
REAL COMMUTATIVE SEMIGROUPS ON THE PLANE

J. G. HORNE, JR.

A real semigroup is a topological semigroup containing a sub-semi-
group R isomorphic to the multiplicative semigroup of real numbers,
embedded so that 1 is an identity and 0 is a zero. This paper is devoted
to a preliminary study of real commutative semigroups on the plane and
especially to characterizing the product semigroup on R x R. It leans
heavily on the fundamental paper [5] of Mostert and Shields which in
turn depends the paper [1] of Faucett who, among other things, char-
acterized the multiplicative semigroup on the closed unit interval. Char-
acterizations of the multiplicative semigroup of nonnegative real numbers
and of all real numbers were given in [4] and [3] respectively. (In con-
nection with the latter characterization, also see [2]).

Nothing like a complete description of all real commutative semi-
groups on the plane can be given at this time, even under the additional
hypothesis that there are no (non-zero) nilpotent elements. A crude
classification can be given however on the basis of the number and
arrangement of the components of the maximal subgroup H(l). If H(l)
is connected then the semigroup is necessarily the multiplicative semi-
group of complex numbers. If H(l) is not connected then the compon-
ent G of the identity in H(ϊ) is always isomorphic to the two dimensional
vector group. There can be precisely two components in H(l)) in this
case, H(l) may be dense or not. There are at least two instances of
the former (see Examples 1 and 2 of § 6) and at least two instances of
the latter (see Examples 3 and 4 of § 6). If there are more than two
components, but there are no nilpotent elements, then the number of
components of H(l) is four and H(1)IG is isomorphic to the four group.
Example 5 of § 6 shows that even in this case H(l) need not be dense
and the suggestion is that there are many instances of this case. A
characterization of the product semigroup on R x R appears in § 5.

The author is happy to acknowledge his indebtedness to Professor
B. J. Ball for several valuable discussions concerning the topology of the
plane and to Professor R. P. Hunter for calling his attention to [2],

Preliminaries* The closure of a subset A of a topological space
is denoted A~. The set-theoretic difference of two sets A and B is
denoted by A\B.

A binary operation, or multiplication, is denoted by juxtaposition.
By a semigroup S we mean a topological semigroup, that is, a Haus-
dorff space with a continuous associative multiplication. All semigroups

Received August 15, 1960. Presented to the Society November 18, 1960.

981



982 J. G. HORNE, JR.

in this paper are assumed to be commutative, though we shall occasion-
ally list this hypothesis for emphasis. An isomorphism between two
semigroups is a function which is both an algebraic isomorphism and a
homeomorphism. If there is an identity, it will be denoted by 1. A
zero will usually, though not always, be denoted by 0.

As in [5], H(l) denotes the set of elements with inverses, and G
denotes the component of the identity in H(l). The boundary of G is
denoted by L.

By the square of an element s is meant the product of s with itself,
and is denoted by s2. More generally, if n is a positive integer, sn

denotes the w-fold product of s with itself. If s has an inverse it is
denoted by 1/s. An element e is an idempotent if e2 = e. In a semi-
group with 0, a nilpotent element is an element x Φ 0 such that xn = 0
for some positive integer n. (Some writers permit 0 to be a nilpotent
element.)

For subsets A, B of S, AB = {ab: aeA,beB}. If x e S then Ax is
the abbreviation of A{x}. An ideal is a subset A such that AS c A.
A sub-semigroup is a subset A such that A A c A.

Throughout this work, E will denote the Euclidean plane and R
will denote a semigroup isomorphic to the multiplicative semigroup of
real numbers. The set of all positive members of R is denoted by P
and the set of negative members by N.

It is a standing assumption that E has the structure of a real (com-
mutative) semigroup. That is, E satisfies the condition

(*) E is endowed with the structure of a commutative topological
semigroup which contains a sub-semigroup R isomorphic to the multi-
plicative semigroup of real numbers. Furthermore, the elements 1 and
0 of R act as an identity and a zero respectively for E.

We intend to imply that a fixed isomorph of the real numbers has
been chosen. (In this connection see Remark 5.4). Thus —1 is a well
defined element so there is no harm in abbreviating (— l)(x) to —x.
For a subset A a E, —A — {—a:aeA). The element zero is sometimes
referred to as the origin.

By coordinate-wise multiplication is meant the multiplication defined
on R x R by the identity: (xu x%)(yu y2) = 0&i2/i, ^2y2). That is, coordinate-
wise multiplication is simply the name of multiplication on the product
semigroup RxR, but this language is convenient later. Under coordinate-
wise multiplication, RxR satisfies condition (*) if R is identified with
the set: {(a?, x): x e R}.

1. This section is devoted to a study of the embedding and separa-
tion properties of R and of certain aspects of the multiplication maps
mx, where mx is the map of E into itself defined by the identity:
mx(i/) = xy.
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1.1 LEMMA. Let ueR. If xΦ0 and ux — x then u— ±1. There-
fore mx is a one-to-one function on P~ and on N~ which is one-to-one
on R if and only if x Φ — x.

Proof. If u Φ ± 1 then either un —> 0 or (l/u)n —> 0 so unx —> 0 or
(llu)nx —• 0. However, unx = x and (llu)nx = x which is a contradiction.
Therefore u = ± 1. The remaining conclusions now follow easily.

1.2 THEOREM. For every x, mx is a closed map from R into E.
Hence ifxΦO then mx is a homeomorphism on P~ and on N~ which
is a homeomorphism on R if and only if — x Φ x, or equivalently, if
and only if Rx cuts E. In any case, Rx is closed subset of E.

Proof. The assertions concerning the case x — 0 are trivial so as-
sume x Φ 0. Suppose that tn is a sequence in R such that tnx converges.
If tn does not converge then either tn has two cluster points t, t\ or a
sub-sequence sn of tn satisfies: l/sw-+0. In the second case, (llsn)(snx)—>0,
so x = 0 which is a contradiction. In the first case, there are sub-
sequences of tn which converge to t and V respectively so tx — t'x.
Hence if either tn ^ 0 or tn ^ 0 or if x Φ — x then t = t' by Lemma
1.1. This is a contradiction so tn converges. It follows, in any case,
that mx is a closed map on R and therefore Rx is a closed subset of E.
Also, mx is a homeomorphism on P " and on N~ which is a homeomor-
phism on R if and only if x Φ — x.

If mx is a homeomorphism on R then ifce cuts £7 since Rx is a closed
subset of E. If m2 is not a homeomorphism on R then a? = — x,
Rx = P~# and hence iϋ# does not cut E. The proof the theorem is
complete.

1.3 DEFINITION. If x Φ 0 then the ray through xy denoted [x], is
the set P~x. The open ray through x, denoted (x\, is the set Px.

Evidently the union of any two distinct rays cuts E. In fact, if
[z] and [w] are distinct rays and T = [z] U [w] then E\T is the union
of two disjoint (topological) planes which we are entitled to call sectors.
For obviously if [v] is a ray then x e (v] if and only if (v] = (x], or
equivalently, if and only if [v] Π (x] Φ φ. Thus if S is one of the com-
ponents of E\T and xe S then (x] c S.

1.4 DEFINITION. An open sector is one of the components into which
a pair of (not necessarily distinct) rays divides E, or the set E\{0}. A
sector denotes any one of the following sets:

(1) an open sector;
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(2) an open ray;
(3) the union of an open sector with one or both of its bounding

open rays.
According to this definition, a sector never contains the origin.
Due to the commutativity of multiplication, the maps mx satisfy

Wxity) = tmχ(v) for all teR, ye E. Hence if mx(y) Φ 0 then mx((y]) is
an open ray. The squaring function χ (defined by the identity χ(x) = x2

for all xeE) satisfies χ(tx) = t2χ(x) for all t e R, xe E. Hence if E has
no nilpotent elements, χ maps open rays onto open rays. A useful pro-
perty of such functions is that they map sectors into sectors. In order
to see this, observe that the set of open rays forms a decomposition 3>
of JE"\{0}. It is easy to see that in the quotient topology, 3ί is home-
omorphic to a circle and that under the quotient map v the sectors simply
correspond to connected subsets of £2>\ If / is any map on a sector S
of E which maps open says in S onto open rays of E, then / induces
a map from v(S) into &. The image of / is simply the inverse image,
under v, of the image of some connected subset of &, i.e., a sector.
We record these facts for future reference in a form which is sufficiently
general for our purposes.

1.5 THEOREM. Suppose S is a sector and f:S-^E is a map
such that (i) xe S implies f(x) Φ 0; (ii) x e S, teR implies there
exists a positive integer n such that f(tr) — tnf{x). Then f(S) is a
sector in E.

We recall next the well know fact that the set of fixed points of
an involution on a circle K must either be all of K, precisely two points,
or empty. Our interest in involutions lies in the fact that if x e E and
x2 = 1, then mx is an involution on E. Furthermore, if, as above, &
denotes the decomposition on E — {0} into open rays, mx induces an in-
volution on 3f% It then follows easily that the set, F(mx) of fixed
points (in E) of mx is either all of E, the union of two distinct rays or
zero alone.

Which of the several possibilities obtain in a given instance can
sometimes be settled in the following way: Suppose a pair of distinct
open rays (z] and (w] are interchanged by mx, i.e., mx((z]) = (w\. Let
S19 S2 be the two sectors into which [z] U [w] divides E. Observe that
mx(Sχ U S2) = S1\J S2. If S1 and S2 are interchanged by mz, i.e.,
m^Si) = S2, then only the origin is left fixed. If eithers Sλ or S2 is
mapped into itself by mX9 or in fact, if either mx(Si)nSi or mx(S2)ΠS2

is non-empty, then m^SJ = Slf mx(S2) = S2, and each of Sτ and S2 con-
tain an open ray of fixed points. In general, if F(mx) = [u] (J [v], and
if S, S' are the sectors into which [u] U [v] divides E then S and S' are
interchanged by mx.



REAL COMMUTATIVE SEMIGROUPS ON THE PLANE 985

These results are summarized in the following important theorem.

1.6 THEOREM. Suppose xeE and x2 = 1. Then either
(1) F(ma) = {0},
(2) F(mx) = [u] U [v] for some pair of distinct rays [u] and [v]

and mx interchanges the two sectors into which [u] U [v] divides E, or
(3) F(mx) = E. In particular, suppose a pair of distinct rays

[z] and [w] are interchanged by mx and let S19 S2 denote the sectors into
which [z] U [w] divides E. Then: F(mx) = {0} if and only if Sx and
S2 are interchanged, while F{mx) = [u] U [v] for some ue S19 ve S2 if
and only if either m^S^ Π Si Φ Φ or mx(S2) Π S2 Φ φ.

1.6.1 COROLLARY. Suppose xφR and that Rx cuts E. If Rx does
not separate 1 from —1 then each sector of E\Rx contains an element
y such that —y = y.

Proof. Let m(y) = — y for all y e E. Let Sx be the sector of E\Rx
which contains 1. Then l e m ^ ) Π Si and the desired conclusion follows
from the theorem.

1.6.2 COROLLARY. Let U, V denote the sectors of E\R. Then either
(1) — U— V or (2) —U~ U. Furthermore, condition (1) is equivalent
to any one of the following conditions:

(3) R separates x and —x for all x$R;
(4) — x Φ x for any x Φ 0;
(5) R separates x and —x for some x$R;
(6) There exists an x such that Rx cuts E and separates 1 and —1;
(7) Rx separates 1 and —1 for all xφR\
(8) for all x Φ 0, Rx cuts E and separates y and —y if y$Rx.
Condition (2) is equivalent to (9) there exists an element ue Uand

v e V such that —u' = vl if u' e [u] and —v' = v' if v' e [v].

Proof. Set m(y) = — y ίor all y e E. The various assertions follow
directly from the theorem, the previous corollary or the fact that Ry
separates x and —x if and only if Rx separates —y and y.

2 In this section we study the shape and nature of G, the com-
ponent of the identity in the set H(ΐ) of elements having inverses with
respect to 1. Recall that L denotes the boundary of G in E. According
to [5], G and H(ϊ) are Lie groups and hence are open subsets of E.
Furthermore, L is an ideal in G U L.

Evidently OeL. Suppose that L contains a non-zero element e.
Since P~ c G~, P~e c L. However, P~e Φ L. For if P~e = L then a
closed subset of E, homeomorphic to the ray P~ forms the boundary of
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the open set G. On purely topological grounds, G = E\P~e = E\L. Thus
—eφG so —eeP~e, whence — e — e. According to the result of the
previous section, whenever multiplication by —1 has one ray of fixed
points, it has another. That is, there exists u$[e] such that — u = u.
Therefore ueG. However, if u e G and — u = u then —1 = 1, which is
absurd. Hence L Φ [e], and we have proved

2.1 THEOREM. The boundary L of G is not a ray.

Continue to suppose L contains a non-zero element e. If L = Re
(in which case e Φ — e), then G U L is a semigroup on a half-plane with
G the open half plane. Therefore, by [5, § 4], G is isomorphic to the
two dimensional vector group and 0 divides L into two subsets A and
B such that AB = 0. The two sets A and B in this case must be Pe
and Ne. Therefore e2 = 0. That this case can occur is shown in Ex-
ample 1 of the last section. However, it is impossible if E has no
nilpotent elements.

2.2 THEOREM. // E contains no nilpotent elements and L has more
than one element then L Φ Re for any e e L.

If L contains two distinct rays [ej, [β2] (as it* must, as we have
just seen, if E has no nilpotent elements) then L = [ej U [ea] For if
there exists e e IΛflA] U [β3]) then [e] c L, (e] Π ([ej U |e2]) = Φ and [e]
divides G U I into two sectors. But then G would be contained in one
of these sectors. Thus if [e{] formed one of the bounding rays of G, no
point (save zero) of [βj] could be boundary point of G, which is a con-
tradiction (here, i, j = 1 or 2 and i Φ j). Thus, if L contains two dist-
inct rays then it is the union of them. Observe that this is even true
in case L = Re (for Re = [e] U [— e]). Therefore, in either case, G U L
is a semigroup on a half-plane in which G in the open half-plane.
Therefore G is isomorphic to the two dimensional vector group and 0
divides L into two sets A and B so that AB = 0 and either

( i ) A2 = B2 - 0,
(ii) A and JB are groups, or
(iii) A is a group and B2 = 0. Evidently A = Pβx if ex e A and

I? = Pβ2 if e2 e B. Thus we have the following

2.3 THEOREM. If E is a real commutative semigroup and L has
more than one point then L is the union of two distinct rays and G
is isomorphic to the two dimensional vector group. If E contains no
nilpotent elements then L contains two non-zero idempotents elf e2 and
L = [ej U [e2].
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It is apparent that L = {0} if and only if H(l) = G, i.e. if and only if
H(l) has only one component. If G — H(l) then G is not isomorphic to the
two dimensional vector group. Therefore G contains a non-trivial compact
subgroup [6; Theorem 41]. Hence, by [4], G is isomorphic to the product
of the circle group and the multiplicative group of positive real numbers.
It is then an easy matter to prove that E is isomorphic to the multiplica-
tive semigroup of complex numbers. This result also follows from [2]
as well as [4].

2.4 THEOREM. If E is a real commutative semigroup then the
following conditions are equivalent:

(1) E is isomorphic to the multiplicative semigroup of complex
numbers;

(3) L = {0}:

(3) H(ϊ) is connected.

3. The question was raised in [5] whether multiplication on G and
L separately determines multiplication on G U L. We do not answer
this question in general, but show that, under our hypotheses, if L
contains two non-zero idempotents then there is only one semigroup on
G U L. In particular, G U L is isomorphic to the product semigroup
on P- x P~.

For e e L, let Ge — {g zG\ge = e}; Ge is the isotropy group of β in
G. If e Φ 0 then Ge is isomorphic to the multiplicative group of positive
real numbers. For dim Ge = dim G — dim (Ge) = dim G — dim (e] = 1.
Furthermore, Ge is a closed subset of G and G has no non-trivial compact
subgroups. Since Ge = Re, Ge is not compact. These conditions imply
that Ge is isomorphic to the multiplicative group of positive real numbers.
(This proof is patterned after the proof of 3.6 of [5]).

3.1 LEMMA. Let eeL, e Φ 0. Then e2 = e if and only if ee Ge~.

Proof. In general, if x e G~ then e = ex so if e e G~ then e2 = e.

Conversely, suppose e2 = e. Then P Φ Ge since O e P " and e Φ 0.
If Rx and R2 are any one-parameter subgroups of G, G — R1 R2. There-
fore G — P-G2. Since e eG~ there is a sequence ίΛ in P and a sequence
g w GG e such that tngn — e. Therefore ίwgπe - > e s o ί / - > e . Thus t n — 1 so
(Vtn)(tngn)-^e. Hence # w ->e and eeGβ~.

We are indebted to the referee for suggestions which lead to a
considerable shortening of our proof of the following theorem.

3.2 THEOREM. If L contains two non-zero idempotents then G U L

is isomorphic to P~ x P~.

Proof. Let e19 e2 denote the non-zero idempotents of L and let Ĝ
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denote the isotropy group of eif i = 1,2. By the lemma, Gx Φ G2 for
then exe2 = e2 and e2ex = ex. Thus G = GXG2 and hence Ge1 = G2ex and
Ge2 = Gλe2. Moreover, Gΐ = Gt \J {βx} and G2 = G2 U {e2} and the map
from Gΐ x G2 to G u L defined by (a?,j/) —> #?/ is one-to-one and onto
(clearly so on G1 x G29 on eλ x G2, on Gx x e2 and on {βx, β2} independent-
ly and hence everywhere). Further, if K is a compact subset of G\JL
then Ke1 and ϋΓβa are compact subsets of P~e1 and P~e2 respectively.
Therefore there are elements g eGlf heG2 such that kex S hex and
ke2 ^ ghλ for all & e K {P~eλ and P~e2 are ordered in the natural way).
If we let [el9 g] denote the subset of Gr between eλ and g (and similarly
for [e2, h]), it follows that K c [elf g] [e29 h]. Now our mapping sends
[βi, ff] x [e2, h] onto [elf flr] [ea, λ] and is a homeomorphism there. Thus
i ί comes from a compact subset of GT x G2. Hence, the mapping
(x, y) —> xy is a homeomorphism. Since P~, Gf and Gs" are isomorphic,
the theorem follows.

As a corollary to this theorem and Theorem 2.3 we have

3.2.1 COROLLARY. If E is a real commutative semigroup without
nilpotent elements and L has more than one element then G U L is
isomorphic to the product semigroup on P~ x P~.

4. If C is a component of H(l) then C = xG f or x e C, so that C
is an open subset of E. Therefore H(l) has at most a countable number
of components. In this section we show that if E has no nilpotent
elements then H(l) has only a finite number of components, in fact, a
maximum of four.

Suppose H(l) has an infinite number of components Clt C2, , Cn .
Choose Xi e C{ for each i. Let elf e2 be elements lying in distinct open
rays of L. Thus d = x{G and each C< is a sector with bounding rays
(x^] and (CCA]. Let if be a (topological) circle with the origin on the
inside. Then each of the rays (α%] intersects K in at least one point.
Since a given ray (α^ej can form the common boundary of at most two
of the components of H(ϊ), and since two open rays either identical or
disjoint, it is possible to choose an infinite number of points sn in K so
that each sn belongs to some open ray (x^e^ and so that no two of the
sn belong to the some open ray. This set of points must have a cluster
point keK. At most one of the sn can belong to (k]. Assume S!0(fc].
Then one of the two sectors of E\[k] U [sj contains infinitely many of
the sn. Call that one S^ it does no harm to assume all of the sn belong
to Si. The sn can be re-numbered so that for each n > 1, snΛ1 belongs
to the sector Sn ofE\[k] U [sn] which does not contain sx. Therefore
(sn+1] c Sn.

If U is a Euclidean neighborhood of k which contains sn and
£»+i, for example, every open ray which is contained in Sn must
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intersect U. Therefore if sn+1 e {xfi^ then {xόe2} Π U Φ φ. Thus it is
possible to choose a sequence of points tn e Ee2 so that tn—>k, while
sntn — 0 for every n. Hence k2 = 0, so if E has no nilpotent elements
then H(l) has only a finite number of components.

Assume that E has no nilpotent elements. Set G = Co, and let the
remaining components be denoted Cl9 « , C n . When L has more than
one element, n Φ 0. According to Example 2 of § 6, n = 1 is possible.
Assume that n > 1. Since (— G)( — G) = G, H{1)\G has an element of
order 2. Therefore H(l) has an even number of components, so n ^ 3.
We show that n ~ 3 and that H(l)jG is the four group.

First, order the rays that lie in the complement of G.

4.1 DEFINITION. If x,y$G~ and if (x] and (y] are distinct, then
(x] < 0/] provided x (and therefore (#]) is contained in the sector of
^ΛIX] U [y] which does not contain G. For any x$G~, (e2] < (x] < (ej.
If S2 and S2 are disjoint sectors contained in the complement of G then
Sx < S2 if for every x e Sx and /̂ e S2, (αj] < (y]m

The collection of sectors Cl9 •••, Cw forms a linearly ordered collec-
tion of sectors according to this definition. Assume that they are
numbered so that Cτ < C2 < < Cn. Let Όi denote the sector between
d-! and d for i = 1, , n and let Dn+1 denote the sector between Cn

and (ej. The sectors D i , i = l, ,w + 1, are to include their bounding
open rays.

Let χ denote the squaring function: χ(x) — ίc2. Since E has no
nilpotent elements, χ maps sectors into sectors, according to Theorem
1.3. In addition, χ has the following special properties:

(1) χ(U?=A) = Uf-oQ;

(2) χ(U?ίίA) c U?ίίA;
(3) χ(C0) - Co and χ(C{) Π C< = Φ if i > 0. The latter part of (3)

is due to the fact that d = ^̂ G for x, e C{. Therefore χ(d) = α?JG. But
if x\ e d then α?< = x{g for some ^ eG, so ^ e ( ? which is a contradiction.

If x is sufficiently near e2 then x2 is near e2. Therefore χ(A) c A
Furthermore, %(C:) is a sector having boundary points in common with
χ(A), and χ(CΊ) is disjoint from d U A Thus χ(Cj) must have points
in common with G, whence χ{C^) — G. It follows that Cx contains an
element whose square is 1. Hereafter, xλ will denote this element; i.e.,
a?! e d and a?J = 1.

Choose ^ e Cί for i — 2, , n. Now

x1(C1 U C2) = (̂ajxG U x2G) = G U tfAG .

Set S = Cj U A U C2. Then a^S is a sector which contains G U ^ ^ G
and no other components of H(ϊ). Therefore either xλx2G = ^XG or
X!̂ 2G = xnG. But ^!^2G = ^XG implies x2G = G which is a contradiction.
Therefore a?aa?3G = xnG. On the other hand, x2(xfi UG) = ^ ^ G U a;2G.
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An argument similar to the preceding shows that x2xλG is either xfi or
x3G. Since x2xλ = xλx2, x2xλG φ xxG. Therefore x2xτG = x3G. But

x2xxG = α^G = #WG .

Hence w = 3, so ίf(l) has four components.
The argument used above to show that CΊ contains an element whose

square is 1 applies with only trivial changes to C3. Therefore we as-
sume that x\ = 1. Thus H{l)fG has four elements, at least two of which
have order two. Therefore H(l)jG is the four group and (Ci)(Ci) = G
for i = 0,1, 2, or 3. We have proved the following result.

4.2 THEOREM. If E is a commutative real semigroup without nil-
potent elements then H(l) has one, two or four components. When H(l)
has four components, H(l)jG is the four group.

5 Throughout this section E is assumed to be a real commutative
semigroup without nilpotent elements. Thus if L has more than one
element, as it will if H(l) has more than one component, then L contains
two non-zero idempotents and G U L is isomorphic to P~ x P~.

Even if H(ϊ) has four components a question remains concering the
location of — G. In a certain sense the question is irrelevant and — G
can be any one of CΊ, C2 or C3; in this connection see Remark 5.4.
However, the "correct" location for — G, viz. — G = C2, is recognizable,
modulo the choice of R.

5.1 THEOREM. Assume that E has no nilpotent elements, and that
L has more than one element. Then precisely one component of H(l)
lies between G and —G if and only if R separates x and —x for some
x (equivalently, x Φ 0 implies x Φ x). In particular, ifxΦO implies
x ψ — x then H(l) has four components.

Proof. Let ex and e2 denote the non-zero idempotents of L. If
x φ — x for x Φ 0 then (— ej < (— e2] (in the sense of Definition 4.1).
Let S denote the open second quadrant—that is the sector of elements
x such that (ej < (x] < ( - βj. Thus E = G U ( - G) U (S~) U ( - S~).
Let C = {x e S: x2 e S~} and D={xeS:x2e -S~}. If S Π H(l) = φ then
S = C [J D. Since C and Z) are closed subsets of S and S is connected,
if both C and D are non-empty then C Π DΦφ. But if a e C n f l then
x2eS~ Π (— S~) so #2 = 0 which is a contradiction. Therefore either
S — C or S = D. If x is sufficiently near e2 then x2φ — S~ while if x
is sufficient near — elf then x2φS~. Therefore H(ΐ) Γ\ S Φ φ so that at
leat one component of H(l) is contained in S—that is to say, between
Q and —Q, A similar argument shows that one component of H{1) is
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contained in — S. Since H(l) can have at most four components it must
in this case have exactly four. Therefore precisely one component of
H(l) lies between G and — G.

Conversely, suppose precisely one component of H(l) lies between
G and - G ; i.e., -G = C2. Now -CXΦG and -^Φ-G so - d = C3.
Therefore there exists xeE which is separated from — x by R. The
proof of the theorem is complete.

Under the hypotheses of the previous theorem the relative positions
of —el9 x1 and — e2 are known and according to this theorem (#i]<(—ex\.
(Recall that xx is the member of Cx such that x\ = 1). However, which
of (xxeλ\ and (xλe2\ occurs first has not yet been determined. Since xτG
forms the component of £r\[ίr1e1] U [x±e2] which does not contain G, (xj is
contained between (x^] and {xxe2\. Let e be the member of the pair
{e19 e2} such that (x±e] < (xj. Let S denote the sector of E — [xxe] U (βi]
which contains G. Let A be an arc from e2 to x1 which is contained
entirely in S U {e2}. Then e2A is connected and cannot contain any
elements of H(l) U {0}. Since e2 e e2A, e2A c D1 so {xλe2] < (xx] and e — e2.

The two rays (βx] and (x^i] are distinct and are interchanged
under multiplication by xlm Since x^xfi) = G, each of the sectors of
^\t ei] U [̂ î i] is mapped into itself by xλ and therefore each of these
sectors contains a ray of fixed points of xlm Therefore there exists a
(non-zero) point z e Dx such that if y e Dλ then xxy = y if and only if
2/ e [2]. Either (xxe2\ = Dx = (β2] and a ^ = β2, or 2 is in the interior or
Dlm Now in the proof preceding Theorem 4.2 (which only used hypotheses
available here) it was shown that if x e Dx then x2 e Dλ. Now xλz

2 =
(xxz)z = z2 so 22 G («]. Therefore z2 = te for some ί > 0 so z\t is an idem-
potent in Dx which is different from e2 unless xxe2 = e2, and which is
different from zero in any case. In a similar fashion it can be shown
that A contains a non-zero idempotent which is different from ex unless
xβx = e1# (Where ^3 e C3 and 3̂ — 1).

Therefore, if £7 has no nilpotent element, x Φ 0 implies as =£ — x and
if J57 has exactly four idempotents then xλe2 — e2 and x5ex = e1# Further-
more, since — x1 = x3, we have #3β2 = — β2 and x1e1 = — a?1# Thus

# = G ~ U (-G-) U Ci U C3

and it is now an easy matter to construct an isomorphism from E onto
R x R. (For this purpose, make use of Corollary 3.2.1).

There are several alternatives to the hypothesis that E contains
exactly four idempotents. For if L contains more than one element
and it is assumed that either H(l) is dense in E or L{J(~L) is an ideal
in E then xλe2 = e2, xxex = — elf etc. and the conclusion that E is isomor-
phic to R x R follows as before. In virtue of the existence of non-zero
idempotents in Dx and D4, another alternative is to assume that x2eG~
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for all xeE. Finally, since (xxe2)
2 — e2, (x&f = el9 etc., it may be as-

sumed that xφL U — L implies x2φL U (— L). We have proved the
following result.

5.2 THEOREM. If E is a real commutative semigroup without nil-
potent elements and if xΦO implies x Φ — x then the following condi-
tions are equivalent:

(1) E is isomorphic to R x R;
(2) E has precisely four idempotents;
(3) L contains more than one element and H(ϊ) is dense in E;
(4) L contains more than one element and x e E implies x2 e G~;
(5) L contains more than one element and L [j (— L) is an ideal

in E;
(6) L contains more than one element and x$L U (— L) implies

x2$L U ( - L ) .
The examples in § 6 show that none of the conditions (2)-(6) of the

previous theorem implies E is isomorphic to R x R if the condition that
x Φ 0 implies x Φ — x is simply dropped. However, a certain weakening
of this condition is possible.

Our proof of this fact makes use of Theorem 5.2.

5.3 THEOREM. If E is a real commutative semigroup without nil-
potent elements and if xe L\{0} implies x Φ — x then conditions (l)-(4)
of the previous theorem are equivalent.

Proof. Suppose E contains precisely four idempotents. Then L
contains two non-zero idempotents ex and e2. By hypothesis, — eλ Φ eγ

and — e2 Φ e2. If (—ej < (— e2] then all of the hypotheses of the pre-
vious theorem are satisfied so E is isomorphic to R x R.

Therefore suppose (— e2] < (— βj. By theorem 5.1, either the sector
between (e2] and (— β2] or the sector between (— ej and (e^ is devoid
of members of H(l). There is little to distinguish between the two cases
so we suppose the former holds; that is, Dt Π H(ΐ) = φ. Since the rays
(—ej and (ej are interchanged under multiplication by —1 and — (—G)=G,
there is a (non-zero)point ze Dλ such that if y e Dlf then —y — y if and
only if y e [z]. As we have seen before, z2 e Dλ, so Dι contains a non-
zero idempotent; this idempotent must be distinct from e2 since — e2 = e2.
But this means E has a fifth idempotent, which is a contradiction. Hence
(—ej < (—e2] and (2) implies (1).

If L contains more than one element then E has at least four
idempotents. If E contains five idempotents then there is an idempotent
eφG' U (—G"). Therefore P~e and Rex U Re2 divide E into five com-
ponents whose union contains iί(l). But if(l) can have at most four
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component so H(l) is not dense in E. Therefore (3) implies (2).
Assume that (4) holds. Then G~ has four idempotents so since x e E

implies x2eG~ there are no more. Therefore (4) implies (2). The re-
maining implications are obvious so the proof of the theorem is complete.

It is to be noticed that conditions (5) and (6) of Theorem 5.2 are
not listed in Theorem 5.3. Example 4 of § 6 shows that (6) cannot be
included while Example 5 shows that Condition (4) cannot!

5.4 REMARK. The previous two theorems yield criteria on E in order
that it be isomorphic to R x R under a sort of canonical isomorphism—
namely an isomorphism in which R maps onto the diagonal of R x R.
Conditions that there exist some isomorphism can be made somewhat
weaker. Assume that H(l) is known to have four components G, Clf C2

and C3 where, as usual, Cx < C2 < C3. Which one of these last three
components is — G depends on the particular choice of the isomorph of
the real numbers in the beginning. For — G is simply the component
of H(l) containing — 1. Set R{ = {Px%) U P~ where x{e C{ and x\ — 1.
Obviously R{ is a sub-semigroup of E which is isomorphic to R. There-
fore by replacing a given choice of R by another (isomorphic) choice, it
becomes apparent that every such semigroup on E in which — G is a
given d is isomorphic (under the identity isomorphism) to one in which
—G is Cjf i, 3 = 1, 2 or 3.

5.5 THEOREM. If E is a real commutative semigroup without nil-
potent elements in which for at least one x e L, —x Φ x then the follow-
ing conditions are equivalent:

(1) E is isomorphic to R x R;
(2) E has precisely four idempotents;
(3) H(ϊ) is dense in E;
(4) x G E implies x2 e G~.

Proof. The hypotheses imply that L has two non-zero idempotents
eλ and e2 and we may suppose —eιφeι. If — e2 Φ e2 then the hypo-
theses of Theorem 5.3 are satisfied and the conditions are already known
to be equivalent.

Suppose e2 = — e2 and let S be the component of E\Rex which does
not contain G. There is x e S such that — x = x. Therefore — x2 = x2

so x2 e (e2] U (x\.

If x2 e (x] then S contains an idempotent so (2) cannot hold. If (4)
holds then x2 e G~ so x2 e (e2]. Thus, if either (2) or (4) holds thenx2 e (e2].

Therefore suppose x2e(e2]. Let C denote the sector of E\([x] U [βj)
which does not contain G. An argument analogous to that given in the
proof of Theorem 5.1 shows that there is y e C such that y2 e G[j (—G).
It follows that H(l) has a third, and therefore a fourth, component.
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Under the present circumstances, these components can be labeled G,
—G, C2 and C3. Let x2 be the member of C2 such that ίc| = 1. Set
R2 — P~ Ό (Px2). Replacing R by R2 yields a reals semigroup on E
which satisfies the hypotheses of Theorem 5.3. Conditions (2) and (4)
are unaffected by this change. Therefore (2) implies (1) and (4) implies
(1).

If H{1) is dense then H{1) Π S Φ φ so again we see that H(ΐ) has
four components. Hence replacement of R by R2 as above yields a
semigroup on E satisfying the hypotheses of Theorem 5.3. Therefore
(3) implies (1).

The remaining implications are obvious.

6. We conclude with several examples. In addition to being ex-
amples of the various classes of semigroups mentioned in the introduc-
tion, they reveal a certain amount of indepencence among the conditions
in Theorem 5.2.

It is convenient, in one way or another, to regard E as being co-
ordinatized in the usual way. Thus we can speak readily of such terms
as the y-axis, the open or closed first quadrant, etc.

All details concerning the proofs that the various multiplication are
continuous and associative are omitted. However, many of the missing
details are contained in the simple proof that the following canonical
procedure for extending certain semigroups works: Suppose that r is an
involution on E and that S is a closed sector in E so that r(S) Π S is
either one of the bounding rays of S or the origin, and that r is the
identity on r(S) Π S. Assume that S is endowed with the structure of
a commutative semigroup so that r(S) Π S is a subsemigroup. Let
Γ = S U r(S). Define multiplication on T as follows:

(1) if x, y e S then xy has its original meaning;
(2) if xe S, ye r(S) then xy = yx = r(xr(y));
(3) if x, y e r(S) then xy = r(x)r(y). Then T is a commutative

semigroup containing S as a sub-semigroup. We shall refer to this
semigroup as the extension of S to T by r.

All of the following examples satisfy condition (*).

EXAMPLE 1. Let G U L be the semigroup "II b ." of [5; p. 387]
but regard it as embedded in the closed first quadrant (multiplication
no longer has any simple relation to the coordinates). In other words,
we have a commutative semigroup with identity on the closed first
quadrant so that G is the open first quadrant, L is the union of the
nonnegative x and ?/-axes, U = 0 and G~ has a sub-semigroup P~ which
is isomorphic to the multiplicative semigroup of nonnegative real num-
bers, and 0 € P-. Let r(x, y) = (-y, —x) and let S = G U L. Then T =
r{S){jS is the union of the first and third quadrants, and
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Extend S to T by r. Next identify each point (0, —y) with (y, 0) and
(—x, 0) with (0, a?). The result is a semigroup on the plane which may
be visualized as follows: G is the upper half-plane, — G is the lower
half-plane, R is the line y — x and L — Re where β is a point on the
positive x-axis.

In Example 1, every condition listed in Theorem 5.2 (except condition
(1), of course) is satisfied except the condition on nilpotent elements;
H(l) has two components.

EXAMPLE 2. Let G U L be the closed first quadrant with coordinate-
wise multiplication. Let S = G U L and let r be the involution given
in Example 1. Let T = S U r(S) and extend S to T by r. Identify
points as in Example 1. The result can be pictured as a semigroup on
a plane in which G is the upper half-plane, — G is the lower half-plane,
R is the line y — x and L = Reλ U Re2 where eλ = (1, 0) and e2 = ( — 1, 0).
Both eλ and e2 are idempotents but —e1 = e1 and — e2 = e2.

In Example 2, all of the conditions listed in Theorem 5.2 (except
Condition (1)) are met except the stipulation that xΦO implies — xφx;
H(ϊ) has two components.

EXAMPLE 3. Let G U I ' be the closed first quadrant under coordinate-
wise multiplication. Let P = {(x, x): x > 0}. Let A be the arc of the
unit circle which lies in the closed fourth quadrant. Let eλ = (1, 0) and
z = (0, —1). Assume that A is endowed with the structure of a com-
mutative semigroup so that ex is the identity and z is a zero for A.
Regard the closed fourth quadrant Q as the product of A and P~ (with
all points Oα, aeA, being identified with the origin). Let S = G[jL[jQ
and extend multiplication to L as follows: if g eG [J L, x eQ then
gx = xg = (gfβi) .̂ Observe that (^β^x is well defined since gex e P~βi, ex

is the identity on Q and multiplication of any xeQ and teP~ is the
ordinary coordinate-wise product of x and ί. It is a simple matter to
check that S is a commutative semigroup containing G U L as sub-
semigroup. Let r be reflection about the ?/-axis. Then £7 = S U r(S»)
is the plane and the extension of S to E by r yields a real semigroup
with the following properties:

(1) E has no nilpotent elements;
(2) H(ϊ) has two components G and —G and G~ Π (—G~) is a ray;
(3) H(l) is not dense in E.

EXAMPLE 4. Let G[jLbe the closed first quadrant under coordinate-
wise multiplication. Let P be as in Example 3 and let eλ — (1, 0),
e2 = (0,1). Let r be the involution r(x, y) — {—y, —x). Set S = G U L
and T = S U r ( S ) . Extend S to T by r. Thus - e 2 = (-1,0) and
—ex = (0, —1). Let Qt and Q3 denote the open second and fourth
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quadrants respectively. Let A{ be the arc of the unit circle contained
in Qi, i = 1,2. Let zt e A{ be the point on the line y = — x in Q{.
Assume that A{ has the structure of a semigroup so that e{ is an identity,
%i is a zero and (—e^)2 — eίf i = 1, 2. Regard Q̂~ is the product of A<
and P " , indentifying all points Oα,'αeA {, with the origin as usual.
Extend multiplication to E as follows: if g eG~ and x e Qt then gx =
%g = (ge^x as in Example 3. Define multiplication by —1 to be reflec-
tion about the line y = — x and if g e — G, x e Qiy then

gx = xg = — ( — gx) .

Finally, if xeQu y eQ2 define xy — yx = 0. Then i? is a real semigroup
with the following properties:

(1) E has no nilpotent elements;
(2) H(l) has two conponents G and -G and G Π ( - G") = {0}.
(3) # 0 L U (— L) implies x2$L U (— L). This example shows that

in the proof of Theorem 5.1 the condition that R separate β2 and — β2 is
essential.

EXAMPLE 5. Let H denote the semigroup on the closed right half-
plane defined as follows:

(1) xy is the ordinary coordinate-wise product if either x or y be-
longs to the first quadrant; otherwise

(2) x = (xu x2), y = (yu y2) with x2 <: 0 and y2 ^ 0; define

xy = (xxy19 - (a?a|/2)) .

Let 2 be a point in the fourth quadrant on the line y — — x and let
e2 = (0,1). Let C denote the closed sector bounded by [z] and [e2] which
contains the first quadrant. Shrink the set H to coincide with C and
let S' be the semigroup induced on C by that on H. Let r ' denote re-
flection about the line y = - £ and T' = S' U r'(S'); extend S' to T'
by r'. Shrink T' to coincide with the closed right half-plane and let S
denote the induced semigroup. Finally, let r be reflection about the
?/-axis. Let T = S U r(S) and extend S to T by r. Choose i2 to lie in
the first and third quadrants. Then E — T becomes a real semigroup
with the following properties:

(1) E has no nilpotent elements;
(2) L contains more than one element and x e L\{0} implies x φ — x;
(3) L U (— L) is an ideal in E. However, E is not isomorphic to

R x R.
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