SELF-INTERSECTION OF A SPHERE ON A COMPLEX QUADRIC

I. Fáry

1. The real part S^n of a quadric V in complex, affine (n + 1)-space is a sphere. The self-intersection of S^n in V is the same as the selfintersection of a "vanishing cycle," introduced by Lefschetz, and plays a certain role in [4], [5]. We will compute here this self-intersection number, using elementary tools.

Let us introduce some notations. P_{n+1} denotes the complex projective space of algebraic dimension n + 1, hence of topological dimension

dim
$$P_{n+1} = 2n + 2$$
.

To each projective sub-space P_k of P_{n+1} a positive orientation can be given, thus it can be considered as a cycle p_{2k} . Then we agree that

(1)
$$if \ k+l=n+1$$
, then $(p_{2k}, p_{2l})=1$ in P_{n+1}

be true for the *intersection numbers* of cycles. This is the usual convention, the one in [1], for example; in [7] another convention is adopted.

Let x_1, \dots, x_{n+2} be a fixed system of projective coordinates in P_{n+1} . Then

(2)
$$Q_n: x_1^2 + \cdots + x_{n+2}^2 = 0$$

is a non-singular quadric; dim $Q_n = 2n$. The points of P_{n+1} whose last coordinate is non-zero form a complex affine space C_{n+1} , and

$$V = Q_n \cap C_{n+1} = [x: x \in Q_n, x_{n+2} \neq 0]$$

is a non-singular affine quadric. If $z \in C_{n+1}$, we denote by z_1, \dots, z_{n+2} those coordinates for which $z_{n+2} = i$ where $i^2 = -1$; thus z_1, \dots, z_{n+1} are affine coordinates in C_{n+1} . Then

$$V: z_1^2 + \cdots + z_{n+1}^2 = 1$$
 $(z \in C_{n+1})$
 $S^n: z_1^2 + \cdots + z_{n+1}^2 = 1, z_1 \cdots, z_{n+1} reals$

are the equations of an affine quadric and its real part respectively; this real part S^n is, of course, a sphere. We consider S^n with an arbitrarily chosen and fixed orientation as a cycle s. It is well known (see, for example, [2], p. 35, (g)) that

Received September 12, 1960.

(3) the homology class s, of the cycle whose carrier is S^n , generates $H_n(V; Z)$,

where Z denotes the ring of integers.

As dim V = 2 dim S^n , the self intersection number

(4)
$$(s, s) = (S^n S^n)$$
, (in V),

of s in V, is well defined; we may write (S^n, S^n) for this self intersection number, because (s, s) does not depend on the orientation of S^n , used in (3).

2. M. F. Atiyah communicated to me his computation of the intersection number (4) for n = 2, showing that the sign in [2], p. 35 (10) is not the right one.¹ The determination of the sign of (4) given below is a generalization to n dimensions of the construction of Atiyah. In [2] we used only the fact that (4) is not zero, if n is even, hence other results of that paper are not invalidated by the false sign in (10), p. 35. The mistaken sign is "classical." Wrong sign appears in [4], p. 93, Théorème sur les Γ_{a-1} de C_u , I, [5] on top of p. 16, [8], p. 102, (3), and [7], p. 104, Theorem 45 (although in [7] not the convention (1) is used, the alternation of the sign in question is independent of any convention). After the completion of the present paper [6] appeared, where the classical mistake in sign is corrected (see (11.3) on p. 161). The results of [1] are in agreement with the sign (5) below.

3. Using the notations and conventions introduced above, we will prove the following theorem.

THEOREM. Let s be the homology class of the oriented sphere S^n in $H_n(Q_n; Z)$ where n = 2h is even. Let us denote by (s, s) the selfintersection number of s computed with the convention (1). Then

(5)
$$(s,s) = \begin{cases} -2, & if \ h = \frac{n}{2} \ is \ odd ; \\ +2, & if \ h = \frac{n}{2} \ is \ even ; \end{cases}$$

holds true.

1252

¹ I take the opportunity to correct another mistake in [2], also noticed by Atiyah. In Proposition 2, p. 27, we have to suppose that the singularity in question is *conical*. In [2], Proposition 2 is stated without proof; Atiyah gave an example showing that the statement does not hold true, if the singularity is *not conical*, and gave a proof with the correct hypothesis. Proposition 2 is used in [2] only in connection with conical singularities; thus other results of [2] are not affected by the incomplete formulation of that Proposition.

4. We prepare the proof of this theorem; for the first part of the proof, see [1]. (See also [3], pp. 230-232.) In order to describe easily linear sub-spaces of Q_n , we introduce new projective coordinates in P_{n+1} :

$$egin{array}{lll} u_{j} = x_{2j-1} + i x_{2j} \ v_{j} = x_{2j-1} - i x_{2j} \ j = 1, \, \cdots, \, h + 1 \ (i^{2} = -1) \; . \end{array}$$

Let us notice that

(6)
$$u_j = v_j = 0$$
 if and only if $x_{2j-1} = x_{2j} = 0$.

The equation of Q_n is

$$u_1v_1 + \cdots + u_{h+1}v_{h+1} = 0$$
 ,

in the new coordinates.

We consider the following linear sub-spaces of Q_n :

(7) $A: u_j = 0, j = 1, \dots, h, h+1;$

(8) $B: u_i = 0, \quad j = 1, \dots, h; \quad v_{h+1} = 0;$

(9) $C: v_j = 0, j = 1, \dots, h+1.$

Let us remark that,

(10)
$$A \cap C = \phi$$
, $B \cap C$ is just one point,

by (6).

LEMMA 1. Let X be one of the projective spaces A, B, C. If, in the system of equations defining X, we replace an even number of equations $u_j = 0$ by the corresponding $v_j = 0$, or vice versa, we define a new linear sub-space of Q_n belonging to the same continuous system as X. Similarly, without leaving the continuous system containing B, we may replace $u_h = 0$, $v_{h+1} = 0$ in (8) by $v_h = 0$ and $u_{h+1} = 0$.

Proof. Let us suppose that we want to replace $v_1 = 0$, $v_2 = 0$ in (9) by $u_1 = 0$, $u_2 = 0$. Let us consider the linear space

$$egin{array}{lll} lpha v_2 + eta u_1 = 0 \ , \ -lpha v_1 + eta u_2 = 0 \ , \end{array} & v_3 = 0, \, \cdots , \, v_{h+1} = 0 \ , \end{array}$$

defined for every $(\alpha, \beta) \neq (0, 0)$. This projective space is clearly contained in Q_n . For (1, 0) we have C and for (0, 1) the desired replacement. The last statement of the lemma is proved similarly using the system

$$lpha u_{h}+eta u_{h+1}=0$$
 , $-eta v_{h}+av_{h+1}=0$.

Let us consider now A, B, C as cycles of Q_n , and let us denote by a, b, c their respective homology classes in $H_n(Q_n; Z)$.

LEMMA 2. If h is odd, then c = a. If h is even, then c = b.

Proof. If h is odd, the h + 1 equations of (9) can be replaced by the equations $u_j = 0$, $j = 1, \dots, h + 1$. Hence A and C belong to the same continuous system. If h is even, we can replace the first h equations defining C by $u_j = 0$, $j = 1, \dots, h$. Hence C and B belong to the same continuous system.

LEMMA 3. As to the intersection numbers, we have

(11) if h is odd, then
$$(a, a) = 0$$
, $(b, b) = 0$, $(a, b) = 1$.

(12) if h is even, then (a, a) = 1, (b, b) = 1, (a, b) = 0.

Proof. (1) Let h be odd. By Lemma 2 and the first equation of (10), we have (a, a) = 0. Similarly, the second equation of (10) and Lemma 2 prove (a, b) = 1. In order to prove (b, b) = 0, we consider the space

$$B': v_j = 0$$
, $j = 1, \dots, h$, $u_{h+1} = 0$.

We claim that B and B' are in the same continuous system. In order to prove this statement, we use Lemma 1 twice. First, we replace the last two equations of (8) by $v_h = 0$, and $u_{h+1} = 0$. Second, in the system obtained by the first step, we replace the first h-1 equations by $v_j = 0$. Now $B \cap B' = \phi$, and this proves (b, b) = 0.

(2) Let h be even. The proof of (12) is similar to the previous one. The last two equations of (12) are immediate from (10) and Lemma 2. Using Lemma 1, we can find presently a B'', such that $B \cap B''$ be just one point.

LEMMA 4. Using the previous notations s, a, b, for homology classes,

$$(13) s = \pm (a - b),$$

the sign depending on the chosen orientation of S^n .

Proof. Let us denote by I the hyperplane $x_{n+2} = 0$, Then, clearly,

 $A \cap I = B \cap I$.

We denote by J this intersection $(J = A \cap B)$. Let us consider a pencil

of k-planes, $2k + \dim A = 2n + 2$, in general position. If N is a neighborhood of J in B, the k-planes of the pencil project N into a neighborhood M of J in A. Given now a Riemann metric of P_{n+1} , if N is a small enough neighborhood of J, the corresponding points of N, M determine unique geodesic segments. We consider now B as a cycle, whose simplexes are so small that those intersecting J are contained in N. Using the geodesic segments introduced above which start at points of the simplexes of B intersecting J, it is easy to construct a chain E of Q_n , such that

(14)
$$A - B + \partial E$$

be a sum of simplexes of $V = Q_n - I$. Hence, s being a generator of $H_n(V; Z)$, (14) will be homologous to a multiple of s. Thus a - b = ms for some integer m. Now (a - b, a) = m(s, a) is ± 1 by Lemma 3, hence $m = \pm 1$.

Proof of the Theorem. (1) Let us suppose that h is odd. We use (13) and (11): (s, s) = (a - b, a - b) = (a, a) - (b, a) - (a, b) + (b, b) = -(b, a) - (a, b) = -2.

(2) Let us suppose that h is even. This time we use (12): (s, s) = (a, a) + (b, b) = +2. Hence the proof of (5) is complete.

REFERENCES

1. É. Cartan, Sur les propriétés topologiques des quadriques complexes, Publications Mathématiques de l'Université de Belgrade, 1 (1932), 1-20.

2. I. Fáry, Cohomologie des variétés algébriques, Annals of Math. 65 (1957), 21-73.

3. Hodge and Pedoe, Methods of Algebraic Geometry, Vol. II, Cambridge University Press, 1954.

S. Lefschetz, L'Analysis Situs et la Géométrie Algébrique, Paris, Gathier-Villars, 1924.
Géométrie sur les surfaces et les variétés algébriques, Mémorial des Sciences Mathématiques, Fasc. XL, Paris, Gauthier-Villars, 1929.

6. J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III), Bulletin de la Soiété Mathématique de France, 87 (1959), 81-180.

7. A. H. Wallace, Homology Theory on Algebraic Varieties, New York, Pergamon Press, 1958.

8. O. Zariski, Algebraic Surfaces, Berlin, 1935, Springer Verlag.

UNIVERSITY OF CALIFORNIA, BERKELEY