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Introduction* There exist functions which map a planar Riemann
surface W of arbitrary conectivity conformally onto plane slit regions.
Functionals J, extremized in the class of all conformal mappings of W
by only one slit mapping, are known. Such functionals can be repre-
sented as limits of functionals InJ where each In is itself extremized by
a horizontal or vertical-slit mapping with domain of finite connectivity.

A planar bordered Riemann surface of finite connectivity can be
mapped conformally onto a radial or circular-slit annulus with inner and
outer boundaries corresponding to any two contours of the surface. In
this investigation, extremal properties of such mappings are obtained
and extended to surfaces of infinite connectivity. The geometric nature
of the extended mappings, called principal analytic functions, is then
deduced from the extended extremal properties. In addition, certain
combinations of principal analytic functions are investigated from both
extremal and geometric points of view.

First, we consider a planar bordered oriented Riemann surface W9

of infinite connectivity. It is assumed that W has two compact border
components, δ and γ, such that no point of δ U 7 is a limit point of
points of any other boundary components. Such contours are called isolated.
W is "approximated" by a sequence of compact bordered Riemann
surfaces {Wn}, where each Wn is of finite connectivity. On Wn, an-
nular radial and circular-slit mappings FOn and Fln are constructed.
Among all normalized conformal annular mappings F of Wn, FOn max-
imizes

2πlog(r(F)) +

and Fln minimizes

2πlog(r(F)) - μn(F) .

Here, r(F) is the quotient rylrB, where ry and rδ represent the radii of
the positively oriented F(y) and the negatively oriented F(S) respectively,
and μn(F) is the complementary area of log(F(Wn)).

It is then shown by the reduction theorem (Sario[4]) that these ex-
tremal properties hold in the limit for the limit functions JP0 and FΊ*
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Furthermore, the extremal properties of FQ and Fx imply that the former
is a radial slit mapping of W and that the latter is a circular slit mapping.
By establishing a deviation formula, it is seen that the functions Fo and
Fλ are, up to a rotation, the only normalized conformal annular maps
of W extremizing the limit functional. As another application of the
reduction theorem, we find that the univalent function Λ/F0 Fλ max-
imizes μ(F), the complementary logarithmic area, among all conformal
annular mappings of W.

Next we pose the question: When does W have distinct radial and
circular-slit mappings. The answer is given in terms of AD-removability,
at least when W is a plane region bounded by an outer contour γ and
an inner contour δ. A point set E of the extended plane is called ΛD-
removable when the only analytic functions with finite Dirichlet integral,
defined on the complement of E, are the constant functions. In partic-
ular, we find that the principal analytic functions are, up to a rotation,
identical, if and only if the plane region bounded by 7 and δ minus W
is AD -removable.

1. We consider W an open planar bordered Riemann surface with
two compact non-point border components, δ and γ. In order to describe
the remaining part of the boundary of W, we recall that such a
surface can be embedded in a Riemann sphere S2. With respect to this
embedding, we assume that W and its boundary components satisfy the
following conditions:

( 1 ) no point of δ U 7 is a limit point of points of any other bound-
ary components, and ( 2 ) W — (δ U 7) is open in S\ Operations in W
such as interior, boundary, etc., are referred to S2.

It is possible to exhaust an open Riemann surface by a countable
collection of compact approximating regions {Wn}. In fact, W can be
countably exhausted in the following modified sense:

1. δ U 7 c Wn.
2. Wn c Int Wn+1.
3. The boundary of Wn consists of a finite number of disjoint an-

alytic Jordan curves.
4. Each component of W — Wn is relatively non-compact.
5. W = U Wn .

There is no loss in generality in assuming that each Wn contains a
ζ e W, where ζ is arbitrary but fixed in advance.

Evidently δ and 7 are two border components of Wn. The remaining
border components will be denoted A(WW), βΛ(Wn), , βk{n){Wn). When
only one approximating subregion is under consideration, the notation
for these remaining border components will be shortened to βlf β2, •••,
βk{n). For convenience we define βn as
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I Extremal Properties of Harmonic Functions Defined on Approxi-
mating Regions*

2. We consider, in this and the following section, certain classes of
harmonic and analytic functions defined on an approximating region Wn.

DEFINITION. Hn(h + k) is the set of functions p, harmonic on Int
Wn U δ U 7 and satisfying

(1) p(z) = c2(p) = const, for z e γ with I dp* = 2π(h + Jc),

(2) p(?) = 0,

(3) p(z) = cx(p) for z e δ with \ dp* = -2π(h + k), and
J δ

(4) [ dp* = 0 for i = 1,2, -- ,/φO.

A and k are real numbers. When the function p is defined only on Int

Wn U δ U 7, then the integrals I dp* and! pdp* are understood
Jβi(Wn) Jβί(Wn)

as liml dp* and liml pdp*. Here {Wr

k) is an exhaustion of the sur-
k-+°°Jβi(W'}c) k-^c^Jβί(w'k)

face Int Wn and each βi{W'k) is homologous (in Wn) to A(WW). An ap-
plication of Green's formula shows that these limits are independent of
the exhaustion {W'k}. The class Hn(l) will be denoted Hn.

Principal harmonic functions pQn and pln, belonging to Hn are obtained
as harmonic extensions of functions constructed by use of linear operators
on Riemann surfaces (Sario [2]). In fact on each βi9i = 1,2, •• ,ft(n),
dPoJdn = 0 and pln = const. Hence for arbitrary Λ and fc, the function
Piikn = ^Po% + &2>iΛ belongs to the class Hn(h + fc), which is then not
empty.

3. THEOREM 1. Phkn minimizes the functional \ pdp* —

2π(h — k)c(p) among all p e Hn(h + k), where c(p) = c2(p) — cx(p).
The value of the minimum is —2π[h2c(pOn) — k2c(pln)].
The deviation of this functional from its minimum is DWn(p — phkn),

and the minimizing function is unique.

Proof. Let B be the entire border of Wn. Then by Green's for-
mula, we have

DWn(v - Vhicn) = 1 (P - Phkn)d(p - phkn)* .
JB

Since p and phkn e Hn{h + k), we conclude at once that \ (p — phkv)
Jδ+γ

d(p — phkn)* = 0. Green's formula becomes
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DWniV - #»*») = L PUP* + \_ Vnicndvtkn ~
Jβn Jβn

We now expand the last term and find that

L Pnjcndp* + pdptkn = h\ Pondp* + pdptn + k\_ plndp* + pdpt .
Jβn Jβn Jβn

But on βny pOn has vanishing normal derivative, and pln is constant.

S r
pdpon — \ _ plndp* ~ 0 when p e Hn(h + k). Thus we

βn hn

can infer from Green's formula that

L Pukndp* + pdptkn =h\ Pondp* - pdpt + k\ plndp* - pdpt .
Jβn Jδ+7 Jδ+γ

A direct application of the conditions (1), (3), (4) of Hn(h + k) now
yields the formula

\ - Phhndp* + pdptkn = 2π(h - k)(c2(p) - cλ

~2πh(h + k)(c2(p0n) - d(pOw))

+2πk(h + k)(c2(pln) - cλ(p1%)).

We obtain in a similar fashion

L Pnkn
] a

= ~hk\ pOndpΐn - Pindpt
Jδ+γ

= -2πhk[c2(pQn) - cx{pQn) - (c2(pln) - ^(p^))] .

Collecting contributions, we find

DWn(p - phkn) - 2π[h\c2{pQn) - ^(poJ) - k\c2{pln) - ^ ( p j

- k)(c2(p) - Cl(

Since the Dirichlet integral is nonnegative, we have that phkn minimizes
the given functional. Clearly, for any peHn(h + k) the deviation of
the functional from its minimum is DWn{p — ρhkn).

We consider now the uniqueness of the minimizing function. For
another minimizing function p', we would have a deviation of the func-
tional from the minimum equal to DWn{p' — phkn). But pf also minimizes,
so DWn(p' - Pukn) = 0. Since phkn{ζ) = p'{ζ) = 0, we see that phkn = p\
This completes the proof of Theorem 1.

4. Our interest in Theorem 1 will be with the following special
cases which we state as corollaries.
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COROLLARY 1. pOn maximizes the functional 2πc{p) — \ pdp*

among all p e Hn.

COROLLARY 2. pln minimizes the functional 2πc(p) + \_ pdp*

among all p e Hn.

COROLLARY 3. — (pOn + pln) minimizes the functional
2 Γβ7t

among all pe Hn.

COROLLARY 4. pon — pln maximizes the functional Aπc{p) — DWn(p)
among all p e Hn(0).

Each extremizing function is unique.

Corollaries 1, 2, and 3 follow immediately from Theorem 1 for

h + k = 1. As for Corollary 4, clearly pOn — pln e Hn(0). Now for any

peHn(0), Green's formula reads DWn(p) = \ _ pdp* = \ pdp*, and

Corollary 4 follows.

II. Geometric Properties of Analytic Functions Defined on Approx*
imating Regions.

5. DEFINITION. An is the class of functions F analytic on Int
Wn U δ U 7 such that

(1) F(γ) is a circle traced once in the positive direction,
(2) 12^)1 = 1,
(3) F(8) is a circle traced once in the negative direction,
(4) F is univalent on Int Wn U δ U 7.

In this definition, F(i) and F(8) are understood as oriented images of
oriented border cycles and the radii of these images are denoted ry(F)
and rb{F).

Some useful relations between the classes An and Hn are expressed
in the following theorem.

6. THEOREM 2. (a) For any FeAn, \og\F\ is of class Hn.
(b) The following analytic functions are of class An:

FOn = exp(pOw + ipo *) , (2) Fln = exp(pln + ipln*) .

The functions Fin are referred to as principal analytic functions.

Proof of (a). Evidently 2π = ( d(argF(z)) = ( dQog\F(z)\)* and
JY JY
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Condition 1 of Hn is verified. Condition 3 is checked just as easily and
(2) is apparent. As for (4), let βt be any component of the border of

Wn other than 8 or γ. Suppose that β[ ~ βi and that f ,d{\og\F\)* =
Jβi

2πk, where k is an integer. There exists a path from δ to γ which
does not meet βl But if Jc φ 0, then every path from F(8) to F(7)
meets F(β[). But F is univalent, so k = 0.

Proo/ o/ (6). We consider first the function JF1W and omit the

analogous proof for FQn. First, it is evident that 2π = 1 cίpίn = I d{axgFln)

and r 7(F) = exp c2(pln) = const. Certainly JFΊnίγ) is a circle traced once
in the positive direction, and (1) of No. 5 is satisfied. Condition 3 is
verified in a similar manner and (2) is trivial.

To verify the Condition 4, we consider the extended version of the
argument principle, and reason in a manner analogous to Ahlfors [1],
p. 203.

7. DEFINITION. The multiple-valued functions Pin are defined as
Pin = Pin + iPin However POn — Pln is single-valued, and the principal
analytic functions are expressible as Fin = expP ίw, i = 0, 1. We also fix
the following terminology: r(F) denotes the ratio rΎ(F)lrs(F) and μn(F)

denotes the complementary logarithmic area —1_ log\F(z)\d(argF(z)), a

nonnegative quantity when FeAn.

THEOREM 3. FOn maximizes 2π\ogr(F) + μn(F) among all FeAn.
Fln minimizes 2π\ogr(F) — μn(F) among all FeAn.
Pn = VFOn Fln maximizes μJJF) among all Fe An .

FoJFm maximizes Aπlogr(F) — DWn(log\F\) among all quotients of
functions in An.

Pon — Pm maximizes kπ\Re{F(z^) — F{z^)\ — DWγι{F) among all an-
alytic functions on Wn the real part of which is constant on δ,constant
on γ, and 0 at ξ. Here z2 and zx are on γ and 8 respectively.

Proof. We have \og\F0n(z)\ = pOn(z), so it follows from Corollary 1

of Theorem 1 that log| FOn \ maximizes the functional 2πc(p) - I _ pdp*

among all peHn. But according to Theorem 2, when FeAn, the
log|F(^)| e Hn. Hence FOn maximizes the functional 2πlogr(F) + μ^(F)
among all FeAn. The proof of the second part of this theorem is
analogous, and so is the proof of the third part when it is shown that
Pn = "l/jFon Fln is of class An, a fact that is proved in the appendix.

It is easily seen that log| F0JFln \ = pOn — Pm, hence according
to Corollary 4 of Theorem 1, log\F0nIFln\ maximizes 4πc(p) - DWn(p)
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among all peHn(Q). If F = G/H, where G and HeAn, then it follows

from Theorem 2 that log|G | and log \H\ e Hn, and we have \ d(log|l*Ί)* =

\ d(argF) = \ d(argG/if) = 0. Other similar calculations show that

log|F(z) I e Hn(0). Thus FJFln maximizes Aπlog r(F) - Dwβog\F\) among
all quotients of functions in An.

The extremal property of POn — Pln follows from Corollary 4 as well
when it is observed that Re(POn — Pln) = pOn — pln, and that ReFe H^{0)
when F is analytic on Wn.

The following corollary of Theorem 3 will be useful when we are
considering geometric properties of conformal maps of W.

COROLLARY. The functional r(F) is maximized, uniquely up to a
rotation, by FOn and minimized, uniquely up to a rotation, by Fln among
all FeAn.

Proof. It follows from the definition of FOn given in No. 6. that
d(argFθΛ) = dp*n, which is 0 on βn. Since μn(F) ^ 0, we have 2π log r(F) g
2ττlog r{F) + μn(F) ^ 2π log r(FOn) + μn(FOn) = 2π log r(FOn), that is, r(F)
is maximized by FOn.

Analogous reasoning shows that Fln minimizes r(F) among all Fe An.
In order to establish the uniqueness, we let r(F) = r(FOn) for some

Fe An. Then an application of Theorem 3 yields 0 < μn(F) ^ μn(FOn) ^ 0,
which means that F also maximizes the functional 2π log r(F) + μn(F)
among FeAn. But an application of the deviation formula of Theorem
1 shows that Dwβog\FIF0n\) = 0, from which it follows that F= cFQn

with I o I = 1.

III. Extremal Properties of Principal Harmonic Functions.

8. We propose in the present section, to develop for domains of
infinite connectivity, extremal theorems which will generalize the results
of § 1 for finite connectivity. An essential role is played by the

Reduction Theorem (Sario [4]).
Assume that Z and Zn are classes of functions with domains W,

an arbitrary open Riemann surface, and Wn, an exhausting subregion
of W, respectively. In addition, suppose that real-valued functionals
m and mn, defined on Z and Zn, satisfy the following conditions.

(Rl) If Wm c Wn and if fe Zn, then f\Wm e Zm .

Here Wn may be replaced by W, and Zn by Z.

(R2) If {fk} is a sequence the elements of which belong to Zn, and

if {fk} converges uniformly to feZn, then mn(fk) converges to m%(f).

(R3) m(f) = lim mn(f), for any feZ.
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(R4) There exists a function fn e Zn such that fn minimizes the
functional mn among all feZn.

(R5) For k < h, and feZh, mk(f) ^ mh{f) .

(R6) The family {fn;fn minimizes mn among feZn} is a normal
family, and the limit functions belong to Z.

Then any limit function f — lim^^fn minimizes m among all feZ,
and value of minimum is m(f) = Iimίl_+Oomίl(/Λ).

The proof of the reduction theorem is established by selecting an
exhaustion of W, and can be carried out for a bordered surface W as
well, as soon as an exhaustion is known to exist.

9. Let W be an open planar bordered Riemann surface, {Wn} an
exhausting set, δ and y separated boundary components, all as described
is no. 1.

LEMMA 1. The families {pOn} and {pln} are normal.

Proof. If {FQn} ({Fln}) is a normal family, then so is {pQn} ({pl7l}).
Hence it suffices to show that for every compact set S, there exist a
constant M and and integer N such that \FOn(z)\ < M(\Fln(z)\ < M) for
all n > N and all ze S. Let S be any compact subset of W and choose
n sufficiently large so that S a Wn. For any ze S and Wp c Wn, since
FOp(y) is the outer contour of an image annulus we have 2π log| FOp(z)/
rδ(FOp) I g 2π log (r(FOp)) + μn(F0p). But according to Theorem 3, the right
hand side is bounded by 2π\og(r(F0n)). We now recall that \FOp(ζ)\ — 1>
that is rδ(FOp) < 1. Hence \FOp(z)\ is bounded for all zeS and for all
p ^ n, and the family {FOn} is normal.

As for {Fln}, we have

2π log| Fln{z)jrB{Fln) \ ̂  2π log (r(Fln)) ^ 2π log (r(FOn)) .

The second inequality follows from the Corollary of Theorem 3. We
conclude that {Fln} is bounded on any compact set S and is normal. This
completes the proof of Lemma 1.

An immediate consequence of Lemma 1 is that the family {phΊc^} is
normal.

10 LEMMA 2. If n < n', then the inequality

\_ pdp* ^ I pdp*

holds for all p e Hn,(h + k).

Proof. We apply the first form of Green's formula to the region



ON EXTREMAL PROPERTIES FOR ANNULAR MAPPINGS 1495

Wn, - Wn and find

(_ Pdp* - (_ pdp* = DWn,_Wn(p) s 0 .
Jβn' Jβn

DEFINITION. H(h + k) is the class of functions p, harmonic on ίV,
satisfying

1 l ) p(z) = c2(p) = const, for zey w i th i dp* = 2π(h + ft) ,

( 2 ) p(?) = 0 ,

( 3 ) ^(z) = d ( p ) = const, for z e 8 w i t h I dp* = —2ττ(fe + ft), and
Jθ

(4) I dp* = 0 where σ is any cycle which is homeomorphic to a

circle and which does not separate δ and 7. A cycle σ is said to separate
δ and γ if every path from δ to γ intersects σ. Let H denote the class

DEFINITION. For any p e H(h + k), \_pdp* is understood to be

lim _ pdp*. The existence of this limit is guaranteed by the monotoni-

city condition of Lemma 2.

LEMMA 3. If the sequence {pn; pn e Hn(h + k)} converges on compact
subsets to p', then p' e H(h + k).

We recall that a sequence {fn} converges on compact sets if for every
compact set S, there exists an N such that {/»; n ^ N} converges uni-
formly on S.

Proof. The convergence pn —> p' is uniform on compact sets. The
conditions (1), (2), and (3) for H(h + k) can therefore be inferred from
those of Hn(h + k). Let σ be any cycle which does not separate 8 and
γ. Then there exists n such that the compact σ c: Wn, and we have

where the β\ are homologous to components of the border of Wn (Ahlfors
and Sario [1]). We embed Wn in the complex plane with γ as an outer
boundary, and fill in the ''holes'' whose boundaries are the βfs. Now
o — bλ8 = ΘA, and every path from 8 to 7 meets σ. This is a contradic-
tion, unless bλ = 0.

Using the uniform convergence of {pn} along with Green's theorem,
we obtain

( dp'* = limί dp: - limί dp: = limΣflJ ,dpt = 0 .
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DEFINITION. A harmonic function phk is defined as the limit of any
sequence of the normal family {phkn} which converges on compact sets.

THEOREM 4. phk minimizes the functional \__pdp* — 2π(h — k)c(p)

among all p e H(h + k).
The minimum value of this functional is —2π(h2c(p0) — fc2c(pa)).
The deviation of this functional from its minimum value is

D(p — phk) and the minimizing function is unique.

l l There exists a subsequence [phkn] of {phkn} which converges to
phk on compact sets and satisfies limn/_»oβpΛfcn, = hp0 + kpx where pζ =
limn/_oopiw., i = 0, 1. The uniqueness of Theorem 4 then allows us to as-
sume that phk = hpQ + kpλ for all h and k.

Proof. That phk minimizes and gives the functional the value
—2π(h2c(p0) — k2c{pλ)) will follow from Theorem 1 if we can verify
(Rl) — (R6) of the reduction theorem. The functionals mn and m are

taken to be \ pdp* — 2π(h — k)c(p) and \jpdp* — 2π(h — k)c(p) respec-

tively, while the classes Zn and Z are HJJh + k) and H(h + k).

If p e H(h + k), then p\Wn satisfies the Conditions 1,2, and 3 for

Hn(h + k). Since no βi(Wn) separates δ and γ, \ dp\w* = 0 and (4)
Jβi(wn)

 n

is satisfied. Hence p\WneHn(h + k) and (Rl) is verified. The uniform

convergence of fk to / makes (R2) evident, and the functional I pdp* —

2π{h — k)c(p) is defined as limπ_oo\_ pdp* — 2π(h — k)c(p), as required by

(E8). k

Theorem 1 shows that (R4) is satisfied, and Lemma 2 of no. 10 shows
the same for (R5). That the family {phkn} as defined in no. 2 is
normal, follows from Lemma 1 of no. 9, and that the limiting functions
belong to H(h + k) is then a consequence of Lemma 3 of no. 10. Thus
by the reduction theorem, the limit function, phk, minimizes the limit
functional among p e H(h + k) and the minimum value of the limit
functional is the limit of minimum values.

12. In order to establish the deviation formula, we first denote
the functional of Theorem 1 by ψn and consider its value on the func-
tion pe — Phk + e (p — phk). Upon expanding, we find

- 2π(h - k)c{phk) + ax{h)e

(p - phk)d(p - phk)* ,
β
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where for each n, this is a polynomial in ε, and ajji) is the coefficient
of the ε term. But the last integral is

_ (p ~ Phk)d(p - VuicT = (_ (P - Phk)d(p - phk)* = Dw(p - ph7c) .

The first equality follows from the fact that p and phh both belong to
H(h + fc). Therefore, in the sense of limits, we write

r
UP - Pnk)d(p - phkY = D(p - phk) ,
Jβ

where D is the integral over the entire bordered surface W. In a
similar fashion, we find

- 2π(h - k)c(phk) = D(phk) - 4πkc(phk) .

By an earlier part of this theorem, the left hand side of equation (3)
is finite. Thus we have that D{phk) < oo.

We assume that D(p — pk) is finite. By the triangle inequlity for

the Dirichlet integral (Courant [1]), D{p), and consequently \j9cίp* are
Jβ

both finite. Now in equation (2), with ε — 1, consider the limit as
n—>oo. The limit of every term, except a^n), exists and is finite.
Hence the same can be said of lim^^ajji). But ψ(ps) = Hm ôo'ψvίPε)
has, by part (1) of our theorem, a relative minimum for ε = 0. There-
fore, lim^^a^n) = 0, and the deviation formula ψ(p) = ψ(phk) + D(p —
phk) results when ε = 1 is substituted into equation (2) after taking
limits.

When D(p — phk) = oo, this formula holds in the sense that ψ(p) = co
as well. This completes the proof of Theorem 4.

IV Extremal and Geometric Properties of Principal Analytic Func*
tions

Extremal properties for harmonic functions defined on a surface of
finite connectivity were used in § 2 to establish extremal properties of
analytic functions, also defined on a surface of finite connectivity. In
the present section, we exploit the extremal properties of harmonic
functions, now defined on a surface of infinite connectivity, for the
purpose of establishing both extremal and geometric properties of analytic
functions.

13. A competing class of analytic functions is defined as follows.

DEFINITION. A is the class of analytic functions on W such that
(1) F(γ) is a circle traced once in the posititive direction, (2) \F(ζ)\ =
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1, (3) F(S) is a circle traced once in the negative direction, and (4) F
is univalent on W.

THEOREM 5. For any Fe A, \og\F\ e H. Furthermore F{ = exρ(P;
+ ip*)eA, i = 0, l .

No ambiguity will result in referring also to Fo and Fx as principal
analytic functions.

Proof. For any FeA, consider log |F | , which clearly satisfies (l)-(3)

of the definition of H in no. 10. Then let ί d(\og\F\)* Φ 0 for σ not
Jσ

separating δ and γ. If 1 d(log\F\)* = 2πk, k an integer, then F(σ)

separates F(S) and F(y). But F is univalent on W and we have the
contradiction that σ separates δ and y. This means that \og\F\eH.

Let Fi = exp(Pi + ipf), i = 0,1. Conditions 1-3 for A are easily
verified. An application of the extended argument principle to any
exhausting subregion Wn shows that F{ is univalent on δ (J 7, when
univalence is established at interior points. For interior points of W,
Fi can be represented as exp(p< + ipf) = lim n_exp(p^ + ipfn) = l im^^F^.
So each Ft is univalent by Theorem 2 and the well-known Hurwitz
theorem.

14. The following five theorems are concerned with analytic func-
tions constructed from the harmonic functions p0 and puw hich are
uniquely defined by Theorem 4.

DEFINITION. F is an annular radial (circular) slit mapping of W
provided that F( W) is an annulus minus a point set each component of
which is a radial (circular) slit or point. Let {w; r5(F{) ^ \w\ S
ry(Fi)} - Fi(W) be denoted by Si9 i = 0 ,1 .

DEFINITION. For a surface of infinite connectivity, the comple-
mentary logarithmic area μ(F) is defined as limn_»ooμΛ(2<7) for any FeA.
That this limit is defined independently of an exhaustion follows from
Theorem 5 and Lemma 2.

THEOREM 6. Fo = exp(p0 + ίPo*) maximizes 2πlog(r(F)) + μ(F)
among all FeA.

The value of the maximum is 2π\og(r(F0)).
The deviation from the maximum is D(log\FIF0\), and the maxi-

mizing function is unique up to a rotation.
The 2-dimensional Lebesgue measure of the point set So is 0.
Fo is an annular radial-slit mapping.
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Proof. We apply Theorem 4 with h = 1, k = 0 and obtain that

log|jF0| minimizes ι_ pdp* — 2πc(p) among all p e H. According to The-

orem 5, we may use Theorem 4 on logarithms of functions in A as well,
that is, Fo maximizes the functional 2πlog(r(F)) + μ(F) among all FeA,
the maximum value of this functional is 2π log(r(F0)), and the deviation
from the maximum is D(\og\FIFQ\).

As for the 2-dimensional Lebesgue measure of S09 consider the
annulus

\w\ ^ ry(F0)}

and set t — log w. The transformation mapping w into log w is denoted
L, and the image of {w; rδ(F0) ^ \w\ ^ ry(F0)} under L is called R. Now
it is easily seen that

LS0=f\[CΛ(L(F0(Wn)))],
ΐ = l

where CR is understood to mean complement with respect to R. L(F0( Wn))
is compact and closed in R, and this means that CR[L(FQ(Wn))] is open
and measurable. Hence, LS0, a countable intersection of measurable
sets, is measurable. Its measure M is then given by

where μn(F0) is defined in no. 7. But according to an earlier part of
this theorem, the term on the right is 0. When we observe that L>
defined on the cut annulus, preserves sets of measure zero, we conclude
that the 2-dimensional Lebesgue measure of So is zero.

Suppose that the complement, with respect to {w; r8(FQ) ^ | w \ ^
ry(F0)}, of F^WO is a point set, the components of which are not all
radial slits or points. The full annulus

{w;rδ(F0)^ \w\ ^ ry(F0)}

minus such a component, denoted η, is called Wo. We embed Wo in the
Riemann sphere S2 and consider the simply connected point set S2 — rjf

which can be mapped conformally onto the complement of a unit disc.
Let E be this conformal mapping, and denote by γ" and δ" the sets
E(80) and E(Ύ0), where δ0 = F0(S) and γ0 = F0(v). Now E(W0) is of finite
connectivity, so we can apply Theorem 2 to construct a radial-slit mapping
φ of E(W0) onto an annulus, minus one radial slit, with inner boundary
φ(δ") and outer boundary φ(y"). φ is normalized by \φoEoF0(ζ)\ = 1,
and belongs to An for E(WQ). We then apply the corollary of Theorem
3 to φ and find that 2τrlog(r(^>)) > 2π\og(r(E-1)) = 2ττlog(r(F0)). Then
the map <poEoF0, where E and φ are properly restricted, belongs to A.
But 27rlog(r(^oJ5ΌF0)) == 2π log(r(φ)) > 2π\og(r(F0)). This is a contradίc-
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tion, for according to an earlier part of this theorem Fo, up to a rota-
tion, uniquely maximizes the functional 2πΊog (r(F0)) in A. This completes
the proof of Theorem 6.

COROLLARY. The principal analytic function Fo maximizes the
functional r(F) among all FeA.

Proof. The maximum value of the functional in Theorem 6 is 2π
log(r(F0)), that is JK(F0)= 0. The proof is complete when we observe
that μ(F) is nonnegative f or all FeA.

THEOREM 7. i^^expfe + ip*) minimizes 2π\og(r(F)) — μ{F)
among all FeA.

The value of the minimum is 2π log ( r ^ ) ) .
The deviation from the minimum is DiloglF/F^), and the mini-

mizing function is unique up to a rotation.
The 2-dimensional Lebesgue measure of the point set Sλ is zero.
Fλ is an annular circular-slit mapping.
The proof is analogous to that of Theorem 6 and uses h = 0, k = 1.

COROLLARY. The 'principal analytic function Fx minimizes the
functional r(F) among all FeA.

THEOREM 8. P-\/F0.Fλ maximizes μ{F) among all FeA.

The value of the maximum is μ{P).
The deviation from the maximum is D(log\FIP\), and the maxi-

mizing function is unique up to a rotation.

The proof uses h = 1/2, k = 1/2.

THEOREM 9. Q = FίiIF1 maximizes 4ττlog(r(F)) — ̂ (loglFI) among
all quotients of functions in A.

The value of the maximum is 2π log (r(Q)).
The deviation from the maximum is D(}og\FjQ\).

Proof. When the condition h = 1, k — — 1 is substituted into The-
orem 4, it is easily seen that the technique of Theorem 3 will establish
Theorem 9.

Consider the multiple-valued functions Po = p0 + ipt and P1 = φx +
ip*. The difference of these functions has zero flux around any cycle
of W and is single-valued.

THEOREM 10, P<ί~Pι maximizes
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4π[Re(F(z2) - Ffo))] - D(F)

among all analytic functions on W the real part of which is constant
on δ, constant on γ, and 0 at ξ. Here zlf and z2 are on y and 8 re-
spectively.

The value of the maximum is —2πRe[(P0 — PJfe) — (Po — Pi)(Zi)]
The deviation from the maximum is D(F — (Po — PO).

The proof again applies Theorem 4, with h = 1 and k = — 1, as well
as the observation that Re(PQ — Px) — p0 — Pi and ReFe H when F is
analytic on W.

V. The Existence of Distinct Principal Analytic Functions*

15. We consider the problem of determining conditions under which
there exist two different principal analytic functions on the planar
bordered Riemann surface W of no. 1. The principal analytic functions
under consideration are defined in no. 13, and have properties described
in Theorems 5, 6, and 7 of no. 14. The following- concepts are dealt
with in Ahlfors and Sario [1].

DEFINITION. TWO compact sets in the plane, each with connected
complement, are Said to be equivalent if their complements are con-
formally equivalent.

For the remainder of this chapter, we let E be a compact plane set
with connected complement.

THEOREM (Ahlfors and Sario [1]). The complement of E is of class
OAD tf and only if every set which is equivalent to E has 2-dimensional
Lebesgue measure 0.

DEFINITION. Let U be any open set which contains Ey and suppose
that a function F is analytic on U — E. E is said to be a removable
singularity for F if there exists analytic extension of F to {7.

THEOREM (Ahlfors and Sario [1]). E is a removable singularity for
all functions of class AD in a neighborhood of E if and only if the
complement of E {with respect to the Riemann sphere) is of class 0AZ?.

16* DEFINITION. A planar bordered Riemann surface W as de-
scribed in no. 1 is said to have rigid radius when r(F) is constant for
every F in the class A of no. 13.

THEOREM 11, Let FQ and Fx be the principal analytic functions
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belonging to A. The surface W has rigid radius if and only if Fo =
cFu where \c\ = 1.

Proof. If W has rigid radius, then according to Theorems 6 and
7, both Fo and Fx minimize the same functional. Hence Fo = cFu with
\c\ = 1, On the other hand, if F o = cFu we conclude from the corollaries
of Theorems 6 and 7 that Fo maximizes, and Fx minimizes the functional
r{F) among all Fe A. Because | c | = 1, we have that the radius is rigid.

6 AD-Removability

17 Our next condition for distinguishing FQ from Fx is most natu-
rally stated if we take the bordered Riemann surface W to be a plane
region, with γ and S as outer and inner boundaries respectively. In
addition, we let Wx denote the plane point set bounded by γ and δ, with
E the difference Wx - W.

THEOREM 12. Let Fo and F1 be the principal analytic functions
of no. IS. Then Fo = cFlf with \c\ = 1, if and only if S2 — EeOAD.

Sufficiency. Fo and Fx map a neighborhood U of E onto an open
set of finite area and are of class AD in this neighborhood of E. Then
according to no. 15, the principal analytic functions may be extended to
all of W. If the extension Ft of F{ satisfies Fi(z0) = w0 for some w0

with rs(Fi) < \wo\ < rγ(F,), then

( H 9
vFi - Wo h+yFi - Wo

Since F^ A, the second integral is 1 and the extensions are univalent.
This means that Fx o Fόι is a conformal mapping of a full closed annulus,
and in fact that r(F0) is equal to r{FΎ). We have FQ = cF l y with |c | = 1,
as a consequence of Theorem 11.

Necessity. If S2 — E is not of class 0ΛD, then, according to no. 15,
there exists a one to one conformal mapping with positive complementary
area. Such a mapping will have positive complimentary logarithmic area
as well. Therefore, according to Theorem 8, μ(]/F0 Fx) is positive, and
Theorem 6 guarantees that FQ Φ cFx.

APPENDIX

An argument of Ahlfors and Beurling [1] (p. I l l ) , which will be
referred to and not repeated, is crucial in the proof of:

18. THEOREM 11. The analytic function Pn = VFOn'Fln is of
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class An.

Proof. Verification of the Conditions 1, 2, and 3 for An of no. 5
is immediate. Only (4) remains to be checked. If log Fln and log FOn

are considered in the roles of q and p of Ahlfors and Beurling [1],
p. I l l , then log VFOn-Fln may be considered in the role of l(q + p).
We observe that cZ(log Fln)ld(\og FOn) is well defined on the approximating
Wn. Hence, by the technique of Ahlfors and Beurling already cited, we
may conclude that Re(d log Fln\d log FOn) is of constant sign with no zeros
in Wn. This implies that the image of each contour β{ is a convex
curve, and each image is traced once as each β{ is traced once. This
also implies that each of the curves F(βτ) is traced in the same direc-
tion, and this direction will be determined now for one F{β%).

We observe that for each i, Pn(βχ) is a compact set, and we may
then choose w{ and w\ so that w% is that point of Pn{βi) which is closest
to Pn(γ) and w\ is that point of Pn(y) which is closest to Pn{β%). We
now assume that the βt are indexed so that mm{d(wi9 w'{)] i = 1, 2, •• ,
k(n)} is d(wly w[) where d(w, w') is the usual Euclidean distance from w
to w'. That is to say, Pn(A) is a s close to Pn(γ) as any of Pn(/92), •• ,
Pn(βk(n)) The line segment Γ joining w1 to w[ is a univalence path for
Pn in the sense that each point of Γ is taken exactly once by a point
of Wn. Clearly Pn is one to one on PΰιFy and we may conclude that
βλ and PW(A) are similarly oriented. The reasoning in the paragraph above
then establishes that each Pn(βi) is oriented as is Pn(A), and in fact, for
each ί we have that the winding number for points inside Pn{βτ) is — 1.

An application of the argument principle is now all that is needed
to show that Pn is univalent on Int Wn U δ (J y.

BIBLIOGRAPHY

1. L. Ahlfors, [1] Complex analysis, McGraw-Hill Book Company, Inc., (1952).

2. L. Ahlfors, and A. Beurling, [1] Conformal invariants and function-theoretic null-sets,

Acta Math., 8 3 (1950), 101-129.

3. L. Ahlfors, and L. Sario, [l]Riemann surfacees, Princeton University Press, (1960).

4. R. Courant, [1] Dirichlet's principle, conformal mapping, and minimal surfaces, Inter-

science Publishers (1950), 13-14.

5. R. de Possel, [1] Sur quelpues proprietes de la representation conforme des domains

multiplement connexes, en relation avec le theoreme des fentes paralleles, Math. Ann., 1O7
(1932), 496-504.

6. L. Sario, [1] Ueber Riemannsche Fldchen mit hebbarem Rand, Ann. Acad. Sci. Fenn.

Ser. A. I. no. 50 (1948), 79 pp.

7. , [2] A linear operator method on arbitrary Riemann surfaces, Trans. Amer.

Math. Soc, 72 (1952), 281-295.

8. , [3] Strong and weak boundary components, J. Analyse Math. 5 (1956/57), 389-

398.

9. M. Schiffer, [1] Some recent developments in the theory of conformal mapping, Ap-

pendix to R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces,

Interscience Publishers (1950), 249-265.






