SELF-INTERSECTION OF A SPHERE ON A COMPLEX QUADRIC

I. FÁry

1. The real part S^{n} of a quadric V in complex, affine $(n+1)$-space is a sphere. The self-intersection of S^{n} in V is the same as the selfintersection of a "vanishing cycle," introduced by Lefschetz, and plays a certain role in [4], [5]. We will compute here this self-intersection number, using elementary tools.

Let us introduce some notations. $\quad P_{n+1}$ denotes the complex projective space of algebraic dimension $n+1$, hence of topological dimension

$$
\operatorname{dim} P_{n+1}=2 n+2
$$

To each projective sub-space P_{k} of P_{n+1} a positive orientation can be given, thus it can be considered as a cycle $p_{2 k}$. Then we agree that

$$
\begin{equation*}
\text { if } k+l=n_{1}+1 \text {, then }\left(p_{2 k}, p_{2 l}\right)=1 \text { in } P_{n+1} \tag{1}
\end{equation*}
$$

be true for the intersection numbers of cycles. This is the usual convention, the one in [1], for example; in [7] another convention is adopted.

Let x_{1}, \cdots, x_{n+2} be a fixed system of projective coordinates in P_{n+1}. Then

$$
\begin{equation*}
Q_{n}: x_{1}^{2}+\cdots+x_{n+2}^{2}=0 \tag{2}
\end{equation*}
$$

is a non-singular quadric; $\operatorname{dim} Q_{n}=2 n$. The points of P_{n+1} whose last coordinate is non-zero form a complex affine space C_{n+1}, and

$$
V=Q_{n} \cap C_{n+1}=\left[x: x \in Q_{n}, x_{n+2} \neq 0\right]
$$

is a non-singular affine quadric. If $z \in C_{n+1}$, we denote by z_{1}, \cdots, z_{n+2} those coordinates for which $z_{n+2}=i$ where $i^{2}=-1$; thus z_{1}, \cdots, z_{n+1} are affine coordinates in C_{n+1}. Then

$$
\begin{array}{ll}
V: z_{1}^{2}+\cdots+z_{n+1}^{2}=1 \\
S^{n}: z_{1}^{2}+\cdots+z_{n+1}^{2}=1, z_{1} \cdots, z_{n+1} r e a l s & \left(z \in C_{n+1}\right)
\end{array}
$$

are the equations of an affine quadric and its real part respectively; this real part S^{n} is, of course, a sphere. We consider S^{n} with an arbitrarily chosen and fixed orientation as a cycle s. It is well known (see, for example, [2], p. 35, (g)) that
(3) the homology class s, of the cycle whose carrier is S^{n}, generates $H_{n}(V ; Z)$,
where Z denotes the ring of integers.
As $\operatorname{dim} V=2 \operatorname{dim} S^{n}$, the self intersection number

$$
\begin{equation*}
(s, s)=\left(S^{n} S^{n}\right) \tag{4}
\end{equation*}
$$

of s in V, is well defined; we may write $\left(S^{n}, S^{n}\right)$ for this self intersection number, because (s, s) does not depend on the orientation of S^{n}, used in (3).
2. M. F. Atiyah communicated to me his computation of the intersection number (4) for $n=2$, showing that the sign in [2], p. 35 (10) is not the right one. ${ }^{1}$ The determination of the sign of (4) given below is a generalization to n dimensions of the construction of Atiyah. In [2] we used only the fact that (4) is not zero, if n is even, hence other results of that paper are not invalidated by the false sign in (10), p. 35. The mistaken sign is "classical." Wrong sign appears in [4], p. 93, Théorème sur les Γ_{a-1} de C_{u}, I, [5] on top of p. 16, [8], p. 102, (3), and [7], p. 104, Theorem 45 (although in [7] not the convention (1) is used, the alternation of the sign in question is independent of any convention). After the completion of the present paper [6] appeared, where the classical mistake in sign is corrected (see (11.3) on p. 161). The results of [1] are in agreement with the sign (5) below.
3. Using the notations and conventions introduced above, we will prove the following theorem.

Theorem. Let s be the homology class of the oriented sphere S^{n} in $H_{n}\left(Q_{n} ; Z\right)$ where $n=2 h$ is even. Let us denote by (s, s) the selfintersection number of s computed with the convention (1). Then

$$
(s, s)=\left\{\begin{array}{l}
-2, \text { if } h=\frac{n}{2} \text { is odd } \tag{5}\\
+2, \text { if } h=\frac{n}{2} \text { is even }
\end{array}\right.
$$

holds true.

[^0]4. We prepare the proof of this theorem; for the first part of the proof, see [1]. (See also [3], pp. 230-232.) In order to describe easily linear sub-spaces of Q_{n}, we introduce new projective coordinates in P_{n+1} :
\[

$$
\begin{aligned}
& u_{j}=x_{2 j-1}+i x_{2 j} \\
& v_{j}=x_{2 j-1}-i x_{2 j}
\end{aligned}
$$ j=1, \cdots, h+1 \quad \quad\left(i^{2}=-1\right)
\]

Let us notice that

$$
\begin{equation*}
u_{j}=v_{j}=0 \text { if and only if } x_{2 j-1}=x_{2 j}=0 \tag{6}
\end{equation*}
$$

The equation of Q_{n} is

$$
u_{1} v_{1}+\cdots+u_{h+1} v_{h+1}=0
$$

in the new coordinates.
We consider the following linear sub-spaces of Q_{n} :

$$
\begin{equation*}
A: \quad u_{j}=0, \quad j=1, \cdots, h, h+1 ; \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
B: \quad u_{j}=0, \quad j=1, \cdots, h ; \quad v_{h+1}=0 ; \tag{8}
\end{equation*}
$$

Let us remark that,

$$
\begin{equation*}
A \cap C=\phi, \quad B \cap C \text { is just one point, } \tag{10}
\end{equation*}
$$

Lemma 1. Let X be one of the projective spaces A, B, C. If, in the system of equations defining X, we replace an even number of equations $u_{j}=0$ by the corresponding $v_{j}=0$, or vice versa, we define a new linear sub-space of Q_{n} belonging to the same continuous system as X. Similarly, without leaving the continuous system containing B, we may replace $u_{n}=0, v_{n+1}=0$ in (8) by $v_{n}=0$ and $u_{n+1}=0$.

Proof. Let us suppose that we want to replace $v_{1}=0, v_{2}=0$ in (9) by $u_{1}=0, u_{2}=0$. Let us consider the linear space

$$
\begin{aligned}
& \alpha v_{2}+\beta u_{1}=0, \\
& -\alpha v_{1}+\beta u_{2}=0,
\end{aligned} v_{3}=0, \cdots, v_{n+1}=0
$$

defined for every $(\alpha, \beta) \neq(0,0)$. This projective space is clearly contained in Q_{n}. For $(1,0)$ we have C and for $(0,1)$ the desired replacement. The last statement of the lemma is proved similarly using the system

$$
\begin{aligned}
& \alpha u_{n}+\beta u_{h+1}=0 \\
& -\beta v_{h}+a v_{h+1}=0
\end{aligned}
$$

Let us consider now A, B, C as cycles of Q_{n}, and let us denote by a, b, c their respective homology classes in $H_{n}\left(Q_{n} ; Z\right)$.

Lemma 2. If h is odd, then $c=a$. If h is even, then $c=b$.
Proof. If h is odd, the $h+1$ equations of (9) can be replaced by the equations $u_{j}=0, j=1, \cdots, h+1$. Hence A and C belong to the same continuous system. If h is even, we can replace the first h equations defining C by $u_{j}=0, j=1, \cdots, h$. Hence C and B belong to the same continuous system.

Lemma 3. As to the intersection numbers, we have

$$
\begin{align*}
& \text { if } h \text { is odd, then }(a, a)=0,(b, b)=0,(a, b)=1 \text {, } \tag{11}\\
& \text { if } h \text { is even, then }(a, a)=1,(b, b)=1,(a, b)=0 \tag{12}
\end{align*}
$$

Proof. (1) Let h be odd. By Lemma 2 and the first equation of (10), we have $(a, a)=0$. Similarly, the second equation of (10) and Lemma 2 prove $(a, b)=1$. In order to prove $(b, b)=0$, we consider the space

$$
B^{\prime}: \quad v_{j}=0, \quad j=1, \cdots, h, \quad u_{n+1}=0
$$

We claim that B and B^{\prime} are in the same continuous system. In order to prove this statement, we use Lemma 1 twice. First, we replace the last two equations of (8) by $v_{n}=0$, and $u_{n+1}=0$. Second, in the system obtained by the first step, we replace the first $h-1$ equations by $v_{j}=0$. Now $B \cap B^{\prime}=\phi$, and this proves $(b, b)=0$.
(2) Let h be even. The proof of (12) is similar to the previous one. The last two equations of (12) are immediate from (10) and Lemma 2. Using Lemma 1, we can find presently $a B^{\prime \prime}$, such that $B \cap B^{\prime \prime}$ be just one point.

Lemma 4. Using the previous notations s, a, b, for homology' classes,

$$
\begin{equation*}
s= \pm(a-b) \tag{13}
\end{equation*}
$$

the sign depending on the chosen orientation of S^{n}.
Proof. Let us denote by I the hyperplane $x_{n+2}=0$, Then, clearly,

$$
A \cap I=B \cap I
$$

We denote by J this intersection $(J=A \cap B)$. Let us consider a pencil
of k-planes, $2 k+\operatorname{dim} A=2 n+2$, in general position. If N is a neighborhood of J in B, the k-planes of the pencil project N into a neighborhood M of J in A. Given now a Riemann metric of P_{n+1}, if N is a small enough neighborhood of J, the corresponding points of N, M determine unique geodesic segments. We consider now B as a cycle, whose simplexes are so small that those intersecting J are contained in N. Using the geodesic segments introduced above which start at points of the simplexes of B intersecting J, it is easy to construct a chain E of Q_{n}, such that

$$
\begin{equation*}
A-B+\partial E \tag{14}
\end{equation*}
$$

be a sum of simplexes of $V=Q_{n}-I$. Hence, s being a generator of $H_{n}(V ; Z)$, (14) will be homologous to a multiple of s. Thus $a-b=m s$ for some integer m. Now $(a-b, a)=m(s, a)$ is ± 1 by Lemma 3, hence $m= \pm 1$.

Proof of the Theorem. (1) Let us suppose that h is odd. We use (13) and (11): $(s, s)=(a-b, a-b)=(a, a)-(b, a)-(a, b)+(b, b)$ $=-(b, a)-(a, b)=-2$.
(2) Let us suppose that h is even. This time we use (12): (s, s) $=(a, a)+(b, b)=+2$. Hence the proof of (5) is complete.

References

1. É. Cartan, Sur les propriétés topologiques des quadriques complexes, Publications Mathématiques de 1'Université de Belgrade, 1 (1932), 1-20.
2. I. Fáry, Cohomologie des variétés algébriques, Annals of Math. 65 (1957), 21-73.
3. Hodge and Pedoe, Methods of Algebraic Geometry, Vol. II, Cambridge University Press, 1954.
4. S. Lefschetz, L'Analysis Situs et la Géométrie Algébrique, Paris, Gathier-Villars, 1924.
5. Géométrie sur les surfaces et les variétés algébriques, Mémorial des Sciences Mathématiques, Fasc. XL, Paris, Gauthier-Villars, 1929.
6. J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III), Bulletin de la Soiété Mathématique de France, 87 (1959), 81-180.
7. A. H. Wallace, Homology Theory on Algebraic Varieties, New York, Pergamon Press, 1958.
8. O. Zariski, Algebraic Surfaces, Berlin, 1935, Springer Verlag.

University of California, Berkeley

[^0]: ${ }^{1}$ I take the opportunity to correct another mistake in [2], also noticed by Atiyah. In Proposition 2, p. 27, we have to suppose that the singularity in question is conical. In [2], Proposition 2 is stated without proof; Atiyah gave an example showing that the statement does not hold true, if the singularity is not conical, and gave a proof with the correct hypothesis. Proposition 2 is used in [2] only in connection with conical singularities; thus other results of [2] are not affected by the incomplete formulation of that Proposition.

