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1. Introduction This paper is one of a series (Hammersley and
Lyttleton [1], [2], Kerr [3], Kendall [4], [5], [6]) concerned with the
statistical-dynamical properties of the sun's family of comets. For the
astronomical background, terminology, conventions, units, etc., we refer
the reader to [5].

We consider a comet in the energy-state x > 0 (so that the total
•energy per unit mass is equal to —x) which is approaching perihelion,
not necessarily for the first time, and we write T for the total time
spent by the comet in describing complete circuits subsequent to this
perihelion. We ignore the low energy (high x) catastrophes (capture by
Jupiter, falling into the sun, etc.) and consider the fate of the comet sub-
ject to independent energy-perturbations at perihelion, the magnitudes of
which we suppose to be distributed according to the probability law

^e~^w^bdwlb (— oo < Ίβ < oo) ,

the so-called 'double-exponential law'. It is then known [5] that T is
almost certainly finite.

The probability distribution of T cannot be found explicitly, but its
Laplace-Stieltjes transform φ satisfies a differential equation which wre
treat by a perturbation method. At first sight it seems unlikely that a
perturbation procedure followed by a Laplace inversion could yield any
positive information about the distribution being studied, but in fact by
a careful arrangement of the argument we are able to calculate the
-exact limit-law

limPr

for the reduced random variable T/i/αs; the result is given at (15) below.
If we are chiefly interested in the origin of comets we can identify

the given perihelion with the comet's first, and x is then its initial
energy-state. There are indications ([5], [6]) that this value of x is small
when compared with the average size of the perturbations, but information
about solutions for large x can be extracted from Hammersley [2], and
the present result thus forms a useful complement to some of his results 9

with which it is consistent: in fact, the same (limit-) law was obtained
by Hammersley in his exact solution to the corresponding problem involv-
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ing Brownian motion.
If we do not identify the given perihelion with the comet's first,

then our result tells us the distribution of the remaining time-to-escape
T for a comet which happens to have entered a high energy-state.
From this point of view the result is of value whatever opinion we may
hold about the origin of comets, but it is of course limited by the fact
that when x is large (i.e.,the comet is strongly bound) then one cannot
properly neglect the low-energy (high x) catastrophes.

The justification for the use of the double-exponential perturbation
law will be found in [3], [4], [5], [6]. Because of the asymptotic character
of the present result one might expect the detailed form of the pertur-
bation law to be unimportant, and one might hope that identically the
same result would follow for any perturbation with zero mean and a
finite variance. The proof that this is so is the object of an investigation
by C. Stone and J. Lamperti, who will in a forthcoming paper discuss the
appropriate invariance theorem.

In the course of our work we shall make use of some Bessel function
formulae given by Watson [7]. We shall refer to these formulae as
(1W), . . . , (5W), where (1W) is given on p. 80 of [7] at (19), (2W)-77(2),
(3W)-202(l), (4W)-203(2) and (5W)-80(15).

2. The asymptotic distribution of Tl\/x. T is the total time during
which a comet remains in the system, measured from (say first) perihelion;
thus T is the total time spent in describing complete circuits. The
comet is subject to energy perturbations at perihelion distributed
according to the double-exponential law, and there is also a chance
k (0 g k < 1) of disintegration at each perihelion passage; for the moment
we retain the possibility of disintegration but our main results depend
on a method which would not be very easy to handle when k > 0, and
we shall shortly put k = 0.

Define
φ(s\x) = ξ?(e-SIt\x);

here x is the energy-state of the comet during the approach to first
perihelion, so that x > 0, and s ^ 0. V(y) — y~312 (y > 0) gives the peri-
odic time of an orbit in state y, but (following Hammersley [Z]) we
shall first set V(y) = y~*. We shall later put a = 3/2 to give our main
result, and afterwards remark briefly on the more general case.

Consideration of the possible events at first perihelion leads to the
integral equation for φ:

φ(s\x) = k + (l -k)he~xlb + [~ ib-1 e~wlb e-sr{x+w) φ(s\x

i b~ι e~wlb e-sv{x~w) φ(s\x — w)dwX,
J
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whence

( 1 ) φ{s I x) = k + (1 - k) {* e~xlb + i 6"1 ex'b J~ e~wlb e~sv^ φ(s \ w)dw

+ ^b~ιe~xlb V ewlb e-sr{ω) φ(s\w)dw\.

Since 0 ^ φ ^ l f o r x > 0 and s :> 0, and φ(s | ) is measurable for s ^ 0,
we see from (1) that φ(s | ) is continuous on the interval 0 < x < oo.
But then </>(s| •) is also differentiate, and with D = d/dx,

( 2 ) {l-k)-ιDφ= - \h-λe-χlb + ib~2exlb Γ e~wlb e~sv{w) φ(s\w)dw
Jx

— * b~2 e~xlb \X ewlb e~sviw) φ(s \ w)dw;
Jo

also

( 3 ) (1 - / c ) - 1 D 2 φ = ib~2e-χ/b + ib-*exlb \~e~wlb e~sviw) φ(s\w)dw
Jx

- b-2e-srix) φ(s\x) + ib-3e~xlb [* ewlb e~sv{w) φ(s\w)dw.
Jo

Thus from (1) and (3)

( 4 ) D2φ = b-2{1 - (1 - k)e-sv{x)}φ(s\x) - kb~2 (x > 0);

and now we have that, in fact, φ e C°°.

We now put k = 0, and then write (4) as

(5) D*φ-gφ=fφf

where

g = sb~2 V(x) and / = {1 - sV(x) - e~sv{x)} ίr 2.

We discuss the nature of φ by using the standard method of variation
of parameters, and so postulate as a solution of (5) (for the moment we
suppress the variable s)

φ(x) = A(x) Θ1(x) + B(x) Θ2(x),

where θ^x), Θ2(x) are independent solutions of

( 6 ) D2φ - gφ = 0.

We find that

( 7 ) φ(x) = θ±(x) \Xf(y) φ(y) Θ2(y) dy\W - Θ2(x) \* f(y) φ(y) θ^y) dyjW,
Jc Jd

where W — θ[(y) Θ2(y) — θ[{y) θλ{y) (actually a nonzero constant) and c, d
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here are constants. When a = 3/2, which is the case we shall work
through in detail, we can take (cf. Watson [7], p. 96)

(8) θx(x) - x1'2 K2{4b~ι s1'2 x1") a n d Θ2(x) = x112 J2(46~1 s1/2 xιli)

also W= — i, using (1W). We now rewrite (7) in the more convenient
form:

( 9 ) φ(x) = Aθx(x) + BΘ2(x) - Wλ{x) \X f(y)φ(y) Θ2(y)dy
Jo+

where A and B are constants (possibly involving s) to be found later;
this we can do because, for fixed s, Θ2(y) ~ Cy (y —» 0) and θλ{y) ~
Cyme~cvλ" (y—oo), by (2W) and (SW). Here (and elsewhere) C is
some positive constant (often depending on s), but not necessarily the
same each time it occurs. Thus the effect of our work so far has been
to replace the natural integral equation, (1), by a second, (9); but (9) is
the easier to handle.

We now find A and B. We first note that B = 0. For

( i ) θi(v) - Cy>18exp(- 4b'1 s1'2 y^) (y - «>), by (3 W),
(ii) Θ2{y) - Cy318 exp(46-χ s1/2 y1!i) (y -> oo), by {AW) and
(iii) f{y) — O(y~3) (y —> CXD); thus the two integral terms of (9) tend

to zero as x —• oo. Since 0 ^ φ g 1 for all x, there is (for x —> oo) just
one unbounded term in (9) if B Φ 0, and so B = 0.

To find A we need further boundary conditions on </>. From (1)
(with k = 0) we have

(10) φ(s|0 + ) = £ + ib~1J,

where

j = Γ r w / δ e"5 F ( w ) φ(slw)dw
Jo

and from (2) (with A; = 0)

Z ) φ ( s | 0 + ) - -hb-1 + hb~2J.

Thus

(11) Φ(s\0+) = 1

which, with (9), allows us (after some detailed calculation) to evaluate
A. We find, by elaboration of the methods used below, that
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we shall not give the details because the asymptotic distribution of
Tj\/x is obtainable without this complete treatment of A. We shall
show later (in § 4) that

(12) φ = AVβs + O(xlt2) (x -> 0),

when 8 > 0, whence φ(s\0 + ) = Ab2/8s. Then from (10), recalling that
A depends on s, we see that

lim (,4&78s) = i + f fc-Πim ( V w / & e~sv{w) φ(s\w)dw
s->0 s->0 JO

= i + i b'1 Γ e~wlb dw Pr{T < oo} = 1
Jo

(because almost certainly there will be only finitely many complete circuits),
so that

A ~ 8s/&2 (s — 0).

Now put s\/x = σ > 0 in (9) and let x —> co and s —> 0, σ being
fixed. Then

(13) ^(β- σ Γ/^|x)-φ(s|x)->86- 2(7if 2(46- 1-/σ), (σ > 0, x->«>).

if both integral terms of (9) tend to zero; this is in fact the case, as
we show in §3. The (honest) probability distribution

has the expression on the right-hand side of (13) as its Laplace transform,
so that

lim if {e-σTNx\x) = gf (e~στ)
X—>oo

for all σ > 0. It follows by the continuity theorem for the Laplace-
Stieltjes transforms of probability distributions of nonnegative random
variables that

(15) limP
64 Jo ^V b2τ/ τ3 V 6V V 62c

This is our main result; but it is clear that (to some extent at least)
the precise value of a affects the detail of (15) rather than its essential
nature. For a Φ 2 we can take as independent solutions of (9)

θλ(x) = x1'2 K,{2vb-χ s1/2 ^- ( 1 / 2 ) Λ ) and Θ2{x) = x1'2 I^vb'1 s1'2 x1-™*),

where v = \a — 21"1 (for a — 2 the solutions are powers of x), and then
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find as before that W is a constant independent of y. But some limi-
tations on a are imposed by the need for suitable behaviour of various
integral terms, and we merely note here one analogue of (15):

if V(χ) = x-\ then

(16) lim Pr{^ ^ c\x\ = λ [ exp (--L) % = exp (--L) .
*-oo l # J δ2 Jo \ 62τ/ τ2 V 62c/

3 Analytical details* Consider the behaviour of the integral terms
in (9) when x -> oo and s\/x — σ > 0. These terms are (apart from
constant factors)

(a) Θ1(x)\xf(y)φ(s\y)θ2(y)dy
Jo

and

(b) 02(x)\^f(y)φ(s\y)θ1(y)dy.

Write (a) as θx(x) { j ^ + jV(l/)Φ(β|l/) θ,(y)dy} - Λ + A,, say, and

consider separately the terms Aτ and A2. Using | / | < 2b~2sy~3l2(y > 0),
and noting that θx{x) = σs~τ ΛΓ2(46"1τ/o>), we have

for a? sufficiently large, since /2(λ1/4) = O(λ1/2) (λ -• 0). Thus A, = O(x~112)
(x-± oo). For A2 we use | / | < is2/y3b2 and find

s Ji yz L 6 \χ 1 J Ji

since Ja(ί) is bounded for 0 ^ (9 ^ 46"V(7. Thus A2 = O(^1/2) (a? --> oo),
so that (a) -> 0 as x -> oo with si/a? = σ > 0.

For (b) have

| ( 6 ) | < Cx1'2 Γ ? / 1 / 2 4 ^ = O(x~2) (x -> oo),
Jx y*

which completes the proof that the integral terms tend to zero.

4 Analytical details (continued). We now prove (12). To do this
we need (part of)
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( i ) θ,{x) = Vβs - \x^ + O(xlogx) (»-»<>),
(ii) Θ2(x) = 2sδ-2 x + O(x312) (x — 0)

and
(iίi) 1 - s V(x) - e~srM = - sar8'2 + 0(1) (α -»> 0) .

Proofs. By (5W) .

ΛΓ,(z) = 2z-2 - i + O(z* log z) (« -> 0) ,

whence (i) follows. Likewise, using (2ΫF), 00 follows from

Uz) = zηS + O(z4) (2 -v 0) .

Finally, (iii) follows from 0 < e~sr{x) < 1 for x > 0, s > 0.

We now note that (12) follows at once from (9) if we show that

(iv) Θ&) \' f(y) φ(y) θt(y) dy = O(x>") (x -* 0)

and

(v) Θ2(x

These results follow from those already given. We have

f(v) - O(y-*'η (y - 0) and Θ2(y) = O(y) (y -> 0)

so that

\'f(y) Φ(v)
Jo

Since θ^x) — 0(1) (x —> 0), this gives (iv). The proof of (v) is similar.
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