PREDICTION THEORY FOR MARKOFF PROCESSES

A. V. BALAKRISHNAN

In this paper we consider the least square prediction problem for
Markoff processes with stationary transitions. The main result concerns
the partial differential equation characterizing the prediction operator,
and the conditions for the uniqueness of the solutions.

Introduction. Let x(t) be a Markoff process with stationary trans-
itions. It is well-known that the optimum mean square predictor of
g(x(s + t)) given x(o) for ¢ < s is given by the conditional expectation:

Elg(x(t + 9)) | x(0) = 5] .

For a Markoff process this becomes

(1.1) Elg(x(t + s)) [12(s)]
and further, if the transitions are stationary, we need only to consider:
(1.2) Elg(2(@)) | 2(0)]

Let p(t, &| x) be the distribution function (suitably normalized) of the
conditional or transition probability of transition from z to £ in time ¢.
Then, of course, (1.2) becomes

(1.3) [o@drt, £10).

Now if g¢(.) is in Cle, B], where — <a<B < + o is the interval over
which the transition probabilities are defined, we obtain a semigroup of
linear operators over Cla, 8] defined through (1.3). If now we know
the infinitesimal generator of this semigroup, we obtain an abstract
differential equation for (1.3):

(1.4) i“_g;—@ = Mult, g)

where u(t, g) represents (1.3) and 4 is the infinitesimal generator, pro-
vided g(.) is in the domain of 4. If we know the representation of 4,
and if in particular, it turns out to be a partial differential operator,
(1.4) offers an alternate way of determing the prediction functions (1.2)
provided uniqueness of the solution can be proved. In what follows,
we shall be concerned primarily with situations where such a reduction
is possible, and the associated conditions for uniqueness.
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Main Results:

2. Markoff processes of the diffusion type. A well-known set of
sufficient conditions under which the reduction to a parabolic partial
differential equation is possible are the Lindberg-Levy conditions which
we state here in their weakest form due to Feller [3,4]. Let

(i) %S'e_medeP(t,élx)——»O as t — 0+
L) 2| (€= o)dPEEl0)—b@ as t—0+
(i) %SN_MQ;: — 2Pd.P(t, £ | ©) — 2a(x) as ¢ — 0+

Then for each g(.) in Cla, 8], if we set:
@) T(®o@) = [ 9©d.Pt, ¢ o) .

T(t) is a semigroup of linear bounded operators over [«, 8] and moreover

(1) || T@®g!llgll (contraction semigroup)

(ii) || T(@)g —g||—0 as t— 0+ (strongly continuous)

(iii) T(t)g is non-negative if g is nonnegative.
(positivity preserving)

(vi) For g(£) = constant T (f)g =g .

Properties (i), (iii) and (iv) are obvious from (2.1). That 7T(t)g again
belongs to Cla, 8] follows from condition (i) of L,, and so does property
(ii). Let 4 be the infinitesimal generator of the semigroup. Then the
most important property one would like to deduce from L, is that it
coincides with a second-order differential operator. Unfortunately,
however, this is not always entirely true. For example following Feller
[4], suppose we define the transition density kernels,

1 _ (g®) —g())* 1. _ _
P(t, &| %) —V%[exp ey ]g(E), a=—ow, f=+cw
where say g(.) is a polynomial which vanishes at the origin, and g¢'(§) > 0.
Taking g(£) = &, we obtain for £ # 0

bE) = _%E_,,
alf) = %— .

However, at £ =0,
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a(0) = 0
b(0) =0 .

Direct substitution into (2.1) shows that for f(.) in the domain of 4,
S(0) = f'(0) = f"(0) and that

Af(0) = -(f!—fﬁ(m :

Although for any & & 0,

_ d’f \ af

(2.2) Af(E) = a(§) T + b(¢) dE

Here it may be noted that the exceptional point zero is a point of
discontinuity of the functions a(.) and b(.). One might then expect
that this may avoided if they are required to be continuous. However,
it should be noted even in this case that 4 may not still coincide
entirely with the differential operator on the right in (2.2)—in fact, it
may only be a contraction of that operator. With some additional con-
ditions on a(£) and b(£) we can nevertheless obtain a stronger result.

THEOREM 2.1. Let a(f), b(&) given by L, be continuously twice
differentiable in the open imterval (o, B) and a(§) > 0 therein. Let the
limits in L, hold uniformly in x in each compact sub-interval. Suppose
wn addition they satisfy:

@3) [[a@u@ds = + e = |(a@uede
where a < 0 < B
o dt
9) = Soa(t)w(t)
w(t) = exp — S}%d& .

Then the infinitesimal generator A of the semigroup coincides with
the differential operator C

@.4) C= a(&)ﬁ?—z + b(f)a%

where the domain of C consists of functions f(E) with first and second
derivatives such that

&y df (&)
a(é) aE +b(é) e
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belongs to Cla, B].

Conversely suppose the functions a(g) and b(£) are given, with a(£)
positive and continuous and b(£) continuous in the open interval [a, 5],
and suppose (2.3) is satisfied. Then C generates a semigroup given by
(2.1) where the kernels are Markoff transition probabilities which satisfy
the conditions L,, the limits holding uniformly in % in each compact.
sub-interval.

Proof. Let us consider the converse statement first. Under the
conditions (2.3) on the coefficients a(£) and b(¢), Hille [5] has shown
that C is the infinitesimal generator of a strongly continuous positive
contraction semigroup. Denoting this semigroup by S(¢), we have, for
any f(.) in Cla, 8]:

(25) SO @) = | £@d.P, & 2)

where the P(t, & x) are Markoff transition kernels. Moreover, it is
readily shown that the kernels satisfy the conditions L,, with the
necessary uniformity.

Suppose next that we are given transition probabilities satisfying
L, where a(.) and b(.) satisfy (2.3). We know then (2.1) yields a strongly
continuous semigroup, and we have to show that its infinitesimal gener-
ator A coincides with C. For this, suppose f(.) is in the domain of C>2.
Then f(.) has first and second derivatives. Further, suppose f’(.) vani-
shes outside a compact sub-interval, say [, r.]. Now because a(¢) > 0
and continuous in [a, B], it follows that f'’(.) is continuous in compact
sub-intervals, and hence in particular in [r, r,]. Now for each z in

[a, B]

SMﬂQ—fm =%L”Jﬂ@—f@WHLH@

+ ﬂflgle—xm(& — @aPt, £lo)

R D 2
+ L2 | (e~ apart, £a)

where 0 < |0 <1.
In view of L,, it follows that

2.6) limit L&) (wg"f @) — o) (@) +b(@) (@)

t—0

and because of the asserted uniformity of the limits in L, and the con--
ditions on f(.), it is clear the limit in (2.6) is uniform in z in [e, B]..
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Hence, for such f(.) it follows that
Af =Cf .

Moreover, for the same f(.), note that Cf again vanishes outside [r;, 7.].
Also, Cf again belongs to the domain of C and hence has first and
second derivatives. Hence the argument above can be repeated to yield
that

ACf = C*f
and, of course

CAf = C*
or

CAf = ACY .

Denoting the semigroup generated by C by S(t) if follows readily that
ST f = TSP t>0

and hence using the Dunford argument [See [7]]:
SWOf — TOF = | @do)S@) T)f = | @) T(@)As = C)do
it follows that

S =T®rf.

It only remains to show that the set of such functions f(.) is dense in
Cle, Bl . Now the class of functions in C [a, 8] whose derivatives vanish
outside compact subsets is dense in the domain of C. Because of the
postulated twice differentiability of the coefficients a(x) and b(x), it
follows that this class automatically belongs to the domain of C?,
proving the required denseness. It is quite probable the result holds
without demanding differentiability of the functions a(x) and b(x).

This proves the theorem.

We note in passing that the conditions (2.3) do not imply uniqueness
of solutions of the forward equation, as Hille [3] has shown. From our
point of view, this lack of uniqueness is of no concern to us, thus
avoiding problems associated with the duality between the backward
and forward equations. In particular, Theorem 2.1 establishes that for
f(.) in the domain of C,

E[f (@) | 2(0)] = u(t, z)

is the unique solution of the Cauchy problem:
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ou o™ ou

ot o(®) o | b(@) ox
with

(0, z) = f(x) .

As an example, consider the situation of Gaussian white-noise input to
a nonlinear system, the input-output processes being related by [See
Doob [2, p. 273] for the notation]

2.7 da(t) =12 (x(t)* + 1)de(t)
&(t) being the real Gaussian additive process with
E[| dg(®) '] = dt
so that the output process is Markoffian and we have for the limits in L;:

a(x) = (x* + 1)
b(x)=0.

These clearly satisfy all the required conditions of Theorem 2.1 and the
predication function is the solution of the equation:

ou d*u
2.8 — = (2* + 1) ==
(2.8) ot (" + 1) e

subject to the initial condition

u(0, x) = f(x)

where it is assumed that

(@ + 1)f"(x)

belongs to C[— oo, +oo].
In this particular case, we can obtain the solution in terms of orthogonal
functions:

2.9) ult, &) = S a, W,(x)e"m e
0
where

_ {7 W)
=) e

W.(x) = 1/% 1V (@* + 1) sin (n + 1)(-;[— — arc tan x) .

[See Hille [5]] for this solution. The convergence of the series in (2.4)
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is uniform in z in [a, B].
It may be noted that functions such as

flo) =2

and
f(x) = exp i\

are not in C[— o, + o], so that we cannot obtain the prediction as the
solution of the partial differential equation directly, in the sense in
which we have stated that Cauchy problem. It may, however, be
possible to consider a slightly different B-space such as the space of
functions f(x) continuous in (— oo, ) and such that

limit f(x)exp — |2, 0<p<1

x>0
exist for some p, as Hille [6] does for the heat equation.

It should also be noted that in this example, the transition density
kernel has the expansion

pt; Elx)y=(8+ 1) 2::' W, (2) W, (E)emm+De
As t — o, we obtain the density

(2.10) p(eo; &) = 2/m(E + 1)~

and it should be noted that (2.9) for each ¢ is an orthogonal expansion
with respect to this density. Also (2.10) corresponds to the (unique)
stationary first order distribution with respect to which the process is
ergodic. A sufficient condition for the existence of such an expansion
(which automatically also yield the corresponding limiting density) due
to Hille [5] is that in addition to (2.3) the following

2.11) S:q'(x)docg:w(’g’)dé < +oo and qu’(x)de:w(x)dx < o

be also satisfied. In this case, the limiting density is simply

q'(x) _
q(B) — q()

All transition probabilities are absolutely continuous.

3. Markoff processes not of the diffusion type. We shall next
consider the prediction problem not of the diffusion type, i.e., whose
transition kernels do not satisfy conditions L,, but rather an extended
version of them, leading to elliptic partial differential equations. Thus,
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let the transition density kernels satisfy:
(i) 2p(, &ly) —p2t,E[y) =0

(i) | (290 €]w) — plet, g |W)IdE—0 as t—0+ L,

(i) | (€ —vl2pe £19) - 2t €| DIE - b)

2
) | | @—ol2p¢ 1y — pet £ |9l —200)
Then the prediction function satisfies the elliptic partial differential
equation:

2 2,
o*u +a(w)au

3.1
(8.1) ot? o0x’

b)) 2~ .
ox
As before, the main difficulty is in obtaining uniqueness of the solutions.

THEOREM 3.1. Suppose a(y), b(y) are twice continously differentia-
ble in [a, B] and a(y) > 0 therein. Suppose further that the limits in
L, hold uniformly in y in each compact subinterval. Further, suppose
that a(g), b(€) satisfy (2.8). Then for each f(.) in the domain of C,

u(t, ) = E[f(x(t)) | #(0) = «]

satisfies the partial differetial equation

3.2) U Cut, @) =0
ot*
and is the only solution of it satisfying to the conditions:
@ lluw,.)—rf)ll—ast—0
(0) |l 2u(t, .) —u@t) || =[£Il
(¢) Sup,|lu,. )| <.

Conversely, suppose a(€), b(€) are given such that they are continuous
w [a, B] and a(€) > 0 therein, and such that they satisfy (3.1). Then
the Cauchy problem for (8.1) has a unique solution satisfying (a), (b) and
(c) for each f(.) in the domain C, the solution being given by

ut, ) = | F@pit, & | )i

where the p(t, €| x) are Markoff transition densities satisfying L,, the
limits existing uniformly in y in compact sub-intervals.

Proof. For a proof of the converse part [see [6]]. Since a(.), b(.)
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satisfy these conditions in the forward part as well, let us denote the
corresponding semigroup by T'(t) with generator B. Then we know that

B*= —C.
For each f(.) in Cla, 8] let us next let
u(t, ) = E[f(2@)) | 2(0) = =] .

Then the conditions L, on the transition kernels imply that w(¢, x)
satisfies (a), (b) and (c), and moreover setting

u(t, x) = S(t)f(2)

S(t) is a strongly continuous semigroup over Cla, B]. Let us denote
its generator by 4. We have now to show that

3.2) £ =B'=—C.

For this, let f(.) belong to C[«, 8] and let f’(.) vanish outside a compact
sub-interval [r, 7,]. Then as in the proof of Theorem 2.1, we shall
first show that f(.) belongs also to the domain of 4* and that

Lf = Bf .
For this we note that

T(2t) + tI2 — 2T(t) £ ()

= L1 0@ — reinet £ 9 — 206, £ ol

and as before, as ¢t — 0, by virtue of L, this goes to

—a(@)f"(x) —b(x)f'(2)

and the rest of the arguments go over similarly. Also we readily
obtain that:

AB*f = B'A*f .
This is enough to imply that

T@)f=S@®f

and the differentiability properties of a(x) and b(x) again imply that
such functions f(.) are dense in the domain of C and hence (3.2) follows.
This concludes the proof.

The simplest example of a process with transition kernels satisfying
the conditions L, is the Cauchy additive process, with the independent
increments having a Cauchy distribution:
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Elexp vs(5(t + 4) — ¢()] =exp —|[s] 4.

More generally, such a process arises as the output of a first-order system
whose imput is the Cauchy additive process:

dz(t) = b(a(t)dt + a(z(t)de(t)

in the notation of Doob (loc. cit.), &£(t) being the input Cauchy additive
process (‘non-Gaussian white noise’). Now

w(t + 4) — @(t) = bla()]4 + a[z@)][EE + 4) — £(@)]

where the right-side, for given «(t) is specified in terms of &(tf) whose
statistics are known. The limits required in L, are then established
by direct calculation. In the case of (i), we may note that we need
only prove it for small ¢, since the semigroup property will then imply
it for all values of . We omit the details of these calculations. The
differential equation is:

o"u a(x)? *u

ot* + 2 ox?

4 b)) —o .
ox

As an example we may consider the case where: a(.) and b(.) are
constants:
a(x) =12
b(x) = —2x .
The differential equation then is:

2 2
6u:_2m6u +a@§'

ot? ox ox

The (unique) solution of this is the prescribed type for each initial func-
tion f(.) can be expanded in Hermite polynomials [See [6] for a general
proof]

(3.3) ult, ) = Z:aan (x)exp — V' 2nt

where the H,(.) are the Hermite polynomials orthogonal with respect
to the Gaussian density:

1)V m)exp — a°
and

1
=TT

The series in (3.3) converges to the solution function uniformly in com-

S:of (x)H,(x) exp — x*dx .
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pact subsets of (—o, +). The transition kernel density p(t, &|x)
is given by

- ¢ —[£ —xexp — 20} _ ¢
p(t, &|2) = S =176 (1 — exp — 20) exp[ (1 — exp — 20) 40](10

as follows again from the theory in [6]. Alternately, it has the ex-
pansion:

Pt £10) = 3 H@)H,(§) exp — & — V2nt .

As t — oo, the limiting density is: Gaussian:
= ——exp — &
() = 1/ p—¢&

with respect to which (as first-order density) the process becomes strictly
stationary. It may be shown that the limiting density is again always
given by

P'()/(q(B) — q(a))

and is thus completely determined by the system, that is by a(.) and
b(.) only. The expansion (3.3) is, of course, in terms of functions
orthogonal with respect to this density. Thus, taking the example
treated in § 2, with

a@) = @ + 1)V 2
b(x) =0

yielding the differential equation:

20%_

we have the expansion:
(3.4) u(t, x) = i;“_, a,W,(x)exp — V'n(n — 1)t

with W,(x) and a, as in (2.3). As before, a sufficient condition for the
existence of such expansion, is that (2.3) and (2.11) be satisfied. How-
ever, this is not necessary as the previous example (3.3) shows.

Extensions. A generalization of the type of process treated in §3
is got by replacing the kernels in L, by

3 ()0t £12)]
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(?;’) being the Binomial coefficients, leading to the equations

U _ i qyen 0"u ou
at™ =D [a(x) ox? @) o ]

However, we have been unable as yet to establish the conditions for
uniqueness of the solutions.

We have only so far considered first-order Markoff processes. The
extension to higher order processes is similar in principle although it
entails partial differential equations in several space variables [see [8]

for example], and the results on the related Cauchy problems are still
incomplete to a large degree.
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