. If we take as new basis in
W Ωλ — (7A/7a), ΩJy2y • ••, Ωτ — (yτΩ2ly2), calling this the basis {Ωk} we
obtain the first two, and, by the corresponding procedure, the first τ
columns of (6).

Next, choose a φ for which (m, Ωk) = ak + iβk with A Φ 0. If this
is impossible then

Hi, — 0

for all appropiate choices of φ, i.e., ^ is real in \z\ < 1, and, by (7),
would be real under any change of local parameter in \z\ < 1. In order
not to have this difficulty here or further on, we make a second assump-
tion. In § 5 this assumption is weakened but it is never fully eliminated.

ASSUMPTION 2. No expression ψ of the form

(10) ψ = (|ή_/

with fdz2 e I f is real throughout \z\ < 1. Note that if the assumption
were violated by two expressions of the form (10) then each expression
would be a real scalar multiple of the other.

But now, φ may be chosen as specified. We can therefore set
9^+i = (φ - a1φ

ί)lβ1, and obtain the (τ + l) s t column of (6). But under
assumption 2 there is a φ for which (m, Ωk) = ak + iβk with β2 Φ 0.
By subtracting a suitable real multiple of φ2 from φτ+1 (so as to get a
new equally acceptable φτ+1) and a suitable real multiple of φ1 from ^
(so as to get a new equally acceptable φ) the following scalar products
can be attained.

*

i<γ

ψ

i
(Π)

If now A Φ 1/7, take <pτ+2 = (<p - /9^r+1)/(l - βxi), so as to obtain the
(τ + 2)nd column of (6).

But suppose there were no appropriate ψ for which (11) holds with
β1 Φ 1/7. Then ψ = (ψ2 — 7ψi) would be real in | z | < 1, since, for every
appropriate choice of φ we would have

l I
JJ

ψ'ψdxdy — 0 .
M<i
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But ψ would have the form (10), and assumption 2 outlaws exactly this
situation. The procedure for obtaining the rest of (6) is clear.

We can now complete the proof of the theorem by defining Σg to
be the set of all & e Σg which are C°° imbeddable in EB only as
surfaces which violate assumption 1 or 2 in every coordinate patch. A
less artificial definition of Σ°g is given at the end of § 5.

5» The preceding considerations can be clarified by a study of the
assmptions 1 and 2. First note that the Gauss equations yield

(12) (£i) = λ(L - N+ 2ίM)ξ3 = 2λφf

where £3 is the unit normal vector to S, L9 N and M the coefficients of
the second fundamental form, and

But then the violation of assumption 1 means that | z | < 1 is a
spherical piece. In short, assumption 1 is always valid so long as δ is
chosen to be, as is always possible, a non-spherical patch on S. As a
second alternative, when assumption 1 is violated, &* can be reimbedded
in the following manner. Replace (say) | z | < 1/2 on δ by a conformally
equivalent piece of a surface of revolution in a C°° manner. Note that
all points with \z\ = 1/2 are fixed under the conformal correspondence.

We need only worry therefore about assumption 2. By (10) and (12)
if the second assumption is violated then there is an Ω = fdz2 e W, such
that

(13) 3fm(φ/) = 0

in I z I < 1. Moreover, if $m(φg) = 0 in | z | < 1 for Ω = gdz2 e W, then
Ω — aΩ with a real. It is easy to show that if there is a patch on S
in which (13) does not hold, then there is a patch δ' on S for which no
expression of the form (10) can be real throughout \z'\ < 1. Simply,
chose for δ' a patch in which (13) holds on only part of | z'\ < 1.

Assumption 2 can always be justified therefore unless (13) holds evey-
where on S. But even then we can reimbed S so as to satisfy assumption
2 in some patch so long as S has a spherical portion. For in this case
we can again replace some spherical δ on S by a conformally equivalent
piece of a surface of revolution. On the new piece there is an isolated
umbilic with index j = 1 at (say) z = 0.

But (see chapter 6 of [5]) j can be computed by setting

(14) j = Jzi
4π
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w h e r e t h e c h a n g e in a r g u m e n t is t a k e n going once about \z\ — ε in t h e
positive sense. If (13) still held on t h e n e w piece, w e would have

(15) 3 = —A—

so that, by j = 1, / would have a pole at z = 0. From this contradiction
it follows that assumption 2 causes no trouble on the reimbedded surface.

We call S a critical surface if it is compact, has no spherical patches
and if there is an Ω e W on S for which (13) holds everywhere. It is
now possible to give a slightly more reasonable definition of Σ°g.

DEFINITION. Σg is the set of all £S e Σg which can be C°° imbedded
in E3 only as critical surfaces.

6. Before studying critical surfaces, we note that the arguments
of § 4 do yield some information even when .Sf e Σ°g. For, if assumption
2 is violated, only a slight alteration of procedure shows that the <pJ

may be chosen so as to determine the matrix

m1 mτ m r + 1 m2 Γ1
•

•

0

0

1

0
•
•

0

0

. o
i

of scalar products.
But then, every &" e Tg in some neighborhood of ,9* is describable

in the form

since m19 , mΓ, ίmlf mΓ+2, •• , m2Γ form a basis in B9. This means
however that the mapping

is onto a 6g — 7 dimensional sub-neighborhood of £* in Tg. We can
therefore make the following remark.

REMARK. If & e Σ°g, then every &» in some 6g - 7 dimensional
subneighborhood of ^ in Tg is in Σg.

7. Our study of critical surfaces has two well defined goals. First
we want to determine "how many" critical surfaces there are if any.
Next, we ask whether critical surfaces can in general be reimbedded
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as non-critical surfaces, in which case Σg would be empty, and Σg open.
The discussion which follows is at best a first step in these directions.

To begin with, consider the net of curves formed on S by the curves
along which Ω > 0 and Ω < 0 respectively. These curves are usually
called the trajectories and orthogonal trajectories respectively of Ω on
S. For convenience, we refer to the net they form as the β-net on S.

It follows from (13) that the £?-net is a net of lines of curvature
in the neighborhood of any point where Ω Φ 0. Moreover, since Ω has
4# — 4 zeroes (counted with multiplicities), each zero of Ω corresponds
to an isolated singularity in this £?-net of lines of curvature on S. But
then (13) and (15) imply that any n-fόld zero of Ω is an umbilic point
on S with index j = {—n)\2 in the β-set of lines of curvature.

A critical surface can therefore be described as a compact surface
with no spherical portions on which there is an 42-net of lines of curvature.
As a consequence, every critical surface has a net of lines of curvature
with ^ 4# — 4 singularities, each with negative index. Note that there
may be umbilic points even where Ω Φ 0, so that a critical surface need
not have a finite number of umbilic points.3

We can offer as yet no example of a critical surface of genus g ^ 2.
The torus of revolution is an example for g = 1 and none can exist for
g — 0. But it is worth noting that if there were a compact surface of
constant mean curvature of genus g ^ 1, which A. D. Alexandrov has shown
(see chapter 7 of [5]) to be impossible, it would be critical, with Ω = φdz2.
Moreover, the surface obtained by reflecting such a surface in a sphere
would be critical and of non-constant mean curvature. In general, a critical
surface differs from a surface of constant mean curvature only in that
φdz2 must be multiplied by a real valued expression before becoming an
element of W.

Finally, note that critical surfaces go into critical surfaces under
conformal mappings of E3 onto itself. Thus the first trivial approach
to the reimbedding of critical surfaces as non-critical surfaces fails. It
remains to be seen whether on a critical surface one may replace a patch
by a conformally equivalent patch so as to get a non-critical surface.
Note that all points on the boundary of the patch are required to be
fixed under the conformal correspondence.

8 Some closing comments are in order. First, imbeddings of all
£f' e Tg can not be attained by our method of deforming S in one or
even several patches. This follows from result of Oikawa [6] on the
boundedness in Tg of the set of surfaces obtained in this manner.

But, imbeddings of all nearby S^' e Tg can probably still be attained
3 By an umbilic point we mean a point where φ = 0. Please note that in the preliminary

abstract of this report, on p. 193 of the April, 1960 issue of A. M. S. Notices, the term was
used differently, to denote a singularity in the J2-net.
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by this method. For note that our procedure was very crude. We con-
cluded that mappings t —> ^m{t) were onto a neighborhood of .$f in Tg

only when we could show that their Jacobians were non-zero at t = 0.
Needless to say, such mappings may still be onto a neighborhood of £/*
in Tg even when their Jacobians vanish at t = 0.
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