WIRTINGER-TYPE INTEGRAL INEQUALITIES
W. J. COLES

1. Introduction. The following inequalities (and other similar ones)
are known:

(i) if w'(x)e L, and «(0) = 0, then

[“war < | "uras (4]

0 0

(ii) if w”(x)e L, and u(0) = u(x) = 0, then

Szuzdx . Sﬂu’”dx [3];

0 0

in each case, equality occurs if and only if u(x) = A sin z. P. R. Beesack
[1] has generalized these two types of inequalities by considering the
underlying differential equations y"” 4+ py = 0 and y'“” — py = 0 respec-
tively, together with the equations satisfied by %'/y. In [2], a relation
was obtained between the equation y** — py = 0 and the inequality

(= 1) pruﬂdx =< Sbu"”zdx .

In this paper we let Ly be the general self-adjoint linear operator of
even order

S g(8))(2)
i};)(f@y )

and extend the methods of [2] to relate the equation
(1) Ly =0

and the inequalities

(2) 0= (-1 fade
1=0 a
and
(3) 0= gb._l__.u?dx 4+ (_ 1)7': SDL_u(n)""dx
e fa a fo

2. Notation and lemmas. Let y; = fy'®, v; = Si-yis,
Wiy = Voify?, and y;; = y[y? (t=0,--+,m).
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Then
(4) /Ui:,vvﬁ—l-l_yn—i (izlr"'yn)°

Let (k,--+k,) be an (n + 1)-tuple consisting of 0’s and 1’s, such that
Sk, is even. Let

a, k;=0 a, ki, =1
5 L= . d,= .
(8) o = b, k=1

&
p;i=(—1"" q¢=(=1)'p;; @@E=0--+,m).

We now and henceforth assume that (1) has a solution on [a, b] such
that

(6) 2y™P(x) >0 on (a,b) and at ¢ ;
pyY* () =0 (1=2+,1m);
qvl(d;) = 0 (@=0,++,n—1);

and that the fi(z)e L{a, b], with S f@)dz + 0, and

(7) (—1)*f(x) <0 on [a,b] (E=0,---,n—1);
fa(2)=0 on [a,b].

LemMA 1. We have
(8) Y™ (x) >0 on (a,d) and at c; (G=1,-,m).
Proof. By hypothesis the lemma is true for ¢ = 1. Suppose that,

for some 7 such that 1 <7 <n — 1, the statement holds. Integrating
and multiplying by (— 1)**' we have

z

Dirn ¥V (@) = P ¥V (Cir) + (— 1)’”“8 Py (t)dt > 0

Ci+1

on (a,b) and at ¢f,. This completes Lemma 1.

LEMMA 2. We have

(9) qix) =0 on [a,b], >0 at d} (i=0,:--,m—1).

Proof. We proceed by induction on ¢ (¢ =n—1,---,1,0). Now
Vna®@) = V(%) — Yo = — Yo, SO

Qn—1Vn(T) = qn—lvn-l(dn—l) - (_1)Hk“S: (— 1)"fip.ydt = 0 ;
n—1
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b
since |y | > 0 and S fo(x)dx # 0, the inequality is strict at dX,.

Now suppose th;.t, for some ¢ (n — 1 = 7 = 1), the statement holds.
Then, integrating (4) and multiplying by q¢,_,,

Qi1¥i1(%) = ¢ 0i4(d) + (— 1)1+kigd q vt
i—1
— (=) (- D paidt,
a5—1

80 q;_; () = 0 on (a,b) and >0 at d,. This completes Lemma 2.

3. The formal identity. Since (at least formally)

Wiy = Vieia/¥Y + £

we have

(10) Wis = Wity + WirriYisns + i

Now we use (10) and induction to derive the formal identity

(11) 0 =S (= D+ faugy |

a

b
+ S Wiy, i (WY — yi+1.~;um)2da’}
[ b
+ S =] e ;
=0 a
then we will justify the formal steps.
First,

4 P 2.9 14 14 N N
S uiﬂviu“’“dnﬁ = U; :,LIMW —_ S 2%i+1.iu"b)u(z+l)dﬁf
a a

a

= Uy, WY

b b
- S 2Uisy,i4 Y, w W
a a
SO
Lo ()2
(12) g (Wisrs + Wisr, i Wi, U dw
a

12
= Uypy, U

’ + Sbuiﬂ,iﬂ(u(H” - yi+1,iu(i)2)dx
b 2
— S Wity W A
Since v,(x) = Ly = 0, u(x) = 0; using (10) and (12) with 7 = 0,

= Uy U*

b b b
’ + S U — you)’de + S Sfourde — S Uy U d2 .
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Suppose that, for some %k such that 1<k =<n —1,

(13) 0= (= D n]
=0

a

b

+ S Wigr, i (WD — yi+1,iu(i)2)dx}
fe—1 b .19 ‘b

+ 50| fude + (- 0] wade
1=0 a a

Using (10) and (12) with ¢ =k, and substituting for the last term in
(13), we obtain (13) with %k replaced by k + 1. Hence (13) holds for
k=1, ..-,n; with k = »n, using the fact that u,, = f,, and multiplying
by (— 1)?, we have (11).

LEMMA 8. Let u(x) be a function such that

(14) uw™ € Lyla, b; uV(¢,-) =0 (2=0,-+-,m —1).

(Note that (14) implies that the zero of u'” at c,—; s of order =1
t=0,+,n—2)and >% (t =n—1).) Then (11) is valid.

Proof. Our concern is with possible zeros of ¥y (: =0, «++,n — 1)
on |a,b]; by Lemma 1, the only possible zero of y' is at ¢,—,. Let 1
be such that 0 <¢<n —1, and suppose that y* has a zero of order
r at ¢,—;, Then r<mn—14. For if »>mn —4 then y“**(c,_,) =0
(k=1,-++,m—1),and 80 ¢,_; = Cy_,y = +++ ¢;; thus y™(c,) = 0. But, by
Lemma 2, vc,)#0 (since ¢,=d;), and v(x)=7(x)y"™(x). Thus r=<n—i.
Now, since ¢,_;="++=¢;, ¥’ has a zero of order =ratc,_; (:=0,.:+,n—2),
and of order >4 (=% —1). The lemma now follows, as does the
fact (to be used in the proof of Lemma 5) that u;., (¢,—)u®(c,—;) = 0
(t=0,++,n—1).

LEMMA 4. On |a, b], (= 1) uy(@) =0 (i =1, -+, n).

Proof. By Lemmas 1 and 2,

(— 1ty = (= 1" (= 1) eV D Y
=~ Qu-iVn-il D=y =0 .
LEMMA 5. (— )y, w2 <0 (1=0,+,mn—1).
Proof. Since ¢; =dj 4,
(— D"y |2 = (= DmH T Enmigy g [t

Evaluation at ¢,_; gives zero, and
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(= L)mt¥tbn=ig, o = — QuosrVpima/ D™ £ 0

on [a,b] and so at d,_;_,.
4. The inequality. We now state

THEOREM 1. Let fi(x)e L[a,b] (¢t =0,---,n), with Sbfo(x)dx # 0.

Let fix) (1=0, -+, n) satisfy (7), and let y(x) be a sol%ction of (1)
which satisfies (6). Let u(x) satisfy (14). Then

(2) 0= Sy (1) S:fi(xmm”(x)dx :

Further, equality obtains if and only if u(x) = cy(x) and (6) is modi fied
to make qu(d;) =0 (@ =0,--+, n —1).

Proof. The Theorem follows immediately from the lemmas, except
for the last statement, which follows from the fact that equality obtains
if and only if u"*V(x) = vy, (@)u () (1 =0, -+, —1) and v,(d;) =0
t=1,- -+, n).

5. The reciprocal inequality. We now derive a set of inequalities
which includes (3); we prove

THEOREM 2. Let the fi(x) (1 =0, ---,n) and y(x) satisfy the hypo-
thesis of Theorem 1; in addition, let fi(x) =0 or fi(x)+0 on [a,bd]
(¢t =0, +-+,m). Let u(x) satisfy

(15) u™ e Lya, b]; u¥(d;) =0 (t=0,++,n—1).
Then, for each k 1 <k < n) such that f,_,(x) # 0,
(16) 0= Sb 1 w(x)dx + (— 1) Sb~—1— u’d

@ fa(®) @ f ()

Proof. The proof is similar to that of Theorem 1, so we present it
here in less detail. Let r;, = y™?/v,; then, formally,

(17) Vi = Tigrs + PisniViea/Vs — Tiinifaio1 -
Thus
b . ,|o b v, 2
(18) g rau®de = v, @ + g ,,.H_Mﬂ(u(zﬂ) _ Q;+1 um) da
a a a i

b b
2 2 .
- S Su-imaTip 0 de — S Tiprin T da (=0, «++, n—=2),
a a
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and

b b b1
2 p. 2
(19) S rauwde = Ti+1,iu(“z. - S —— (W — vy i faeiu™®) da
a i

“fn-z’—d

b b
+ S Pirns Vit1 uw®dy + S 1
a V.

i af n—i—-1

w0y
(t=0¢-,m—1).
Repeated application of (18) to gbmou?dx gives
0_1_ 2d ——k_2 — D .. u®?
7 uw w—gg( V'S Piga iU

& Jn

b b ) V. 2
+ g ,,'i+1'1_’+1<u(i+l) — @+1u<z>> dw
a a ’Ui

b v

Y )2 _ BT

- S JneioaTipr,u® dw} + (= 1) IS Toerp W Vd ;
a a

application of (19) to the last term gives

b

a

4 k—1
(20) Sa .]} wds = g(‘) (_ l)i'rﬂrl.iu(i)z

n

k—2 b 2
+ S (— 1) {S Piirin <u<t+1) _ U¢+1u(z)> dux
27=0 a

v;

b 9
- g fn-i—xr§4-1,iu(i)zdx}'
Ja

+ (= 1)1 {Sbrk,k~1 Vi gm0

Vg—1

| .
— @ = fa e

“fn—lc

+ Sb 1 u“"zdaﬁ} k=1,-++,n).

a n—k /

We now show that, if f, .(x) = 0, (20) is valid. Let a v, have a
zero of order 7; such a zero must be at d;,, Now, »r <n — . For we
have

Vi = Q1(@5V51 + (— 1fpe sy 77Y) 5

since y"I(d;) # 0, if v)(d,) = 0 then f,_,, =0, and v; = v;,,. Thus,
if »r>n—1, v =9, and also v""" = v, = 0. The first of these
implies that v{* ¥ =v,_, =9, — ¥y, = — ¥, # 0, a contradiction. Further,
we have d; = -+« = d,;.,;, so u® has a zero of order greater than » —
at d,. This suffices to justify (20). We note in addition that
T i(@JuP(d) =0 (1 =0, --+,n — 1).

Now by hypothesis (— 1)**f,_;, <0 (=0, ---,n —1). Lemma 4
implies that (— 1)7;,,,,, <0 (¢=0, --+,n — 2). Finally,
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» (n—i—1),,(1)2 |a*

i 12 — Dit1Y w .

(= Dlrypu'™| = - 28— — 17
a q:v; i

evaluation at d; gives a non-positive quantity; evaluation at d; gives zero.
Hence the inequality (16) follows from (20).

6. Concluding remarks. If we want (16) for only one particular
value of k& (kK < m), we need correspondingly less hypotheses on y(x) and
its derivatives, u(x) and its derivatives, and fi(z) (¢ =0, ---, n), since
only & + 1 of the functions in each of these sets are actually involved
in any of the proofs.

Since (— 1)**fi(x) < 0, from (2) we may delete any combination of
terms excluding the last, and to the right-hand side of (16) we may
add any terms of the form

b

(— | Ewrde G<j+h).

@ Jn—y

Thus, e.g., (2) implies

0 ::/: (__ 1)Ic gbfn_ku(kﬂdx + Sbfnu('n)zdx )
which perhaps corresponds more obviously to (16) than does (2).
Finally, the set of allowed values of (k,---k,) can be split into
halves such that one half, together with the inequality Ly = 0, and also
the other half, together with Ly =< 0, will produce the inequalities.
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