
UPPER BOUNDS FOR THE EIGENVALUES OF SOME

VIBRATING SYSTEMS

DALLAS BANKS

1. Introduction* Let p(x) ^ 0, x e [0, a], be the density of a string
fixed at the points x = 0 and x = a under unit tension. The natural
frequencies of the string are determined by the eigenvalues of the
differential system

(1) n" + Xp(x)u = 0, u(0) = u(a) = 0 .

We note that these eigenvalues depend on the density function p(x)
and denote them accordingly by

o < \(p) < UP) < UP) < .

M. G. Krein [5] has found the sharp bounds

X M ~ ~W (n = 1, 2, •)

where X{t) is the least positive root of the equation

VX tan X = — - —
1 — t

p(x)dx = M and 0 ^ p(x) ^ H.
0

Sharp lower bounds are found in [1] when instead of the condition
p(x) g H, we have p(x) either monotone, p(x) convex, or p{x) concave.
The precise definitions of convex and concave are given below.

In this paper, we find sharp upper bounds for Xn(p) (n = 1, 2, 3, •)
whenever p(x) belongs to any one of the following sets of functions:

(a) Eλ(M, H, a), the set of monotone increasing functions where

\ap(x)dx = M and 0 ^ p(x) ^ H, x e [0, α] .
Jo

(b) E2(M, H, a), the set of continuous convex functions, i.e., conti-
nuous functions p(x) such that

p(x) ^ x*-χ

 p(Xl) + x~χi P(χ2), O^x^x^a,
Jϋ2 *vj_ *v2 1

S a
p(x)dx = M and 0 ^ p(x) ^ H, x e [0, a] .

0
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(c) EZ{M, α), the set of continuous concave functions, i.e.,— p(x)

S a
p(x)dx = M, x e [0, a],

0

In general, the values of the maxima appear as the roots of a tran-
scendental system of equations and are not obtained explicitly. However,
explicit bounds are given in some special cases.

The methods used generalize to give bounds for the eigenvalues of
a vibrating rod. Upper bounds are also found for the lowest eigenvalue
of a vibrating membrane over a circular domain when the density is
bounded and convex and also when the density is concave.

We make use of the following lemmas.

LEMMA 1. Let p(x) and q{x) be nonnegative integrable functions
defined for x e [a, b] and let f(x) be nonnegative, continuous and mono-
tone increasing in [a, 6]. If c e (a, b) is such that p(x) ^ q(x)for x e (a,c)
and p(x) ^ q(x) for x e (c, b)y then

p(x)dx — I q(x)dx
a Ja

implies that

S b Cb

p{x)f{x)dx 5i I q(x)f(x)dx .
α Jα

// f(x) is monotone decreasing, the inequality sign is reversed.
A proof of this lemma is given in [1].

LEMMA 2. Let Ek be one of the classes of functions defined above.
There exists a function p(x) e Ek such that

Xn(p) = sup Xn(p) .
()eE

Let p(x) e Ek for some k = 1, 2, or 3. By the definition of Ek,
there is a number H such that 0 S p(%) ^ H, xe [0, a]. (When k = 3,

that is when p(x) is concave, we take H = .) It follows that
a

Hence, there is a number μ such that

μ = sup Xn(p) .
p(χ)eEk

Let E(M, H, a) be the set of all functions p(x), x e [0, α] such that
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0 ^ p(x) S H < co and 1 p(x)dx = M. Krein [5] has shown that there
Jo

exists a subset {p»(x)} of E(M, H, a) and a function ρ(x) e E(M, H, a)

such that

pv{x)dx = \ ρ(x)dx .

o / J o

The convergence is uniform for x e[0,a] and furthermore

lim Xn(pv) = Xn(ρ) .
V->oo

In particular if p(x) e Ek, then the functions pv(x) also belong to
Ek. We now show that in each of the cases k = 1, 2, 3, p(x) e Ek also.

We first consider EX(M, H, α), that is, the family of all monotone

p(x)dx — M. Then pv(x)

e Eλ(M, H, α), (v = 1, 2, . .) . Let

p^(x)dx .
0

Since pv(^) is increasing, σv{x) must be convex. Hence, lim σv(x) = <τo(cc) =
p(x)dx must also be convex. For if

0

w\

(xλ < x < x2)9 then the same inequality must hold in the limit. It then
follows that p(x) is increasing.

For the family E2(M, H, α), that is for convex p{x), we first note
that the functions pv(x) (v = 1, 2, •••) are also convex. We now con-
sider these functions while restricting x to lie in the interval [δ, a—δ]
where 0 < δ < α/2. From the convexity of pv(x), it follows that

%{x + h) — py(x)

Hence {pv(x)} is an equicontinuous family of functions in this interval.
We now consider

pv(x) - ρ(x) I ^ pv(x) - h) — σv(x)

σv{x + h) — σo(x) _ σo(x + h) — σo(x)
h h

where α?, α? + h e [δ, α - δ]. Since

h

σo(x + h) - fl-o( p(x)

+ fe) "~ + θh) for

some 0 < θ < 1, it follows from the equicontinuity that the first term
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on the right may be made small by choosing h small. The last may
be made small by choosing h small since σ[(x) = p(x). Then for fixed
h, the middle term may be made small by choosing v sufficiently large.
Thus pv(#) —> p(x) as y —> oo in any closed interval properly contained in
(0, a). Hence we must have point wise convergence and p(x) must be
convex, x e (0, α).

The corresponding result for the family of functions E3(M, α), that
is when p(x) is concave, follows directly from the convex case by con-
sidering {— pv(x)}.

S a
p(x)dx =

o

M is

(2) 8Xn(p) = -Xn(

where un{x) is the normalized eigenfunction corresponding to Xn(p) and

[\δp)dx = 0.
Jo

Consider the differential system associated with a vibrating string
of linear density p(x) + εq(x) Ξ> 0, namely

(u + εv)" + (λ + εμ)(p(x) + eq(x))(u + εv) = 0 ,

u(0) + ev(0) = u(a) + εv(a) = 0 ,

S a
\p(x) + εq(x)]dx = M. We denote the nth. eigenvalue of this

0

system by Xn(p) + εμn and the corresponding eigenfunction by un(x) +
εvjx) where un(x) is the eigenfunction corresponding to Xn(p). un +
εvn(x) then satisfies the equation

< + < + (Xn(p) + εμn)(p(x) + εq(x))(un + εvn) = 0 .

Multiplying this by un(x) and integrating the resulting expression over
the interval (0, α), we get

(Xn(P) + eμn)[l + ε\\pnnvn + qu\)dx + 0(ε2)] - 0 .
Jo

S a Γa

u"undx — —Xn(p) and taken \ pu\dx = 1.
o Jo

Solving for μn, we find
(x)ul(x)dx - λ J β ( t ; X - vnu

r:)dx + 0(ε)
J ^

μ" 1 + 0(e)
Integrating the second integral by parts, we find that it vanishes so
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t h a t lett ing ε—>0, we get

Hence

[p(x) + εq(x)]dx = M and

S o
p(x)dx = M, it necessarily follows that \ 8p(x)dx = 0.

o Jo

2» Monotone density functions* We first consider the case where
p(x) is a monotone increasing function such that 0 ^ p(x) ^ H < oo,
that is when p(x)εE1(Mf H, a).

THEOREM 1. Let Kip) be the nth eigenvalue of a vibrating string
with fixed boundary values and with a monotone increasing density
function p(x)εE1(Mf H, a). Then

Kip) ^ KiP)

where pix)εExiM, H, a) is a step function with at least one and at most
n discontinuities in the open interval (0, α).

By Lemma 2 there exists a monotone bounded function p(x) e
EλiM, H, a) such that λn(/t>) = maxpe23l λΛ(p). Hence, letting pix) = pix) in
the variational formula (2), we have 8Xnip) ^ 0. We now show that
unless pix) e E^M, H, a) is a step function with at most n discontinuities
^XniP) > 0 for some 8p = εq where pix) + 8pix) e E^M, H, a). Hence,
pix) must be a step function with at most n discontinuities.1

Let ujx) be the eigenfunction corresponding to λn(p). Denote the
nodal points of ujx) by xk (fc = 0,1, , n) where x0 = 0 and xn = a.
Since unix) has only one extremum point in each of the intervals ixk-lf

xk)ik = 1,2, , vήulix) has only one maximum there. Let that point
in ixk, xk+1) be xk (& = 1, 2, , n). For k = 1, 2, , w, we let

r(x) — ak— Vk pix)dxjixk — a?ft_i), a? e [^fc.!, xk] .

Since αfc is the mean value of pix) in ixk~19 xk) and p(ίc) is monotone
increasing, it follows that ak+1 ^ pix) iί xe [xk, xk] (fc = 1, 2, , w — 1)
and that α^ ^ p(αj) if α? 6 [xk, xk] (fc = 1, 2, , ^ ) . Hence, it is possible

1 The author is indebted Z. Nehari for suggesting the variational approach used in
this paper.
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to find a point ξk e (xk9 xk) such that

\ak if x € [xk, ξk)
r(x)=\ , (fc = 1,2,

(α if xe[ξk,xk]

satisfies the relation

_ r(x)dx = \_ p

(k = 1, 2, , w). We have taken an+1 = iί, the upper bound of p(#).
In each of the intervals (xk-lf xk) and (xk, xk) (k = 1, 2, , n), r(ίc) and
p(a?) satisfy the hypothesis of Lemma 1.1 relative to ul(x). Hence, we
have

\Xk p(x)ul(x)dx ^ \x* φ)ul(x)dx

and

p(α?)t6̂ (cc)dx ^ \ r(x)u2

n(x)dx

(fc = 1, 2, , n). Summing on k, we find that

\\v{x) - r(x)]ul(x)dx ^ 0 .
Jo

The equality sign will hold if and only if p(x) = r(x), i.e., p(x) is con-
stant or is a step function with precisely one jump in each of the in"
tervals (xk-19 xk) (k = 1, 2, , ri). If we let q(x) = r(x) — p(x), then
for small ε > 0 Lemma 3 gives the result

e q(x)ul(x)dx

= -K(p)\aSp(x)ul(x)dx > 0
Jo

unless p(x) = r(x). Hence, p(x) = r(x) if Xn(p) is a maximum. But r(x)
is a step function with at most n jumps in (0, a).

Finally, we show that the maximizing density cannot be a constant
so that there must be at least one jump. We first consider the lowest
eigenvalue. We show that δ\(p) > 0 when p(x) = M/a for a particular
Sp = εq.

The eigenfunction corresponding to λ^ikf/α) is

Ul(x) = i/2/S sin πx

a

If we let
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f-e if x e (0, α/2 + rj) ,

δp(#)d# = 0 and
0

δλΊ(M/α) = —

From the symmetry of ux{x) about the point x = α/2 and Lemma 1 it
is easily seen that

\a8p(x)ul(x)dx > 0 .
Jo

Hence, δλ̂ Af/α) > 0 so that \(M/a) cannot be a maximum value of

The corresponding result for the higher eigenvalues can be obtained
t>y choosing

8p(x) = εq(x) = - e(al2n
(2n — l)α „ if x e (al2n + W, a) ,

o v

Λvhere 0 < ^ < α/2w. It then follows from the periodicity of

un(x) = τ/2/αsin nπx
a

and the argument used for X^M/a) that Xn{Mfa) cannot be a maximum
value of λΛ(p), p e EX{M, H, a).

The upper bound of \(p), p e £Ί(M, iί, α) is thus given as the max-
imum of the lowest eigenvalue of the system.

(3) u" + XpΘ(x)u = 0, u(0) = u(a) = 0

where

ΘH if xe [0, fα) ,

i ϊ if cc € [|α, α]

0 < 6> < 1 and | = ί ~ ^/^fa ^ T h a t θ = 0 m a y be excluded from con-

sideration follows easily from the derivation of the form of p{x) and
the fact that the maximum of uλ(x) in this case must occur in the open
interval (ξa, a). For we would have αx = \Xlpθ(x)dx Φ 0 .

Jo
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The eigenfunctions of (3), are [2]

(sin VxnH (1 — £)α sin VxnΘH x , x e [0, ξa) ,
rti ί/y \ —— J

(sin V\nΘH | α sin V\nH (a — x) , # e [£α, α]

where Xn(Pβ) is the wth positive root of

tan (ξaVxθH) + v T t a n α(l — f )i/λ!f = 0 .

We could now compute
dθ

and determine the value which

maximizes \(PΘ).

The determination of the bounds for the higher eigenvalues is also
seen to be a problem in ordinary calculus since the jumps of the step
function which give the maximum must occur in the open interval
(0, a).

3. Convex density functions* Let p(x), x e [0, a] be a continuous

S α
p(x)dx = M and 0 ^ p(x) ^ H, that is, let

p(x) e E2(M, H, a).

THEOREM 2. Let \(p) be the lowest eigenvalue of a string with
fixed end points and with density p{x) e E2{My H, a). Then

where μ(h) = [6(h — l)^]2/^3 and tx is the least positive root of

\ T (t)T ( <2 ~ W* \ - 0

if 1 < h < 2 and μ(h) = h(StJ2)2 and tx is the least positive root of
J"_2/3(i) = 0 if h^2. The minimum is uniquely attained for the
function

ί 4
(5) p(x) = \

ifl<h =

(M - aH)x + H, xe(O, a/2) ,

p(a — x) , x 6 (α/2, α) ,

< 2 and

(6) p(x) =
[HIM](M - Hx) , xe (0,

0 , x e (MIH, α/2) ,

p{a — x) , x e (α/2, α),
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if h = — ^ 2 .

M

It is well known that \(p) is the minimum of

[au'2(x)dx
= -i°

I p{x)u\x)dx
Jo

where the minimum is taken over all functions ueC which vanish a t
x — 0 and x = α. If we let

t h e n

A,! V/// - mOA

\ uf\x)dx
Jo

S o Γa
p(x)u2(x)dx 1 p(α — x)u\x)dx

_ ? _ ^ (. m a χ JoS
1 J L 1 Λ Λ _ ? _ ^ (. m a χ

since the eigenvalues of a string with density p(a — x) are the same
as those of a string with density p(x). Hence any upper bound of λ^p)
is also an upper bound of Xλ(p).

The differential system (1) with p(x) replaced by p(x) has the same
lowest eigenvalue as the system

<7) u" + Xp{x)u = 0, u(0) = uf(a/2) = 0, x e [0, α/2].

Furthermore, since p(x) is convex, so is p(x), x e [0, α], and the bound
i ί is also a bound of p(x).

We now compare the lowest eigenvalue of the system (7) with that
of the same system when p(x) is replaced by

Pl(x) = μ/a

2](M - aH)x + H, x e [0, α/2] ,

if 1 < ^ r < 2 and

f a? e [ 0 f

^ e [ikf/ίί, α/2] ,
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if —— ^ 2. In either case, since ft(O) = H ^ p(0) and 1 pλ{x)dx =

S M Jo

α/2_

p(a;)d#, it follows from the convexity of p{x) that there is a point
ξ 6 (0, α/2) such that ρλ(x) ^ p(#) if x e (0, £) and ρx{x) g p(#) if a; e (f, α/2).
There will be strict inequality in each of these open intervals unless
p(x) = Pi(x), xe[0, α/2]. If u(x) is monotone increasing in [0, α/2] with
w(0) = ^'(α/2) = 0, we have by Lemma 1
(8)

Since the first eigenfunction of the system (7) is a monotone increasing
function, it follows from the comparison theorem [2] that

\(P) ^ λiίft)

There will be equality if and only if p(x) = ft (a?), for if u(x) is the
eigenfunction corresponding to the lowest eigenvalue of (7) with p(x)
replaced by ft(ίc) Φ p(x) then (8) will be a strict inequality and hence

S α/2 fo/2

u'\x)dx u'\x)dx
1 ρ1{x)u\x)dx \ p{x)u\x)dx
Jo Jo

But λx(ft) is also the lowest eigenvalue of the system (1) with p(x)

replaced by

pla -x), xe [α/2, a] .

This is just the function (5) if 1 < - ^ - < 2 and the function (6) if
M

^ 2. Hence we see that X^p) ^ \(p) for any bounded convex p(x).
M

When jθ(ίc) is defined by (5) we find that

a\ p(x)dx
Jo

where μ(h) = [6(h — lfaf/h3 and ίx is the least positive root of

Jii*(t)J%lΛ(kt) - J-ll3(t)J.2l3(kt) = 0 ,

= ( 2 - [4], When p(x) is defined by (6) we have
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S a
p(x)da

0

where μ(h) = h(3tJ2y and tx is the least positive root of J-3iz(t) = 0 [4].
A better bound is obtained if, instead of the bound H, we use 3 —

i[p(0) + p(a)] for the bound of p(x). This results in a smaller value of
μ(aH/M) whenever p(0) Φ p(a).

For the larger eigenvalues we prove the following.

THEOREM 3. Let Xn(p) be the nth eigenvalue of a vibrating string
with fixed boundary values and with a convex density p(x) e E2{M, H,a).
Then

Xn(p) ^ Xn(p)

where p(x) e E2(M, H, a) is a piecewise linear convex function with at
most (n + 2) pieces.

The existence of a bounded convex function p(x) such that max?6ί?2

^n(p) = ^n(P) follows from Lemma 2. It then follows by Lemma 3 that

S\n(p) - -K(P)\aδf*x)ul(x)dx ^ 0 .
Jo

We now show that either p(x) is a convex piecewise linear function
with at most (n + 2) pieces or there exists a function q(x) such that
δλw(p) > 0 when 8p = εq where p(x) + Sp(x) e E2(M, H, a). Let un(x) be
the eigenfunction corresponding to Xn(p). We first find a convex
function r(x) such that

S a Ca

r(x)ul(x)dx ^ I p(x)ul(x)dx .
o Jo

Instead of trying to find r(x) directly, we carry out a preliminary con-
struction. As in Theorem 1, we denote the minimum points of u\{x)
by xk (k = 0,1, , n) and the maximum points by xk (k = 1, 2, , n).
We first consider each of the intervals (xk, xk+1) (k = 1, 2, , n — 1)
separately.

Let L(x) be any linear function such that L(x) ^ p(x), xe(xk,xk+1)
for some fixed integer k(l ^ k ^ n — 1). Then m(x) = max {L(ίc), 0}
satisfies the inequality 0 ^ m(x) ^ 2)(α?). Now let ck be any number
such that ck ^ pί^^). Then there is a number αΛ such that

(9) I k+1[ak(x - xk) + ck]dx =
J
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If ak(x — xk) + ck ^ m{x), x e (xk, xk+1), then we let

9k(x, ck) = ak(x - xk) + ck , a; e (a?fc, α t + 1) .

If αft(# — xk) + ck < m(x) for some x e (#*, £fc+i), then we redefine αfc

by the condition

(10) I [ak(x — xk) + ck]dx + \ m(x)dx =

where | f c satisfies the equation ak(ξk — &fc) + ck = m(ξk). In this case,
we define gk{x, ck) by

(<xΛ(α? — a?Λ) + ck , a; € (xk, ξk) ,

(m(aj) , a 6 [&, αΛ + 1) .

Now consider the interval (a?fc, a?fc). Let m(x) = max {L(a?), 0} where L(ίc)
is any linear function such that L(x) ^ p(x) iί x e (xk, xk). There is a
number δfc such that

S χjc C xfc

_ \bk(x — xk) + cΛ]cί^ = I p(x)dx .
If 6fc(α; — ίCjk) + ck ^ m(ίc) for a; e (»A, a?Λ), w e l e t

K(®t ck) = bk(x — xk) + ck , x e (xk, xk) .

If bk(x — xk) + ck < m(x) for some cc e (xk, χk), we redefine bk by the
condition

S ηk Γxk

_ m(x)dx + \ [bk(x — xk) + ck]dx =
where r)k satisfies the equation bk{ηk — xk) + ck = m(τ]k). We then define
K(x, ck) by

7 (m(x) , a? € (xk, Ύ]k) ,

/&*(#, cΛ) = j

We may consider ak and bk to be functions of ck. They are conti-
nuous functions as is easily seen from the defining relations of ak and bk.
It follows that there is a number yk ^ p(#Λ) such that ak = 6fc if ck — yk.
For if cA = p(Xfc), the convexity of p(#) implies that ak — bk ^ 0. On
the other hand, if ck is sufficiently large, ak — bk < 0. Hence, by the
continuity, the value 7k exists such that ck = yk implies ak — bk.

In the interval [x0, x^\, we define gQ(x, c0), in the same way that
9k(Xt ck) was defined except that we specify cQ = p(0) — 70. Similarly
in [xn, a] we define hn(x, cn) as above except that we take cn = p(a) = yn.

We now let

γ ίγ\ ft (V <Ί\ t p f Π ? !
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[hk(x, Ύk) , x e [xkJ xk] ,
rΛx) —

[Uk[

(k = 1, 2, ••*, n — 1). From (9) or (10), which ever applies, we have

rk(x)dx — 1 p(x)dx .

The convexity of p(x) and the definition of rk(x) imply by Lemma 1 that

Similarly from (11) or (12) we have

(14) ΓVfc(a;X(x)(ίa; ^ (!*p(»K(«)^ .

Furthermore, we have strict inequality unless rk(x) = jo(̂ ) in each case.
We are now able to define the function r(x) by induction. We

carry out the process only for n — 3 to avoid unnecessary detail. In
(x0, xx), we let m(x) = 0 and define rλ(x) as above. In (xu x2), we also
define r2(α;) with m(x) — 0. Then, comparing rx(βx) and r2(βx) we have
the following alternatives:

( i ) If r^Xj) > r2{x^)9 we define a new function r2(x) with m(x) =
max {^(x), 0}, a? e [xx, x2] where we define rλ(x) in this interval by extra-
polation.

(ii) If rλ{x^ < r2(^i), we define a new function r̂ a?) with m(x) =
max {r2(ίc), 0}, a? e [x0, xj, where r2{x) is defined in this interval by extra-
polation.

(iii) If r^) = τ2(βx) we leave rx{x) and r2(x) as they are.
Using whichever alternative applies, we define

τ2(x) , x e [ ^ , x j .

Now, define r3(a?), a? e [̂ 2, ^3] with m(a?) = 0 and compare r{1)(x2) and
r3(a?2). We use the same alternatives as above, the only difference being
that if rω(x2) < rB(x2) we must redefine r{1)(x) with m(x) = max {r3(#), 0},
a? e [a?0, #2] where as above we define rB(x) by extrapolation.

It is clear that the above process can be completed for any integer
n. The function which we obtain by this method we call r(x). It will
be a convex function since any two adjacent segments of the graph of
r(x) can only have a point of intersection which lies on or below the
graph of p(x). Since there is possibly a subinterval of [0, a] where r(x)
may be zero, r(x) may have up to n + 2 linear pieces.
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If we sum the inequalities (13) and (14) we find that

S a Ca

r(x)u2(x)dx ^ I p(x)ul(x)dx
o Jo

with strict inequality unless r(x) = p(x) in (0, a). Choosing 8p = eq(x) =
ε[r(x) — p(x)], we have that p(x) + 8p(x) is convex if ε > 0 is small and
hence

\a8pul(x)dx < 0
Jo

or 8Xn(p) > 0 unless p(x) = r{x), x e [0, a]. Since we must have 8Xn(p)
^ 0, it follows that p(x) is the same type of function as r(x). From
the method of determining r{x), we see the p(x) is a convex piece wise
linear function with at most n + 2 linear segments.

We note from Theorem 2 that this is precisely the case when n = 1.

4. Concave density functions. We consider the case when p(x),

S a
p(x)dx = M, that

0

is, when p(x) e E3(M, a).

THEOREM 4. Let Xn(p) be the nth eigenvalue of a string with fixed
end points and with a concave density function p(x) e E3(M, a). Then

K(P) ^ K(P)

where p(x) e Ed(M, a) and is a piecewise linear concave function with
at most n pieces.

The existence of a concave function ρ(x) such that

max Xn(p) = Xn(p)
peε3

follows from Lemma 2. As in the previous cases, we must have
δλ,^) ^ 0. We show that it is always possible to find a function q(x)
such that

= -Xn(p)\a8p(x)ul(x)dx > 0
Jo

when p(x) = εq(x) where p(x) + Sp(x) e E3(M, a), unless p(x) e E3(M, a) is
a piecewise linear concave function with at most n pieces. Hence, it
follows that p(x) must be such a function.

We find the function q(x) by the method used in the proof of
Theorem 3. Thus, we seek a function r(x) such that

J a Ca

r(x)ul(x)dx ^ I p(x)ul(x)dx .
o Jo
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Where un(x) is the eigenfunction corresponding to Xn(p). To apply the
method of Theorem 3, we consider

[p(x)ul(x)dx = \\-p(x)][-ul(x)]dx .
Jo Jo

Then — p(x) is convex and the zeros xk (k = 0, 1, 2, , n) of un(x) are
the maximum points of —ul{x). The maximum points xk(k = 1, 2, , n)
of ?4(x) are the minimum points of —ul(x).

Over each of the intervals (xk, xk+1)(k — 0,1, , n — 1) we define
—rk(x, ck) where — p(xk) ^ ck g 0. As in the convex case, there is a
number γfc such that rk(x, yk) is linear at x — xk. Using the inductive
argument as before, we let m(x) = L(x) since L(x) will be negative and
form new functions — rk(x, yk). Finally we obtain —r(x) which is convex
and satisfies the inequality

p(x)ul(x)dx ^ 1 r(x)u2

n(x)dx .
o Jo

Hence, choosing q(x) = r(x) —p(x), we have

\aδpul(x)dx = [a e q(x)ul(x)dx ^ 0 ,
J Jo

where for ε sufficiently small p(x) + Sp(x) e E3(M, a). Furthermore,
there is strict inequality unless p(x) is a concave piecewise linear func-
tion with at most n pieces. This proves the theorem.

It follows immediately from Theorem 4 that

1X*7 " aM

when p(x) is concave.1 For in this case, p(x) is a linear function. But,
as was shown in the proof of Theorem 3, λ ^ ) ^ λ ^ ) where p(x) =
i[ρ(x) + ρ(a — x)]. In this case, ρ(x) = M/a and \(Mla) = π2[aM.

5 The vibrating rodL The eigenvalue problem associated with a
vibrating rod with clamped ends and density p(x) Ξ> 0, x e [0, a] is

(15) uiΌ — Xp(x)u = 0 , w(0) = u'(0) = w(α) = w'(α) = 0 .

As in the case of the string, we denote the ordered eigenvalues by

0 < \(p) < λ2θ) < .

That there should be strict inequalities in this expression has been
1 This result has already been obtained by Z. Nehari. His proof is the one dimensional

analog of that given in [7] where he shows that the lowest eigenvalue of a circular mem-
brane with a superharmonic density p(xf y) is bounded above by that of a homogeneous
membrane of the same total mass.
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shown in [6].
In this section, we consider the problem of finding upper bounds

for these eigenvalues when p(x) is restricted to be either monotone,
convex or concave. In the first two cases, we require in addition that
p(x) 5g H < oo. As in the case of the string, we denote the set of all

S a
p(x)dx = M where p(x) is monotone

0

increasing, convex and concave by Eλ{M, H, α), E2(M, H, a) and EZ{M, a)
respectively. The H in Eλ{M, H, a) and E2{M, H, a) indicates that in
these cases p(x) <Z H.

LEMMA 4. Let Ek be one of the sets of functions defined above.
There exists a function p(x) e Ek such that

Xn(ρ) = sup Xn(p) .

This follows in exactly the same manner as the result of Lemma
2. We need only note that the result of Krein quoted in Lemma 2
may be generalized to this case. The generalization is trivial for the
Green's function of the system (15) and its first partial derivatives are
bounded. Krein's proof then applies word for word to this case and
hence the proof of Lemma 4 follows as in the proof of Lemma 2.

S a
p(x)dx = M is

0

S λ » - -Xn(p)\aδp(x)ul(x)dx
Jo

where un(x) is the normalized eigenfunction corresponding to Xn(p).

S a
8p(x) = 0.

0

The result is easily derived in the same way as the result of Lemma 3.
The results of Theorems 1, 3 and 4 will now generalize to the case

of a vibrating rod with clamped ends. The only question which arises
concerns the properties of the eigenfunction un(x) corresponding to
Xn(p). It must be true that un(x) has the same general character as
the wth eigenfunction of a vibrating string. In particular, it has been
shown in [6] that un(x) has exactly n — 1 zeros in the open interval
(0, a). Furthermore u2

n(x) has exactly one maximum between any con-
secutive pairs of zeros. For suppose there are two or more maximum
points between some consecutive pair of zeros. Then u'n(x) must have
at least n + 4 zeros in [0, α]. Hence K{x), K'(x) and u(

n

iv)(x) must
have at least n + 3, n + 2, and n + 1 zeros respectively in the open
interval (0, a). This leads to a contradiction if p(x) > 0 since u{

n

ίv) =
Xnp(x)un(x) may have only n — 1 zeros in (0, a). If p(x) ^ 0, we may
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apply the same argument with p(x) replaced by p(x) + ε, ε > 0. Thus,
if un2(x) is the nth eigenf unction, u2

n2(x) has n maximum points in (0, a).
Letting ε —> 0, we see that the same must be true of the nth eigenf unc-
tion when the rod density is p(x) ^ 0.

From these observations, Lemmas 4 and 5, and the arguments used
in Theorems 1, 3 and 4, we have the following result.

THEOREM 5. Let Xn(p) be the nth eigenvalue of a rod with clamped

ends and density p{x), x e [0, a], such that \ p(x)dx = M.

(a) // p(x) is monotone increasing and bounded

Kip) ^ KiP)

where pix), x e [0, a] is an increasing step function with at least one

S a
pix)dx =

o

M.

(b) If p{x) is convex and bounded

Xn(p) =g Xn(p)

where p{x), x e [0, α] is a bounded piecewise linear convex function

S a
p(x)dx = M.

o

(c) // p(x) is concave

KiP) ^ KiP)

where pix), x e [0, a] is a piecewise linear concave function with at

most n linear pieces and \ pix)dx — M.
Jo

In the case of the lowest eigenvalue, the density which gives the
upper bound may be obtained precisely when pix) is convex or concave.
It follows from the Rayleigh quotient as in Theorem 2 that for pix) =
i[pix) + pia — x)]

Xiip) ^ \iv) .

This and the above theorem thus show that when p(x) is convex, pix)
is symmetric and piece wise linear with at most three linear pieces and
that when pix) is concave, pix) is a constant. This result may also be
obtained by the method used in the proof of Theorem 2.

6. The membrane* We consider a vibrating membrane stretched



1200 DALLAS BANKS

with uniform unit tension over a disk D = {(x, y) \ x2 + y2 < R2}. We
assume the areal density of the membrane is given by the measurable
function p(x, y) where

1 \ P(%> y)dxdy = M.

For such a membrane with a fixed boundary, the eigenvalues and eigen-
functions are determined by the integral equation [8]

(16) u(x, y) = WjZiXf V> ξ> VM£> VM£> y)dξdr}

where G(x, y, ξ, rj) is the Green's function of D. We denote the first
eigenvalue by \(p) and the corresponding eigenfunction by ux(x, y).

We find upper bounds for \(p) by use of the following result.

LEMMA 6. The lowest eigenvalue of a circular membrane with
fixed boundary and integrable density p{x, y) is always less than that
of a circular membrane with fixed boundary and density.

- 1 f23Γ

p(x, y) — p(r) = \ p(r cos θ, r sin θ)dθ .
2π Jo

Proof. We use the fact the first eigenvalue is given by the in-
fimum of the Rayleigh quotient

11 (ul + uξ)dxdy
R(u) = — ^

11 p(x, y)u\x, y)dxdy

where the infimum is taken over all functions u(xf y) eC such that
u(x, y) vanishes on the boundary D. In particular, the lowest eigenvalue
of a circular membrane with density p(r) is given by

1 \ (ul + uξ)dxdy

\(p(r)) - mf - p .
ue°' \\ p(r)u\x; y)dxdy

We note that

2π Jo 2π"J

Hence, it follows that
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i \ v(r,φ)u2(r,φ)rdφdr
± = sup UE= sup

ί ( (—\2πp(r, Φ + Θ)dθ)u\r, φ)rdφdr
J JD\27Γ JO /

sup
uec

2 7 Γ J

11 (u2

x + Uy)dxdy

p(r, φ + θ)u\r, φ)rdφdr

i.e., λ^ί)) ^ \(p) since λ^p) does not depend on θ. We may now prove
the following.

THEOREM 6. The lowest eigenvalue of a circular membrane with
fixed boundary and a bounded convex density p(x, y) is less than the
lowest eigenvalue of a circular membrane with density

JO , 0<r^R-Hla,

if R> H/a and

q(r) = a(r-R) + H

S R

q(r)rdr = M.
0

We first note that since p(x, y) is convex, so is
1 Γ2?r

p(r) = 1 p(r cos </>, r sin φ)dφ .
2π Jo2π

For suppose τx and r2 are such that —R^r1<r2^R. By the con-
vexity of p(x, y) we have

cos φ, Tl + n sin φ) rg i[p(rx cos φ, n sin φ)

+ p(r2 cos φ, r2 sin φ)] .

Integrating this with respect to </>, we have

We now consider
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'ul + ul)dxdy

where u{x, y) is the eigenf unction corresponding to \(p(τ)). For any
function u1(x,y)eC, we then have

J > ))D

In particular, if tφ, y) = ux{r) is the eigenf unction corresponding to
the first eigenvalue \(q) of a membrane with density q{τ), it is a de-
creasing function of r, This is easily seen by considering the differential
equation which is equivalent to the integral equation (16) [3], By Lemma
1, we thus have

(17) 2π\Rp(r)ul(r)rdr ^ 2π[Bq(r)u\(r)rdr .
Jo Jo

Hence,

ι M r ) )

This same method yields a result if p(x, y) is a concave function.
For p(r) is also concave and the inequality (17) holds if we choose q(r) =

p(x, y)dxdy = M. Hence we find that
D

where j 0 is the least positive zero of «7"0(α?) = 0. As pointed out in [1],
this result is a corollary to a theorem of Nehari [7] which says that if

Λ2

p{x, y) is superharmonic in D, then λx(p) ^ TΓ-^—If. Since a concave

function is superharmonic, this implies the above result.
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