WIRTINGER-TYPE INTEGRAL INEQUALITIES

W. J. Coles

1. Introduction. The following inequalities (and other similar ones) are known:

(i) if $u'(x) \in L_2$ and u(0) = 0, then

$$\int_{0}^{\pi/2} u^{2} dx \leq \int_{0}^{\pi/2} u'^{2} dx$$
 [4];

(ii) if $u''(x) \in L_2$ and $u(0) = u(\pi) = 0$, then

$$\int_{0}^{\pi} u^{2} dx \leq \int_{0}^{\pi} u^{\prime \prime 2} dx \qquad [3];$$

in each case, equality occurs if and only if $u(x) \equiv A \sin x$. P. R. Beesack [1] has generalized these two types of inequalities by considering the underlying differential equations y'' + py = 0 and $y^{(iv)} - py = 0$ respectively, together with the equations satisfied by y'/y. In [2], a relation was obtained between the equation $y^{(2n)} - py = 0$ and the inequality

$$(-1)^n \int_a^b p u^2 dx \leq \int_a^b u^{(n)^2} dx$$

In this paper we let Ly be the general self-adjoint linear operator of even order

$$\sum_{i=0}^{n} (f_i y^{(i)})^{(i)}$$

and extend the methods of [2] to relate the equation

$$(1) Ly = 0$$

and the inequalities

(2)
$$0 \leq \sum_{i=0}^{n} (-1)^{n+i} \int_{a}^{b} f_{i} u^{(i)^{2}} dx$$

and

(3)
$$0 \ge \int_a^b \frac{1}{f_n} \cdot u^2 dx + (-1)^n \int_a^b \frac{1}{f_0} \cdot u^{(n)^2} dx$$

2. Notation and lemmas. Let $y_i = f_i y^{(i)}, v_i = \sum_{k=0}^i y_{n-k}^{(i-k)}$,

$$u_{ij} = v_{n-i}/y^{_{(j)}}$$
, and $y_{ij} = y^{_{(i)}}/y^{_{(j)}}$ $(i = 0, \dots, n)$.

.

Received August 10, 1960.

Then

(4)
$$v_i = v'_{i-1} + y_{n-i}$$
 $(i = 1, \dots, n)$.

Let $(k_0 \cdots k_n)$ be an (n + 1)-tuple consisting of 0's and 1's, such that $\sum_{i=1}^{n} k_i$ is even. Let

$$\begin{array}{ll} (5) \qquad \qquad c_i = \begin{cases} a, \ k_i = 0 \\ b, \ k_i = 0 \end{cases}; \qquad d_i = \begin{cases} a, \ k_{i+1} = 1 \\ b, \ k_{i+1} = 1 \end{cases}; \\ c_i^* = a + b - c_i \;; \\ d_i^* = a + b - d_i \;; \end{cases} p_i = (-1)^{j \stackrel{i}{\Sigma} k_j}; \quad q_i = (-1)^i p_i \;; \quad (i = 0, \ \cdots, n) \;. \end{array}$$

We now and henceforth assume that (1) has a solution on [a, b] such that

and that the $f_i(x) \in L[a, b]$, with $\int_a^b f_0(x) dx \neq 0$, and

(7)
$$(-1)^{n+i}f_i(x) \leq 0 \text{ on } [a, b] \quad (i = 0, \dots, n-1);$$

 $f_n(x) \geq 0 \text{ on } [a, b].$

LEMMA 1. We have

(8)
$$p_i y^{(n-i)}(x) > 0$$
 on (a, b) and at c_i^* $(i = 1, \dots, n)$.

Proof. By hypothesis the lemma is true for i = 1. Suppose that, for some i such that $1 \leq i \leq n-1$, the statement holds. Integrating and multiplying by $(-1)^{k_i+1}$ we have

$$p_{i+1}y^{(n-i-1)}(x) = p_{i+1}y^{(n-i-1)}(c_{i+1}) + (-1)^{k_{i+1}} \int_{c_{i+1}}^{x} p_{i}y^{(n-i)}(t)dt > 0$$

on (a, b) and at c_{i+1}^* . This completes Lemma 1.

LEMMA 2. We have

(9)
$$q_i v_i(x) \ge 0$$
 on $[a, b], > 0$ at d_i^* $(i = 0, \dots, n-1)$.

Proof. We proceed by induction on i $(i = n - 1, \dots, 1, 0)$. Now $v'_{n-1}(x) = v_n(x) - y_0 = -y_0$, so

$$q_{n-1}v_{n-1}(x) = q_{n-1}v_{n-1}(d_{n-1}) - (-1)^{1+k_n} \int_{d_{n-1}}^x (-1)^n f_0 p_n y dt \ge 0 ;$$

872

since |y| > 0 and $\int_a^b f_0(x) dx \neq 0$, the inequality is strict at d_{n-1}^* .

Now suppose that, for some i $(n-1 \ge i \ge 1)$, the statement holds. Then, integrating (4) and multiplying by q_{i-1} ,

$$egin{aligned} q_{i-1}v_{i-1}(x) &= q_{i-1}v_{i-1}(d_{i-1}) + (-1)^{1+k_i} \int_{a_{i-1}}^x q_i v_i dt \ &- (-1)^{1+k_i} \int_{a_{i-1}}^x (-1)^i f_{n-i} p_i y^{(n-i)} dt \ , \end{aligned}$$

so $q_{i-1}v_{i-1}(x) \ge 0$ on (a, b) and >0 at d^*_{i-1} . This completes Lemma 2.

3. The formal identity. Since (at least formally)

$$u_{ii} = v'_{n-i-1}/y^{(i)} + f_i$$

we have

(10)
$$u_{ii} = u'_{i+1,i} + u_{i+1,i+1}y_{i+1,i}^2 + f_i.$$

Now we use (10) and induction to derive the formal identity

(11)
$$0 = \sum_{i=0}^{n-1} (-1)^{n+i} \left\{ u_{i+1,i} u^{(i)^2} \right|_a^b$$
$$+ \int_a^b u_{i+1,i+1} (u^{(i+1)} - y_{i+1,i} u^{(i)})^2 dx \right\}$$
$$+ \sum_{i=0}^n (-1)^{n+i} \int_a^b f_i u^{(i)^2} dx ;$$

then we will justify the formal steps.

First,

so

(12)
$$\int_{a}^{b} (u'_{i+1,i} + u_{i+1,i+1}y_{i+1,i}^{2})u^{(i)^{2}}dx$$
$$= u_{i+1,i}u^{(i)^{2}}\Big|_{a}^{b} + \int_{a}^{b} u_{i+1,i+1}(u^{(i+1)} - y_{i+1,i}u^{(i)^{2}})dx$$
$$- \int_{a}^{b} u_{i+1,i+1}u^{(i+1)^{2}}dx .$$

Since $v_n(x) \equiv Ly \equiv 0$, $u_{00}(x) \equiv 0$; using (10) and (12) with i = 0,

$$0 = u_{10}u^2\Big|_a^b + \int_a^b u_{11}(u'-y_{10}u)^2 dx + \int_a^b f_0u^2 dx - \int_a^b u_{11}u'^2 dx \; .$$

Suppose that, for some k such that $1 \leq k \leq n-1$,

(13)
$$0 = \sum_{i=0}^{k-1} (-1)^{i} \left\{ u_{i+1,i} u^{(i)^{2}} \Big|_{a}^{b} + \int_{a}^{b} u_{i+1,i+1} (u^{(i+1)} - y_{i+1,i} u^{(i)^{2}}) dx \right\} + \sum_{i=0}^{k-1} (-1)^{i} \int_{a}^{b} f_{i} u^{(i)^{2}} dx + (-1)^{k} \int_{a}^{b} u_{kk} u^{(k)^{2}} dx .$$

Using (10) and (12) with i = k, and substituting for the last term in (13), we obtain (13) with k replaced by k + 1. Hence (13) holds for $k = 1, \dots, n$; with k = n, using the fact that $u_{nn} \equiv f_n$, and multiplying by $(-1)^n$, we have (11).

LEMMA 3. Let u(x) be a function such that

(14)
$$u^{(n)} \in L_2[a, b]; u^{(i)}(c_{n-i}) = 0$$
 $(i = 0, \dots, n-1)$.

(Note that (14) implies that the zero of $u^{(i)}$ at c_{n-i} is of order ≥ 1 ($i = 0, \dots, n-2$) and $> \frac{1}{2}$ (i = n-1).) Then (11) is valid.

Proof. Our concern is with possible zeros of $y^{(i)}$ $(i = 0, \dots, n - 1)$ on [a, b]; by Lemma 1, the only possible zero of $y^{(i)}$ is at c_{n-i} . Let ibe such that $0 \leq i \leq n-1$, and suppose that $y^{(i)}$ has a zero of order r at c_{n-i} . Then $r \leq n-i$. For if r > n-i then $y^{(i+k)}(c_{n-i}) = 0$ $(k = 1, \dots, n-i)$, and so $c_{n-i} = c_{n-i-1} = \dots c_1$; thus $y^{(n)}(c_1) = 0$. But, by Lemma 2, $v_0(c_1) \neq 0$ (since $c_1 = d_0^*$), and $v_0(x) = f_n(x)y^{(n)}(x)$. Thus $r \leq n-i$. Now, since $c_{n-i} = \dots = c_1$, $u^{(i)}$ has a zero of order $\geq r$ at c_{n-i} $(i=0,\dots,n-2)$, and of order $> \frac{1}{2}$ (i = n - 1). The lemma now follows, as does the fact (to be used in the proof of Lemma 5) that $u_{i+1,i}(c_{n-i})u^{(i)^2}(c_{n-i}) = 0$ $(i = 0, \dots, n - 1)$.

LEMMA 4. On [a, b], $(-1)^{n+i-1}u_{ii}(x) \leq 0$ $(i = 1, \dots, n)$.

Proof. By Lemmas 1 and 2,

$$(-1)^{n+i-1}u_{i_i} = (-1)^{n+i-1} \cdot (-1)^{n-i} \cdot q_{n-i}v_{n-i}/p_{n-i}y^{(i)}$$

= $-q_{n-i}v_{n-i}/p_{n-i}y^{(i)} \leq 0$.

Lemma 5. $(-1)^{n+i}u_{i+1,i}u^{(i)^2}|_a^b \leq 0$ $(i = 0, \dots, n-1)$.

Proof. Since $c_j = d_{j-1}^*$,

$$(-1)^{n+i} u_{i+1,i} u^{(i)^2} \left|_a^b = (-1)^{n+i+1+k_{n-i}} u_{i+1,i} u^{(i)^2} \left|_{a_{n-i-1}}^{c_{n-i}} \right|$$

Evaluation at c_{n-i} gives zero, and

$$(-1)^{n+i+k_{n-i}}u_{i+1,i} = -q_{n-i-1}v_{n-i-1}/p_{n-i}y^{(i)} \leq 0$$

on [a, b] and so at d_{n-i-1} .

4. The inequality. We now state

THEOREM 1. Let $f_i(x) \in L[a, b]$ $(i = 0, \dots, n)$, with $\int_a^b f_0(x) dx \neq 0$. Let $f_i(x)$ $(i = 0, \dots, n)$ satisfy (7), and let y(x) be a solution of (1) which satisfies (6). Let u(x) satisfy (14). Then

$$(2) 0 \leq \sum_{i=0}^{n} (-1)^{n+i} \int_{a}^{b} f_{i}(x) u^{(i)^{2}}(x) dx .$$

Further, equality obtains if and only if $u(x) \equiv cy(x)$ and (6) is modified to make $q_i v_i(d_i) = 0$ $(i = 0, \dots, n-1)$.

Proof. The Theorem follows immediately from the lemmas, except for the last statement, which follows from the fact that equality obtains if and only if $u^{(i+1)}(x) \equiv y_{i+1,i}(x)u^{(i)}(x)$ $(i = 0, \dots, n-1)$ and $v_i(d_i) = 0$ $(i = 1, \dots, n)$.

5. The reciprocal inequality. We now derive a set of inequalities which includes (3); we prove

THEOREM 2. Let the $f_i(x)$ $(i = 0, \dots, n)$ and y(x) satisfy the hypothesis of Theorem 1; in addition, let $f_i(x) \equiv 0$ or $f_i(x) \neq 0$ on [a, b] $(i = 0, \dots, n)$. Let u(x) satisfy

(15)
$$u^{(n)} \in L_2[a, b]; \ u^{(i)}(d_i) = 0$$
 $(i = 0, \dots, n-1)$.

Then, for each k $(1 \leq k \leq n)$ such that $f_{n-k}(x) \neq 0$,

(16)
$$0 \ge \int_a^b \frac{1}{f_n(x)} u^2(x) dx + (-1)^k \int_a^b \frac{1}{f_{n-k}(x)} u^{(k)^2} dx .$$

Proof. The proof is similar to that of Theorem 1, so we present it here in less detail. Let $r_{ij} = y^{(n-i)}/v_j$; then, formally,

(17)
$$r_{ii} = r'_{i+1,i} + r_{i+1,i}v_{i+1}/v_i - r^2_{i+1,i}f_{n-i-1}.$$

Thus

(18)
$$\int_{a}^{b} r_{ii} u^{(i)^{2}} dx = r_{i+1,i} u^{(i)^{2}} \Big|_{a}^{b} + \int_{a}^{b} r_{i+1,i+1} \Big(u^{(i+1)} - \frac{v_{i+1}}{v_{i}} u^{(i)} \Big)^{2} dx \\ - \int_{a}^{b} f_{n-i-1} r_{i+1,i}^{2} u^{(i)^{2}} dx - \int_{a}^{b} r_{i+1,i+1} u^{(i+1)^{2}} dx \qquad (i=0, \dots, n-2),$$

and

$$(19) \quad \int_{a}^{b} r_{ii} u^{(i)^{2}} dx = r_{i+1,i} u^{(i)^{2}} \Big|_{a}^{b} - \int_{a}^{b} \frac{1}{f_{n-i-1}} (u^{(i+1)} - r_{i+1,i} f_{n-i-1} u^{(i)})^{2} dx \\ + \int_{a}^{b} r_{i+1,i} \frac{v_{i+1}}{v_{i}} u^{(i)^{2}} dx + \int_{a}^{b} \frac{1}{f_{n-i-1}} u^{(i+1)^{2}} dx \\ (i = 0, \dots, n-1) + \int_{a}^{b} \frac{1}{f_{n-i-1}} u^{(i+1)} dx + \int_{a}^{f$$

Repeated application of (18) to $\int_a^b r_{00} u^2 dx$ gives

$$\begin{split} \int_{a}^{b} \frac{1}{f_{n}} u^{2} dx &= \sum_{i=0}^{k-2} (-1)^{i} \Big\{ r_{i+1,i} u^{(i)^{2}} \Big|_{a}^{b} + \int_{a}^{b} r_{i+1,i+1} \Big(u^{(i+1)} - \frac{v_{i+1}}{v_{i}} u^{(i)} \Big)^{2} dx \\ &- \int_{a}^{b} f_{n-i-1} r_{i+1,i}^{2} u^{(i)^{2}} dx \Big\} + (-1)^{k-1} \int_{a}^{b} r_{k-1,k-1} u^{(k-1)^{2}} dx ; \end{split}$$

application of (19) to the last term gives

$$(20) \qquad \int_{a}^{b} \frac{1}{f_{n}} u^{2} dx = \sum_{i=0}^{k-1} (-1)^{i} r_{i+1,i} u^{(i)^{2}} \Big|_{a}^{b} \\ + \sum_{i=0}^{k-2} (-1)^{i} \left\{ \int_{a}^{b} r_{i+1,i+1} \left(u^{(i+1)} - \frac{v_{i+1}}{v_{i}} u^{(i)} \right)^{2} dx \\ - \int_{a}^{b} f_{n-i-1} r_{i+1,i}^{2} u^{(i)^{2}} dx \right\} \\ + (-1)^{k-1} \left\{ \int_{a}^{b} r_{k,k-1} \frac{v_{k}}{v_{k-1}} u^{(k-1)^{2}} dx \\ - \int_{a}^{b} \frac{1}{f_{n-k}} (u^{(k)} - r_{k,k-1} f_{n-k} u^{(k-1)})^{2} dx \\ + \int_{a}^{b} \frac{1}{f_{n-k}} u^{(k)^{2}} dx \right\} \qquad (k = 1, \dots, n) .$$

We now show that, if $f_{n-k}(x) \neq 0$, (20) is valid. Let a v_i have a zero of order r; such a zero must be at d_i . Now, $r \leq n - i$. For we have

$$v'_{j} = q_{j+1}(q_{j+1}v_{j+1} + (-1)^{j}f_{n-j-1}p_{j+1}y^{(n-j-1)})$$
;

since $y^{(n-j-1)}(d_j) \neq 0$, if $v'_j(d_j) = 0$ then $f_{n-j-1} \equiv 0$, and $v'_j \equiv v_{j+1}$. Thus, if r > n-i, $v_i^{(n-i-1)} = v_{n-1}$ and also $v_i^{(n-i)} = v_n \equiv 0$. The first of these implies that $v_i^{(n-i)} = v'_{n-1} = v_n - y_0 = -y_0 \neq 0$, a contradiction. Further, we have $d_i = \cdots = d_{i+r-1}$, so $u^{(i)}$ has a zero of order greater than $r - \frac{1}{2}$ at d_i . This suffices to justify (20). We note in addition that $r_{i+1,i}(d_i)u^{(i)^2}(d_i) = 0$ $(i = 0, \dots, n-1)$.

Now by hypothesis $(-1)^{i+1}f_{n-i-1} \leq 0$ $(i = 0, \dots, n-1)$. Lemma 4 implies that $(-1)^i r_{i+1,i+1} \leq 0$ $(i = 0, \dots, n-2)$. Finally,

876

$$(-1)^{i}r_{i+1,i}u^{(i)^{2}}\Big|_{a}^{b}=-rac{p_{i+1}y^{(n-i-1)}u^{(i)^{2}}}{q_{i}v_{i}}\Big|_{a_{i}^{a}}^{a_{i}^{*}};$$

evaluation at d_i^* gives a non-positive quantity; evaluation at d_i gives zero. Hence the inequality (16) follows from (20).

6. Concluding remarks. If we want (16) for only one particular value of k (k < n), we need correspondingly less hypotheses on y(x) and its derivatives, u(x) and its derivatives, and $f_i(x)$ $(i = 0, \dots, n)$, since only k + 1 of the functions in each of these sets are actually involved in any of the proofs.

Since $(-1)^{n-i}f_i(x) \leq 0$, from (2) we may delete any combination of terms excluding the last, and to the right-hand side of (16) we may add any terms of the form

$$(-1)^{j} \int_{a}^{b} \frac{1}{f_{n-j}} u^{(j)^{2}} dx$$
 $(i \leq j \neq k)$

Thus, e.g., (2) implies

which perhaps corresponds more obviously to (16) than does (2).

Finally, the set of allowed values of $(k_0 \cdots k_n)$ can be split into halves such that one half, together with the inequality $Ly \ge 0$, and also the other half, together with $Ly \le 0$, will produce the inequalities.

BIBLIOGRAPHY

1. P. R. Beesack, Integral inequalities of the Wirtinger Type, Duke Math. J., 25 (1958), 477-498.

2. W. J. Coles, A general Wirtinger-type inequality, Duke Math. J., 27 (1960) 133-138.

3. Ky Fan, Olga Taussky and John Todd, *Discrete analogs of inequalities of Wirtinger*, Monatshefte für Mathematik, **59** (1955), 73-90.

4. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, second edition, Cambridge, 1952.