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l Introduction* If G = HK where H is a normal subgroup of the
group G and where K is a subgroup of G with the trivial intersection
with H, then G is said to be a semi-direct product of H by K or a
splitting extension of H by K. We can consider a splitting extension
G as an ordered triple (H, K; Φ) where φ is a homomorphism of K into
the automorphism group 2I(if) of H. The ordered triple (iϊ, K; φ) is the
totality of all ordered pairs (h, k), he H, he K, with the multiplication

If φ is a monomorphism of if into §I(if), then (if, if; φ) is isomorphic
to (iϊ, Φ(K); c) where c is the identity mapping of φ(K), and therefore
G is the relative holomorph of if with respect to a subgroup φ(-K) of
Sί(ίf). If φ is an isomorphism of K onto Sί(iϊ), then G is the holomorph
of if.

Let if be a group, and let G be the holomorph of H. We are con-
sidering if as a subgroup of G in the usual way. GoΓfand [1] studied
the group Sί̂ (G) of automorphisms of G each of which maps H onto
itself, the group $(G) of inner automorphisms of G, and the factor group
SIff(G)/$5(G). In case if is abelian, this factor group is isomorphic to the
first cohomology group of 5I(if) acting on H, as Mills [4] mentioned. In
§ 2, we generalize GoΓfand's results by dealing with a relative holomorph
instead of with the holomorph. The fact that φ is a monomorphism is
essential for the proof. Hence this generalization of GoΓfand's theory
is in some sense the best possible one. GoΓfand [1], Miller [3], Mills
[4], Peremans [5] and Specht [6, pp. 101-102] discussed the group of auto-
morphisms of the holomorph of some groups. In § 3 and 4, we discuss
the group of automorphisms of the holomorph of some other uncomplic-
ated groups. As applications we can describe the group of automorphisms
of the holomorph of symmetric groups and the group of automorphisms
of the holomorph of subgroups of the additive group of rational numbers.

We set up our basic device which determines all automorphisms of a
splitting extension G = {H, K; φ) in terms of mappings of H and K. It
also enables us to compute the product of two automorphisms of G.
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LEMMA 1.1. Let G = (H, K; φ) and let S5R be the set of all quadruples

[B D\> wherel A e M a p (jff> H)> B e M a p ( j H » K ) t c 6 M a p (κ> jff) and

D e Map (K, K) satisfying the following conditions:
(1.1.1) For all h, h' e H, A(hh') = A(h)φB(h)(A(h')).
(1.1.2) For all h, h' e H, B(hh') = B(h)B(h').
(1.1.3) F o r all k, k' e K, C(kk') = C(fc)<fc,U)(C(/b')).

(1.1.4) F o r all k, k' e ϋΓ, D(kk') = D(k)D{k').

(1.1.5) For αίί Λ,e /ί, fee if, B(φh{h))D{k) = D(k)B(h).
(1.1.6) For allheH, ke K, A(φk(h))φB{Φle{M)(C(k)) = C(k)φmk)(A(h)).
(1.1.7) For cmy (h',k')eG, there exists a unique (h, k) e G satisfy-

ing (A(h)φBm(C(k)), B{h)D(k)) = (λ', A/).

ΓΛew ίΛere is α one-to-one correspondence between the automorphism

group 2t(G) o/ G αwώ 9ft under the correspondence a —> I g ^ defined

by

a(h, e) = (A(h), B(h)) and a(e, k) = (C(k), D(k)) .

Further, if

\Aa Co/ \Aβ Cβ\ \Aβa, CβJ\
a^\ , β —>• and βa —* \,

where βa denotes the automorphism, arising by first applying a and
then β, then

Aβx{h) = Aβ(Aa(h))ΦBβujnMBa(h))) ,

Bβa(h) = Bβ{Aa{h))Dβ{Ba{h)) ,

Cβa{k) = Aβ(Ca(k))ΦBβwamλCβ(Da(k)))

and

Dβx(k) = Bβ((

Because of the one-to-one correspondence described above, we identify
an element of SI(G) with the corresponding element of 2Ji. As the mul-
tiplication formula in Sί(G) we have

Ca
ΦBβΛaCβBa AβCa + φBBaCβDa

p Oύ p Oύ

DβBa BaCa, + DβDa

Let X be a group and Y a subgroup of X. By <V>X, we denote
the inner automorphism of X induced by xe X. By <V>X/ Y, we denote
the restriction of (%)x to Y. By Z(X) and N(Y, X), we denote the
center of X and the normalizer of Y in X, respectively.

1 If X and Y are two groups, by Map (X, Y) is meant the set of all mappings of X
into Y. The same sort of self-explanatory notations such as Hom (X, Y), End (X) will also
be employed.
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In the following definitions2, let H be a group and K a subgroup of
Stiff).

A mapping U of K into H is called a crossed character of K into
H if and only if, for all Jc,k'eK,

U{kkf)= U{k){U{k')Y .

Here and hereafter a symbol like hk is used as substitute for k(h).
A crossed character U of K into if is called regular if and only if

the correspondence

is an automorphism of K. That <ί7(fc)>jff e if for every fc e K is an im-
plicit requirement of the definition.

A mapping U of K into H is called a principal character of i£ into
H if and only if there exists he H such that for all k e K

U(k) = h(h-ψ .

In this case, U is said to be defined by h.
A principal character U of K into H defined by h e H is called regular

if and only if

A principal character U oΐ K into i ϊ defined by he H is called
superregular if and only if

By ® and (£r, we denote the set of all crossed characters of K into
H and the set of all regular crossed characters of K into H, respectively.
Sβ, ?βr and ^3S, we denote the set of all principal characters of K into
H, the set of all regular principal characters of K into H and the set
of all superregular principal characters of K into H, respectively.

The following facts are readily verified.

PROPOSITION 1.2. Every principal character of K into H is a
crossed character of K into H.

PROPOSITION 1.3. Let Ube a principal character of K into H. Then
U is a regular principal character of K into H if and only if U is a
regular crossed character of K into H.

2. GoΓfand's theory for a relative holomorph. By E and 0, we
denote the identity mapping and the trivial mapping, respectively, with

2 Cf. [ i] .
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suitable domain and range. By specializing φ = c, B = 0 and C = 0 in
(1.1), we have

PROPOSITION 2.1. Let G = (H, K; c). Then ΠJ J J e 3ί(G) if and

only if

AeN(K,%(H)) and D = <A>NIK

hold, where N stands for N(K, $!(#)).

By ^π,ΛG)y we denote the set of all automorphisms of G each of
which maps each of H and K onto themselves. It follows from (2.1)
that

PROPOSITION 2.2. Let G = (H, K; c). Then

KH<K{G) = N(K,

under the mapping ^ ^ —> A.

On the other hand, by specializing Φ — c, A — E and B = 0 in (1.1),
we have

PROPOSITION 2.3. Let G = (H, K; c). Then Γ^ £ Ί <= 5ί(G) i/ and

only if the following conditions are satisfied:
(2.3.1) DeW(K).
(2.3.2) CD-1 e &.
(2.3.3) (CD-\k)yHk = D~\k) for all keK.

PROPOSITION 2.4. Let G = (H,K;c). Then, for any Ue&r, there

[ E C~l
0 Ώ\e ^(^) such that CD'1 = U.

Proof. For any given Ue&r, we define an automorphism D~τ of
K by

D-\k) =

and define a mapping C oΐ K into if by C = UD. Then by (2.3) we

see that Q ^ e 3ί(G), proving the existence. By (2.3.3) and by our

definition we have the uniqueness.

By #21 (G), we denote the set of all automorphisms of G each of
which is an extension of the identity mapping on H.

PROPOSITION 2.5. Let G = (H, K; c). Then H

SΆ(G) is isomorphic to
E7* with the multiplication
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under the correspondence

(2.5.1)
Έ C

0 D
CD'1 .

Proof. By (2.3) and (2.4), we see that the correspondence is a one-
to-one mapping of H3I(G) onto (£r. By the help of (2.3.3), we can show
that it is an isomorphism.

PROPOSITION 2.6. Let G = (H, K; c). If ΪA ζ\ e SIff(G) and if

ABN= N(K,St(iί)), then

De%(K) ,

E

0

A 0

0
eSt(G)

and

(2.6.1)
A C

0 D 0

0

<A\IK

Proof. Specializing φ = c and B = 0 in (1.1), we have
By (2.1)

0

0

and the rest follows immediately.

eSI(G)

THEOREM 2.7. Let G = (H, K; c). Suppose that, for every

Ά C

0 D

we have AeN= N(K, 2l(#)). Then

2MG) = ((£', N; Φ)

with φ e Hom(iV, §I((£r)) defined by

ΦA.U) =

for Ae N and for Ue &.
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Proof. By means of (2.6), we can show that 2ίff(G) is a splitting
extension of ffSί(G) by SI^^G). By (2.5) and (2.2), we conclude the
proof.

By (2.3.1) and (2.3.3), we have

PROPOSITION 2.8. Let G = (H, K; c) and suppose Γ^ £ 1 e 3t(G).

Then Γ^ ^ 1 e $(G) if and only if CD-1 e ψ.

By (1.3), (2.4) and (2.8), we have

PROPOSITION 2.9. Let G = (H, K, c). Then, for any Ueψ, there

exists a unique Q ^ €$(<?) such that CD'1 = U.

THEOREM 2.10. Let G = (H, K; ή. Then ψ is a normal subgroup

( n
and

Ψ

Proof. In view of (2.8) and (2.9), the isomorphism (2.5.1) induces
an isomorphism of #§I(G) Π $(G) onto ψ. The rest follows from this
easily.

Let G = {H, K; c). By K, we denote the set of all automorphisms
of H each of which can be extended to an inner automorphism of G
which maps K onto itself. By definition and by virtue of (2.1), we can
easily verify the following fact:

PROPOSITION 2.11. Let G = (H, K; c). Then K is a subgroup of
Sί(iϊ) lying between K and N{K, 3ί(iϊ)). Further, every Ae K determines

[ ] uniquely, i.e., D =

THEOREM 2.12. Let G = (H, K; c). Suppose that, for every

VA C

Lθ D

we have Ae K. Then

3(G) = (Ψ, K; φ)

where φ e Hom(K, W defined by ΦJU) =
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Proof. Let RJ £]e3(G). Then, by (2.11), A e N(K, St(£Γ)), and

therefore the decomposition (2.6.1) is available, from which it follows that

E

0

is an inner automorphism of G. Hence

n ΐs(G))(^H,κ(G) n

and it is easy to see that $(G) is a splitting extension of #21 (G) Π
by 2t*,*(G) (Ί $(G). By (2.10) and (2.11), we conclude the proof.

THEOREM 2.13. Let G = (H, K; c). Suppose that, for every

YA C~

Lo .
we have Ae K. Then

Proo/. L e t [ ^ g]e5ίff(G). Then, by (2.11),
The decomposition (2.6.1) is available, from which

follows. We conclude the proof by (2.10).
In case H is abelian, the factor group mentioned in the preceding

theorem is isomorphic to the first cohomology group of K acting on H.

3. Application to the holomorph of a complete group.

PROPOSITION 3.1. Let G = (H, K; ή where His center less,
and 2I(iΓ) = $(K). Then

Proof. By definition and by (1.3), ψ c (£r. Conversely, let Ue (£r.

Then, by (2.4), there exists Γ^ ^ Ί e 3ί(G) such that CD"1 = U, where

De$ί(K) by (2.3). By assumption,

D = «d-i>H>κ

for some d e H with <cϊ"% e if. By (2.3.3) and by the fact that H is
center less, we have
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CD~(k) = d(d-ψ ,

which shows that Ueφ, and therefore (£r c ?$s.
From this we have

PROPOSITION 3.2. Let G be the holomorph of a complete group H.

Then

This, together with (2.13), implies

THEOREM 3.3. Let G be the holomorph of a complete group H. Then

«*«?) = Sf(G)

Since G has no center, we have

COROLLARY 3.4. Let G be the holomorph of a complete group H. Then

%H(G) = G .

THEOREM 3.5.3 Let G be the holomorph of a finite complete group
H such that the square of the index of any non-trivial normal sub-
group of H is smaller than the order of H. Then SI(G) is a splitting
extension of ί$(G) by a group of order 2.

Proof. Since H is a complete group and is a normal subgroup of
G, we have G — H x K where K is the centralizer of H in G [2, vol. 2,
p. 80]. K consists of all elements of the form (/r~\ ζhyH) with heH.
Obviously K is isomorphic to H under the mapping {h~λ

y (hyπ) —• (h, e).
We shall represent every automorphism of G with reference to H x K
by means of (1.1) with φ trivial. Suppose that we are given

with A^Sϊ(i ί) . Since H cannot be isomorphic to any of its proper sub-
groups, we have ker A Φ (e). If B were not an isomorphism of H onto
K, then we would have either

(a) B{H) Φ K and ker B = (e) or (b) ker B Φ (e).

Since H and K are isomorphic and since H cannot be isomorphic to any
of its subgroups, (a) is impossible. On the other hand, (b) would imply

3 The referee pointed out that this theorem is an easy consequence of the Krull-Schmidt
theorem.
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= [H: ker A][H: ker B]

^ Max {[H: ker Af, [H: ker Bf}

< [H: (β)] ,

which is absurd. This shows that B is an isomorphism of H onto K.
Similarly, we can show by the help of the fact H = A(H)C(K), a con-
sequence of (1.1.7), that C is an isomorphism of K onto H. From the

[ A C~\
ij n e 2I(G) with £)0SI(iΓ)> we derive the same

-* VA C~λ
conclusions. Consequently, we see that if I™ n e Sί(G) then either

( i ) Ae%.(H) and De%.(K) or
(ii) B is an isomorphism of H onto K, and C is an isomorphism

of K onto H.

Suppose [^ £Π e ?!((?) with (i). Then Ijj ^ ] e 5ί(G), and therefore

A σ
B D

A 01"

0 D

-1 ' E CD-

BA-1 E

ϋ^-i »̂ I we can show that B = 0. On the other

hand, we have C = 0 by (1.1.6). Similarly, we have A = 0 and D = 0

in case (ii). Consequently, 21 (G) is the totality of all quadruples of the

following two types:

( I ) Γ^ ^ Ί where A e 5ί(iί) and D e 2t(iΓ).

(II) D A where B is an isomorphism of H onto K and C is an

isomorphism of K onto H.
~ Γ 0 Γ' 1

Let /2 be the subgroup of 2ί(G) generated by „ ^M where Bλ and
Cx are defined by B^h, e) = (h*1, (Ji)H) and d = i?f \ Sί(G) is a splitting
extension of 2I#(G) by 72. Using (3.3), we conclude the proof.

As an application we mention

THEOREM 3.6. Let G be the holomorph of the symmetric group Sn

of degree n where n^3, n Φ 4 and n Φ 6. Then, G is centerless, every
automorphism of G which maps Sn<zi G onto itself is inner, and 5ί(G)
is a splitting extension of ^s(G) by a group of order 2.

4» Application to the holomorph (H, K) c) of an abelian group H
with respect to an abelian subgroup K of 2ί(ίf). In this section, we
use the additive notation for the composition in the abelian group H and
the usual notation for each of the compositions in the ring of endomor-
phisms of H. Thus, e.g., by 2 is meant the mapping which carries h
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into 2h. In case H is abelian, (£r = (£, ψ = ψ = *β. In the first seven pro-
positions, we do not assume that K is abelian. Very quickly we can verify

PROPOSITION 4.1. Let G = (H, K; c) where H is abelian. Suppose
that there exists k0 e Z{K) such that k0 has no non-trivial fixed point.
Let Ue <£. Then Ue<$ if and only if U(k0) e (1 - ko)H.

By (4.1) and (1.2), we have

PROPOSITION 4.2. Let G = (H, K; c) where H is abelian. Suppose
that there exists k0 e Z(K) such that 1 — kQ is an automorphism of H.
Then e = 5β.

By (4.2), (2.11) and (2.13), we have a well-known result:

PROPOSITION 4.3.4 Let G be the holomorph of an abelian group H,
and let the mapping 2 be an automorphism of H. Then ^H(G)

By (1.1.6), we have

Γo" D]

PROPOSITION 4.4. Let G = (if, K: ή where H is abelian. Then

] that A

It is easy to verify

PROPOSITION 4.5. Let G = (H, K; c) where H is abelian. Suppose
that there exists kQ e Z{K) such that k0 has no non-trivial fixed point.
Let h0 be any element of H. Then there exists at most one UeQί such
that U(kQ) = h0.

By (1 — K)H, we denote the set of all elements of the form (1 — k)h
for some ke K and some he H.

PROPOSITION 4.6. Let G = (H, K; c) where H is abelian and (1 — K)H
is a subgroup of H. Suppose that there exists k0 e Z{K) such that l — k0

is an isomorphism of H onto (1 — K)H. Let h0 be any fixed element
of H. Then there exists exactly one C/e(£ such that U(k0) = h0.

Proof. Define U(k) = (1 — fco)"1^ — k) (h0) to show the existence.
The uniqueness follows from (4.5).

THEOREM 4.7. Let G = (H, K; c) where H is abelian and (1 — K)H
is a subgroup of H. Suppose that there exists k0 e Z(K) such that
1 — k0 is an isomorphism of H onto (1 — K)H. Then %H(G) is iso-
morphic to a splitting extension of H by N(K, Sί(ίf)). If further we
assume K c Z(N(K, 2ί(if))), then

See [5, p. 617].
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(4.7.1) %H(G) ς* (H, N(K, 2t(if)); e) .

Proof. By (4.4) and (2.7), we see that

3UG) = (K, N; θ)

with θ e Hom(ΛΓ, «((£)) defined by ΘA{U) = AUζA-^/K for A e N and
?/€(£. By (4.6), the mapping U —• U(k0) is an isomorphism of (£ onto
H. Hence the former statement. To prove the latter part, we observe
that <A-%/ϋΓ= E and therefore ΘA{U) = AU. The mapping (U, A) —
(I7(fco), A) of (£, JV; 5) into (#, ΛΓ; 0 establishes (4.7.1).

As an immediate consequence we have

COROLLARY 4.8. Let G = (if, if; c) where H and K are abelian and
(1 — K)H is a subgroup of H. Suppose that there exists koe K such
that 1 — k0 is an isomorphism of H onto (1 — K)H. Suppose also that
N{K, %{H)) - K. Then

%S(G) = G .

THEOREM 4.9. Let G = {H, K; ή where H and K are abelian and
(1 — K)H is a subgroup of H. Suppose that there exists kQe K such
that 1 — k0 is an isomorphism of H onto (1 — K)H. Then

%(G) = G .

Proof. Let Γ^ ^ 1 6 %(G). Then AeK, and therefore D = E by

(1.1.6). A e K also implies that Γ^ ^,Ίe^(G). Hence

Έ CΊ [A C

0 E\ 0 E

Ά 01-

0 E

-1

Therefore by (2.8) C e ̂ 3. Conversely, suppose we are given AeK and

C e φ . By (2.9), there exists a unique Γ ^ ^ Ί e 3(G) such t h a t CίDr1 = C.

By (2.3.3) A = E and therefore d = C. Hence

A CΊΓE C

\0 E \ 0

A 0

Thus we have shown that $(G) is the totality of all Q π\ with AeK

and Ce^β. By (4.1), (1 — k^)~ιC{k^) can be defined for each Ce^β.

Define a mapping

~A C
r

0
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of $(G) into G. By (4.1), (4.5) and (4.6), we see that the mapping is
an isomorphism of $(G) onto G.

THEOREM 4.10. Let G = (H, K; c) where H and K are abelian and
(1 — K)H is a subgroup of H. Suppose that there exists koe K such
that 1 — k0 is an isomorphism of H onto (1 — K)H. Suppose also that
N(K, W(H)) = K. Then

„ G

3f(G) ((1 - ko)H, K; O

where c'k, ke K> is the automorphism of (1 — ko)H obtained by restrict-
ing k to (1 — ko)H.

Proof. By (1.1.6), (2.1), (2.3) and (2.6), we see Sί^(G) is the totality

of all Γ^ ^ 1 with A e K and CeK, while $(G) is the totality of all

0 E\ w ^ ^ e ^ a n c ^ ^ e ^ a s w e s a w *n ^ e P r 0 0 ^ °ί (4.9). Under
the mapping

A C

0 E
(C(fc0), A)

which establishes ^H(G) = (H, K; ή> a particular case of (4.7.1), the
image of $(G) is ((1 - ko)H, K; c') by (4.1).

THEOREM 4.11. Let G — {H, K; c) where H and K are abelian and
(1 — K)H is a subgroup of H. Suppose that —leK and that 2 is an
isomorphism of H onto (1 — K)H. Suppose also that N(K, Sί(iϊ)) = K.
If [H: 2H] = 2, then SI^(G) is a splitting extension of $(G) by a group
of order 2.

Proof. Take hQ e H, ho<β 2H. By (4.6) there exists Co e (£ such that

It is easy to see that SI#(G) is a splitting extension of $(G) by the sub-

~0 Ex
As an application of the discussion in this section we prove

THEOREM 4.12. Let G be the holomorph of a non-zero subgroup H
of the additive group R of rational numbers. Then

In case 2 is an automorphism of H, SI(G) = $>(G). In case 2 is not an
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automorphism of H, §I(G) is a splitting extension of 3(G) by a group
of order 2.

Proof. The mapping 2 is an isomorphism of H onto

2H=(1-

Hence, by (4.8) and (4.9), we have

2UG) = G =

If 2 e %{H), then SIff(G) = $(G) by (4.3). On the other hand, if 2 $ §!(#),
then [H: 2H] = 2 and therefore §I(G) is a splitting extension of $(G) by
a group of order 2 by (4.11). It remains to show that SI(G) = SI^(G).
Let α - Γ^ ^ Ί e §I(G). Then by (1.1.2) B e Kom(H, 2ί(iϊ)). Therefore
ff/ker JB = 5(iϊ) c Sί(iϊ). Since if cannot be embedded isomorphically
into 2ί(i7), we have ker B Φ (0). Hence 5(ίί) is a periodic subgroup
of SI(#), and therefore B(H) = (1) or £(#) - (1, -1). In case 2 e 2ί(#),
H has no subgroup of index 2, and therefore B(H) = (1). Suppose that
2 02I(iϊ). In order to prove that B(H) = (1), let us suppose on the
contrary that £>(ίf) — (1, —1). Let s be the smallest positive integer in
H. Suppose that 2 is not a prime factor of s. Let λ be the non-
negative integer such that s/2λ e H and that s/2λ+1 $ H. Every element
of H can be written in the form snJ2λn2 with (n2, 2) = 1, and snJ2λn2 e H
is an element of ker B if and only if nx is even. Write nx — 2^n3 with
(n3, 2) = 1. By induction on μ we can show, by means of (1.1.1), that
A(h) = 0 for every h e ker B. By (1.1.1) we also have A(h) = A{s\2λ) for
every hfikerB. Consequently a(h) = (A(h), B(h)) assumes at most four
different values as h ranges over H, which is absurd. In case 2 is a
prime factor of s, let — λ be the number of the factor 2 in the prime
factorization of s. The same argument goes through and we have B(H) = (1)
in any case. This proves that 2ί(G) = 2ίH(G).

As an immediate consequence of (4.12) we have

COROLLARY 4.13.5 Let G be the holomorph of a non-zero subgroup
of the additive group R of rational numbers. Then G is complete if
and only if 2 is an automorphism of H.
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