THE SOCHOCKI-PLEMEL]J FORMULA FOR THE
FUNCTIONS OF TWO COMPLEX VARIABLES

JERZY GORSKI

Introduction. In the case of one complex variable the following
theorems are well known [3]:

1. Let C be a rectifiable oriented Jordan arc or curve and f(¢) an
integrable function defined on C, analytic at a point 2, € C (in case C
is an arc we suppose 2z, is different from both endpoints of C). Then
the function

1 f©
F(z) = ___S SO 4
2 27 Jo & — 2 3
possesses the left and right limit Fy(2,) and F(z,), respectively, when
the point ¢ approaches to the point 2, remaining permanently on one
side of C and the relation

Fyz) — F(2)) = f(z0)

holds.
2. Under the same conditions concerning the curve C suppose f(¢)
satisfies at every point &, € C the Holder condition

IF@O—-rfE)l=Meg—&l*, M>0, O0<asl.

Then F'(z) possesses at almost every point z, € C the left and right limit
when the point ¢ approaches to 2z, along a non-tangent path to C and

_ 1 [ SO gyl
Fie) = 5| ZEL a4 55

Fe) = 5o LE ag — L s

27y Jog — 2,

The improper integral on the right hand side is taken in the Cauchy
sense.

The aim of the present note is to extend these theorems to the
theory of functions of two complex variables.! We start with Bergman’s
integral formula [1], [2] which generalizes the Cauchy formula for the
case of functions of several variables. It would be very interesting to
obtain similar results starting with other integral formulas which are
similar to Bergman’s formula e.g. A. Weil’s formula [6] or later forms

Received May 12, 1960.
1 Analogous results about the limits of exterior differential forms have been obtained
by C. H. Look and T. D. Chung, see [4].
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of it, see [5].

The case of a bicylinder. Let D be a bicylinder bounded by the
hypersurfaces

h—en=0, |al=1

N e [0, 2
zz—e“‘2:0, |21|§1 J [ 77?]

and let f(&,¢.) be an integrable function defined on the distinguished
boundary surface d of D
(7 = 6“1) X (2, = eikz) .

1. Suppose that f(&,, ¢,) is analytic at a point 2,20 D. We con-
sider the function

__1 f(62)
) P =~ g || g e

Since f(£,¢,) is analytic at the point 22, 2e d, there exists a small
bicy_linder B which contains 2!, 2} inside and such that f(&,, ¢,) is analytic
in B. B is bounded by the hypersurfaces

2 — 22— rets =0, =7 .
e i oo, >0, Mmmel0,2n], j=1,2.

2, — 20— rett =0, [z, €7 .
Suppose that the point z,, 2z, belongs to DB, the intersection of D

and B. Then using the integral formula for the function f (¢, £.) and
the domain DB we obtain

__ L £ 2
@ S = - ey

= T ha e ™ T Ve ™ T V)
47 JaBlas 47? JayBJlass Ax? Jagglas’

where d,, j =1, 2, 3,4 denotes the positive oriented circle z, — e** =0
and z, — 2 — reet*2 =0, j =1, 2, respectively. (The integrands missing
in the formula (2) are equal to that of the first integral.)

From (1) and (2) results

(3) F(z,2)= — 1 S a4, S LG, b d§2__—1—galﬁgd2—a25

47* Ja-aiB & — 2 Ja § — 2, 4z’

il s T sl
+ f(2, 2) + AT Sdlg d4§+ Ar? Jas d3§+ 4z Jayilas

Let 2,, 2, approach to the point 2%, 23 remaining inside the bicylinder D,
then
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[z, 2) = f(a1,2)
(4) _1_8 S [ (&, £)dEdE, 18 S [ (& £)dEdE,

47 Vap)as (6, — 2)(Cs — 2)) AT Jalas (6 — 26 — 2)

Using the Cauchy formula for the domain which lies on the z,-plane and
is bounded by the curves d,B and d,B, we obtain

(4') S f(glf &2) dC —_ 27T'Lf(2:1, Z) . S f(gl, gz) dé—

4B ?2 - 52 — 2

When the point z, 2, tends to 2!, 25 it results from (4')

hm S f(tu 52) dé‘ — 271'7,f(é’1, 0) S f(é’u §2) dé’

0 ,0
21,29727,2, dzB é’z — d4B é’2 2

The convergence is uniform with respect to & € d,B, therefore,

(5)  lim —1—5 S SEu &) g,

amodd) AT JayBlags (& — 2)(L2 — %))

— % 4B 52 23

In a similar way we obtain the formula

(6) lim 1 Sdgg S8 g,

zl.zz—’zg,zg 47 auB (é‘l - zl)(§2 - zZ)

433 S 4t . {2nif(z?, &) — S Ll dé’}

*lags &, — 25 &oH— 2

For the first and second term on the right hand side of (3) we
obtain the limits (z,, 2, € DB):

(7’) lim 0{ 1 g d§1 S f(é‘v §2) dt}

2y, zz—vzg > 2 47'[,' a,—a; B é‘l — 21 day é‘z —_ zz

= {_ _1_gd1 . é‘ldg {me(g‘l, 2) — S S &) dé‘}

4z &2 — 23

L] S ge)

ay—ayB Cz - zz

and

@ tm [ L [ St g)

2,99 20,2) A7* JaB & — 2, Jay-a,B &y — 2,

43:2 Sdz a7 ;2 {me (21, &) — S f;? le) dg}

From (3), (4), (5), (6), (7') and (7”) results
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(8) Fy&, )= lim Fl(z,2)=f(22) +—— S S ?) g
21,2920,2) 271 Jay-aB-a38 & — 2
21,29€ D
_1,8 S@EE) ge 1 S de,
2mt Ja-ap -0 &, — 25 47* Ja-a8-a8 £ — 28

| St g

ay—aygB—a8  §y — 2

When the point z,, 2, does not belong to D and tends to 2!, 23, we obtain
three values for the exterior limit Fy(2%, 23), k =1, 2,3, (in this case

we need to put 0 instead of f(z, 2,) in (2) and similar changes ought to
be made in (7') and (7"))

Fu(z,2) = lim F(z,2)

23,2920, g
Jz01>1, lzg]>1
L | JEut g
4r® Jay-a;5-a8 &, — 20 Jag-ay5-a,8 & — 23

Fu,2z) = lim F(z,2,)

ZI,ZZ—DZg,Zg
1211<1, lagl>1
L &% | FEnt) g,
(9) A7 Ja—a\p-a8 & — 23 Jag-ayB-aB &y — 25

L FEE) g

27wt Jag~ap-aE £, — 2,

Fiy(z,2)) = lim F(z, 2)

21,22—’20,20

j21>1, 1:12\21
47* Jay—ap-a;8 &) — 29 Jag—asB-a,8 &, — z“
L] £ g
27t Ja—aB—azB & -2
Therefore
Fiet, #) — Fuldhy &) = £ &) + == SCu?) g,
27t Ja;—a,B—ay8 :1 — zl
b B8 g
omi Jag-ap-a 5 &y —20
P, #) - P d) = faa + 50| - LEed gy
T a;B—a4B 2:1 — z1
F@ ) — Pl ) = @) + 5| LE8) g
27t Jag-agB—a3 &, — 29

REMARK. The formulas (10) can be transformed as follows.
According to the well-known formula for the function f(&, 2) of
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one complex variable &, which is analytic at the point &, = 2, we have

(see [3])

("2) 0y — 1 f(gn zz) 1 f(glr 22)
6 = lim | L&D dn— RS s
lz1<1

Suppose the radius 7, of the circle d, tends to 0, then

1 f(§1’ 2) _ (z) 0y
lim o G E) ag, = Gebe) — F @A)
Similarly, we have
lim —— 1 S f(zu Cz) dg, = G(z V(@) — f(2, 7).
790 24 Jag—asB—a,B gz

On the other hand, we have

rmo 28 Ja-ai-as  — 2] e 2T e & —
1z11>1
lim 1 S PACGTEOR dg, = G(zl)(zO) = lim 1 : g [z, &) de, .
r0 2700 Jeg—agB-aB £, — 2 2g2) 27y Jay £, — 2,
lz91>1
Therefore,

Fy(z, ) — Fu(?, 2) = G#(2) + G (%))
(= f(@, &) + G () + Gr@))
10%)  Fy@, 2) — Fiu(@, 2) = G (), (=&, 2) + G2 ()
Fi@,2) — Fiu(#,2) = G @), (=1, 2) + G(@) .
2. Suppose now that the function f(¢, ¢,) is not analytic at 27, 23
but satisfies the condition

(11) |G &) — f@,20) | = M-[& — 22|+ & — 2™,
M>0,a,>0,j=1,2.

We have
— 1 f(gn §2) _f(zu 22)
(12) Flay2) = = || ZEBL O dcar,
1 f(&, %)
47 Sgd (é’l - zx)(gz - 22) d:1d§2 -

Since f(z!, 2}) is analytic, we can apply the formulas (8) and (9) to the
second term of (12).
According to the assumption (11) the improper integral
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0 A0\ — _ 1 f(é’l,é‘z)—f(zﬁ,zg)
T = - g || fp g ases

exists. Let p,(z;, d;) be the Euclidean distance of the point 2z, from the
circle d;, 5 =1,2. We shall show that the limit

3 — : _ 1 f(§1, §2)_f(z(1)y Zg) —_ 0 A0
lim T, z) = tim |- L] LEL) TS dran) = g, 2)

21,22—V21,Zg 21.22—*21,23
exists when the point z,, 2, tends to 2%, 2% in such a way that the rations
|z, — 27| )25, dy), 7 =1,2, are bounded, i.e.,

(13) loy—al g A>0,j=12.
042y, dy)

In fact, we have
_ 0 A0y — 1 [f(glr é‘2) - f(Z?, Zg)]
e, 2) = I 2 = — || L m

. (€, — 2D — 2) — (& — 2)(8 — 25)] d
(€ — 2)(8: — 2) Gulls

== Vo uaabas * Vsl * sl
47 a,B )a,B dy—d B JayB a,—a;B Jay—d,B dg—dyB Ja B

(the integrands missing in the formula (14) are equal to that of the
first term). The third term on the right hand side tends to 0 when
2, 2, — 2, 25. The first term can be written in the form

(15) B -Zliz—gdll;gdzg [f((él’fi?)?é’{(jg’zgg)]
A

Suppose the radii r,, j = 1, 2, of the bicylinder B are so small that for
¢,ed;B, =1,2, we have |{, —2}| =8, where 8§ > 0 is an arbitrary
fixed number. Let z,, 2, satisfy the condition (13), then using (11) we
obtain

' — _1‘___5 _g . Lf (&, fz) — f(z, 2]
4n* Jayilap (& — 208 — 2)
. .{zl-—zﬁ’_‘_zz—zg <1+z‘—z?>}d§2d§1

&H— 2 £ — 2, 1— &

Iy |dg, ]| dg, | < const. 5o
i |6 — A6 — A

g]~Mm+Aa+mﬂ
47?

Therefore, for sufficiently small fixed 8 > 0 and z,, z, sufficiently near to
2%, 23 the first and third term on the right hand side of (14) are arbitrary
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small. Similarly, the remaining two terms of (14) tend to 0 when & — 0.

For the difference between the interior and exterior limits of F'(2,?,)
we obtain the same formulas (10), (10*) assuming that 2,2, tends to
2}, 2) in such a way that the conditions (13) are satisfied.

The interior limit Fy(z}, 2%) is equal to J(z?, 2%) plus the terms of the
right hand side of (8). Similarly, we obtain three values of the exterior
limits F),(z2, 29, 7 =1, 2, 3, adding J(z, 2)) to the terms of the right hand
side of (9).

A general domain with the distinguished boundary surface. Sup-
pose the given domain D is bounded by three* analytic hypersurfaces
(for definitions see [1], [2])

aj(zlr 2y /\‘j) =0, j = 1: 2’ 3 ’

and let 2%, 2% be a fixed point which lies on the part of the intersection
d,, of the hypersurfaces @,(2;, 2,, M) = 0, @y(2, 25, \,) = 0 which belongs
to the boundary of D. We assume that 2,2} does not belong to the
hypersurface @.(z, z,, »y) = 0.

1. Let f(z, 2, be a continuous function defined on the distinguished
boundary surface d of D, analytic at the point 2!, 2. We consider the
function F'(z, z,) defined by Bergman’s integral formula’® |2]

— 1 [, &)
1 F 1y ®3) — T
( 6) (Z Z) 471:2 Sgdlz (;1 _ 21)(§z _ zz)
. {@1(219 é’2 1\1)@2(21, %) N2) _ @1(z1y (23 A’1)qu(zly &y )\:2)} dé’ d{z
(2, 2, Mo, 20 \) ’

~ 3l
4:71.2 d13 4:7[:2 d23’

2, 2, lies outside @,(z,, 2, N;)) =0, 7 =1,2,3, and d,, denotes the part
of intersection of the hypersurfaces @,(2,, 2, \y) =0, @u(2y, 2, \y) = 0
which belongs to the boundary of D.

Suppose the analytic hypersurface @,(z, 2, \,) = 0 intersects the
hypersurfaces @,(z,, z,, M) = 0, @,(2,, 2., \,) = 0 and define a new domain
Bc D which is bounded by segments of @,(2;, 2, M) = 0, @y(2;, 2, \y) = 0
and @z, 2, \,) = 0. Further, suppose that the point 2{, 25 does neither
belong to the intersection of @, =0, @, = 0 nor to that of &,=0, ¢, =
0, and lies on the boundary of B. Let B be sufficiently small so that
f(&, &) is analytic in B.

Let 2, 2, be an arbitrary point in B. Using Bergman’s integral

2 For simplicity we assume that the number of the boundary surfaces is 3, but the con-
siderations are valid for the general case.

3 The integrands of the second and third integrals equal to those of the first with @
and @ replaced by @, ®; and @, @5, respectively.
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formula representing the function f(z,,?,) in the domain B, we obtain
(comp. footnote 2)

_ _;[__ f(gly §2)
A7) fzy 2) = 472 SSME (& —2)(& — =)

o 021 &y M)Po(2sy 200 a) — Pulr 2 M)Puls Eun M)} e e
Dy(21 20 M)Po225 225 M)

_ 1 SS _ 1 SS
4r? ay,B 47 9B )

Since SS - SE 4 ” it follows from (16) and (17)
ayoB dig—dyeB

a1y

(18)  Fla,2) = — L gg ¥ Fle, )

2
4z dig—djeB

TR e =l | |
* 4z* JlayB * 4z Jlays 4z Jlay, 47* )y '

If the point =z, 2, lies outside the domain B and the hypersurfaces
¢,=0,5=1,--+,4, we ought to substitute 0 for f(z,2,) in (18).

Consider the integrals on the right hand side of (18). As long as
the point 2, 2, does not lie on any of the hypersurfaces @,(z,, z,, \;) =0,
Jj=1,2,3,4, we have @,(z,2,\;) #0. According to the assumption
under which the Bergman integral formula was proved (see [2]) the
functions

19) ‘;l’jk(zu 2y &1y &ay Ny, i)
— ¢j(zlr é’ZF )’j)ﬁk(zli zzy >"k) — ¢j(zu zZ? >"j)¢/¢(zu é’zr >"Ic)
(§1 - zl)(§2 - 22) ’

5, k=1,.-+,4

are continuous provided that &,¢, e€d and 2,2, does not lie on the
distinguished boundary surface d of D. (It can happen that & =2, or
¢, = 2, but the case &, &, = z,, 2, is excluded.)

We denote by M and )\ the values of the parameters )\, and X,
which correspond to the point 22, 22, i.e., @.(z}, 25, A\}) = 0, @,(2}, 25, \5) = 0.

Let 2, = 2}, #z, = 2, then the integrals in (18) are improper since
the factors @7(z}, 23, \,) and @;%(z), 23, \;) are indefinite for N, = \{ and
A, = A, respectively. The functions r,.(2}, 23, &1, &2, My, Ay,) are continuous
for (¢, &) edy — duB + d B + d,, B + dy; + dy; (according to Bergman’s
assumption) because the point &, &, does not coincide with 2}, 25.

In general, the integrals on the right hand side of (18) are divergent
for (z,, z,) = (2}, 23).

Suppose the functions @z}, 25, \)), 7 = 1, 2, satisfy the conditions

19*) D2, 25, Aj) | = ANy — NG|, A>0,0<a<1l,
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then F'(2), 2) exists. We denote by p(z,, 2,; 2%, 25) the Euclidean distance
between the points z,, 2, and 2}, 2} and by 0,(z,, 2,;; ?,) the distance of the
point z,, 2, to the hypersurface @, =0. If the functions @,(z, 2, \,),
7 =1, 2, satisfy the conditions

(20) @4z 20 M) | Z Any — N |7, o<a<i,

for z,, 2, belonging to 4, where 4 is defined by the inequalities

(20%) 4:0 < LEv2i2 %) o pp M>0,j=1,2,
101(217 29y Q)j)

then

(21) lim F(zly 22) = Fi(z?’ Zg) .

zl,z2—>zl,zg
21,29€ D4
The proof of (21) is similar to that given in § 1.
Similarly, if the point 2, 2, lies outside the domain D and tends to
20, 25 there exists the exterior limit

: _ 0 40
(21%) ) zhg}] . F(z, z,) = Fi(z), 23)
159755
21.29€D; 21,29€4

provided that (20) and (20*) hold. The difference of both limits is equal
to f(21, 23):

(22) Fi(z, ) — Fu(zi, 20) = f(2, 2) .

ReEMARK. Under the conditions (20), (20*) there exists one interior
and only one exterior limit of the function F'(z, 2,) for 2,2z, — 2}, 25.

2. Suppose now the function f(&, &) is not analytic at the point
2}, 2y but satisfies the condition

(23) fCn &) —fRL ) =Alg — 28— 2], A>0.
The function F'(z, 2,) can be represented as follows

@) Fez)= 3 — || 1) — FEh D) + £ 2)
ajg

1=5<ks3 47

. Nib\jlc(zly %9y gly gz; )\’jy >\'I¢) d§1d§2 .
D (21, 23y M) D24, 23y \s)

Since f(2¢, %) = const. is an analytic function, we can apply to the latter

terms in (24) the results obtained in § 1. Under the conditions (20),

(20*) there exists the exterior and interior limit of those terms.
Consider the first term in (24). If the function
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W@, 28y Ery Ear ay M) = D,(21, &2 M)Po(21, 23, Ns) — Di(22, 23, M)P(21, §ay M)
(é‘x - zg)(é‘z - zg)

is continuous for &, &, € d,,, the integral

-1 [ (€1 £) — [ (20, 2D)] Y2l 23, &1y Eoy My M)
(25) 47 Sgdu @l(zg’ 2, 7\1)@2(23, 2, )\’2) d§1d§2

exists provided that @,(z¢, 2, \)) and @,(z, 25, \,) satisfy the condition
(19*). If in addition yr,(2y, 2., &1y &2y My Ag) is continuous for &, &, € d,, and
2, 2, — 2}, 2 and if @,(2,, 25, M), @2y, 25, \,) satisfy (20), (20*), there exists
the limit of (25) for z;, 2, — 2, 25. In the case where r (2, 2, &1y &y My Ao)
is not continuous for ¢, &, € d,, and z, 2, — 2%, 20 we use the condition
(23). Then the limit of (25) exists provided that z, z, — 2z, 2) under the
conditions (20), (20%).

Observe that for the difference between the interior and exterior
limit of F'(z,, 2,) we obtain the formula (22).

3. If one of the hypersurfaces @,(z, 2, \;) =0, j=1,2, depends
on one of the variables z, z,, e.g., if @z, 2,, \,) is independent from z,

(26) @1(21,22, >\’1) = zl - ¢()"1) ’

then the integrand in the first term on the right hand side of (18) can
be represented in the form

(27) W, = S (&1 E)Do(21, 209 Na) — P21y §ay M) .
(&1 — 2)(8s — 2)@y(21, 22y M)

According to Bergman’s assumption (26) is continuous for ¢,, ¢, e d, & =

2y, & #F 2. For z, =12}, 2z, =2 the integral _ in (18) and the
dl _dlzB

remaining integrals are improper. If @,(z?, 23, \,) satisfies the condition
(19*) it is sufficient to take into account the singulartiy due to the factor
(& — =)

According to (26) the first coordinate of every point &, ¢, of d be-
longs to the curve C;:z, = @(\,). Suppose, the double integral over
d;, — d.,B can be represented as follows

(28) Sgdu_augwmdgld;z

= S dt S & 8Pz 20 M) = oy £ M g
01 &1 — 2y Jlay—ay,Bl (&2 — 2)P4(21, 22y \s) '

where [d,, — oluE],2 is the projection of the set d,, — d,,B on the 2, plane.
Under the conditions (19*) assuming that
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f(glr t?)[@Z(zl’ zz’ )"2) _ @2(21! C2! )\’2)]
Dy(21 25, \y)

is analytic at the point 2}, 2} the integral (28) possesses one interior and

two exterior limits when 2z, 2z, — 2%22. Similarly, the integrals Sg and

da

SS in (18) possesses one interior and two exterior limits. »
a

“In the case where D.(21y 23y M) = 2, — PN, Dy(2y, 2oy Ny) = 2, — P(N),
we obtain the same result as for a bicylinder.

REMARK. The Sochocki-Plemelj formula (22) was proved for a
special class of domains-domains with the distinguished boundary surface.
The basic tool was the Bergman’s integral formula (16). It arises the
problem to generalize the Bergman formula for more general domains
with maximal manifold (Bergman-Silov boundary) and to extend the
Sochocki-Plemelj formula for such domains.
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